171
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of self-healing behavior of polypropylene fiber-reinforced cement mortar with crystalline admixture: the effects of crack widths, cracking ages, and external conditions

, , , ORCID Icon, &

References

  • Mather B. Concrete durability. Cem. Concr. Compos. 2004;26(1):3–4. doi: 10.1016/S0958-9465(02)00122-1.
  • Kolawole JT, Combrinck R, Boshoff WP. Plastic cracking behaviour of concrete and its interdependence on rheo-physical properties. Compos Part B-Eng. 2022;230:109527. doi: 10.1016/j.compositesb.2021.109527.
  • Šavija B, Schlangen E, Pacheco J, et al. Chloride ingress in cracked concrete: a laser induced breakdown spectroscopy (LIBS) study. ACT. 2014;12(10):425–442. doi: 10.3151/jact.12.425.
  • Xue C, Tapas MJ, Sirivivatnanon V. Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review. J Sustain Cement-Based Mater. 2023;12(2):184–206. doi: 10.1080/21650373.2022.2031334.
  • Reddy DV, Bolivar JC, Sobhan K. Durability-based ranking of typical structural repairs for corrosion-damaged marine piles. Pract Period Struct Des Constr. 2013;18(4):225–237. doi: 10.1061/(ASCE)SC.1943-5576.0000157.
  • Wu M, Johannesson B, Geiker M. A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater. 2012;28(1):571–583. doi: 10.1016/j.conbuildmat.2011.08.086.
  • Suleiman AR, Nehdi ML. Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem Concr Res. 2018;111:197–208. doi: 10.1016/j.cemconres.2018.05.009.
  • Zhang W, Zheng Q, Ashour A, et al. Self-healing concrete composites for sustainable infrastructures: a review. Compos Part B-Eng. 2020;189:107892. doi: 10.1016/j.compositesb.2020.107892.
  • Li VC, Yang E. Self-healing in concrete materials. In: van der Zwaag S, editor. Self-healing materials. Dordrecht: Springer; 2007. p. 161–193.
  • Dong B, Fang G, Wang Y, et al. Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system. Cem Concr Compos. 2017;78:84–96. doi: 10.1016/j.cemconcomp.2016.12.005.
  • Hu X, Yang Z, Wu M, et al. Evaluation of performance and healing effect of two-component biological self-healing mortar. J Sustain Cement Based Mater. 2023;:1–14. doi: 10.1080/21650373.2023.2282678.
  • Su Y, Qian C, Rui Y, et al. Exploring the coupled mechanism of fibers and bacteria on self-healing concrete from bacterial extracellular polymeric substances (EPS). Cem Concr Compos. 2021;116:103896. doi: 10.1016/j.cemconcomp.2020.103896.
  • Li G, Huang X, Lin J, et al. Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour. Constr Build Mater. 2019;200:36–45. doi: 10.1016/j.conbuildmat.2018.12.093.
  • ACI 212.3R. Report on chemical admixtures for concrete. American Concrete Institute; Farmington Hills; 2016 (ACI committee 212).
  • de Souza Oliveira A, Da Fonseca Martins Gomes O, Ferrara L, et al. An overview of a two-fold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators. J Build Eng. 2021;41:102400. doi: 10.1016/j.jobe.2021.102400.
  • Hu X, Xiao J, Zhang Z, et al. Effects of CCCW on properties of cement-based materials: a review. J Build Eng. 2022;50:104184. doi: 10.1016/j.jobe.2022.104184.
  • Ferrara L, Krelani V, Carsana M. A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Constr Build Mater. 2014;68:535–551. doi: 10.1016/j.conbuildmat.2014.07.008.
  • Esgandani M, Vessalas K, Sirivivatnanon V, et al. Influence of permeability-reducing admixtures on water penetration in concrete. ACI Mater J. 2017;114:1–12.
  • Pazderka J, Hájková E. Crystalline admixtures and their effect on selected properties of concrete. Acta Polytech. 2016;56(4):306–311. doi: 10.14311/AP.2016.56.0306.
  • Azarsa P, Gupta R, Biparva A. Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland limestone cement. Cem Concr Compos. 2019;99:17–31. doi: 10.1016/j.cemconcomp.2019.02.017.
  • Weng T-L, Cheng A. Influence of curing environment on concrete with crystalline admixture. Monatsh Chem. 2014;145(1):195–200. doi: 10.1007/s00706-013-0965-z.
  • Borg RP, Cuenca E, Brac EMG, et al. Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. J Sustain Cement Based Mater. 2018;7(3):141–159. doi: 10.1080/21650373.2017.1411297.
  • Jaroenratanapirom D, Sahamitmongkol R. Effects of different mineral additives and cracking ages on self-healing performance of mortar. Annu. Concr. Conf. 6, Thail. Concr. Assoc. 2010; p. 551–556.
  • Jaroenratanapirom D, Sahamitmongkol R. Self-crack closing ability of mortar with different additives. J Met Mater Miner. 2011;21:9–17.
  • Sisomphon K, Copuroglu O, Koenders EAB. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem Concr Compos. 2012;34(4):566–574. doi: 10.1016/j.cemconcomp.2012.01.005.
  • Ferrara L, Van Mullem T, Alonso MC, et al. Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: a state of the art report by COST action SARCOS WG2. Constr Build Mater. 2018;167:115–142. doi: 10.1016/j.conbuildmat.2018.01.143.
  • De Belie N, Gruyaert E, Al-Tabbaa A, et al. A review of self-healing concrete for damage management of structures. Adv Mater Interfaces. 2018;5(17):1800074. doi: 10.1002/admi.201800074.
  • Park B, Choi Y. Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr Build Mater. 2018;189:1054–1066. doi: 10.1016/j.conbuildmat.2018.09.061.
  • Chandra Sekhara Reddy T, Ravitheja A. Macro mechanical properties of self-healing concrete with crystalline admixture under different environments. Ain Shams Eng. J. 2019;10(1):23–32. doi: 10.1016/j.asej.2018.01.005.
  • Li G, Liu S, Niu M, et al. Effect of granulated blast furnace slag on the self-healing capability of mortar incorporating crystalline admixture. Constr Build Mater. 2020;239:117818. doi: 10.1016/j.conbuildmat.2019.117818.
  • Sisomphon K, Copuroglu O, Koenders EAB. Effect of exposure conditions on self-healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr Build Mater. 2013;42:217–224. doi: 10.1016/j.conbuildmat.2013.01.012.
  • Roig-Flores M, Moscato S, Serna P, et al. Self-healing capability of concrete with crystalline admixtures in different environments. Constr Build Mater. 2015;86:1–11. doi: 10.1016/j.conbuildmat.2015.03.091.
  • Jiang J, Liu B, Shi J, et al. Synergistic effect of glycine and triethanolamine on mechanical properties and permeability of cement mortar. J Build Eng. 2022;51:104283. doi: 10.1016/j.jobe.2022.104283.
  • Zhang C, Liu R, Chen M, et al. Effects of independently designed and prepared self-healing granules on self-healing efficiency for cement cracks. Constr Build Mater. 2022;347:128626. doi: 10.1016/j.conbuildmat.2022.128626.
  • Jiang Z, Li W, Yuan Z. Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials. Cem Concr Compos. 2015;57:116–127. doi: 10.1016/j.cemconcomp.2014.11.014.
  • Yang Y, Yang EH, Li VC. Autogenous healing of engineered cementitious composites at early age. Cem Concr Res. 2011;41(2):176–183. doi: 10.1016/j.cemconres.2010.11.002.
  • Ramachandran VS. Hydration of cement-role of triethanolamine. Cem. Concr. Res. 1973;6(5):623–631. doi: 10.1016/0008-8846(76)90026-0.
  • Ramachandran VS. Influence of triethanolamine on the hydration characteristics of tricalcium silicate. J Appl Chem. 1972;22(11):1125–1138. doi: 10.1002/jctb.5020221102.
  • Wang J, Kong X, Yin J, et al. Impacts of two alkanolamines on crystallization and morphology of calcium hydroxide. Cem Concr Res. 2020;138:106250. doi: 10.1016/j.cemconres.2020.106250.
  • Yan-Rong Z, Xiang-Ming K, Zi-Chen L, et al. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism. Cem Concr Res. 2016;87:64–76. doi: 10.1016/j.cemconres.2016.05.009.
  • Liu H, Lin H, Liu X, et al. Mechanism of accelerated self-healing behavior of cement mortars incorporating triethanolamine: carbonation of portlandite. Constr Build Mater. 2021;308:125050. doi: 10.1016/j.conbuildmat.2021.125050.
  • Lu J-X, Poon CS. Improvement of early-age properties for glass-cement mortar by adding nanosilica. Cem Concr Compos. 2018;89:18–30. doi: 10.1016/j.cemconcomp.2018.02.010.
  • Han J, Wang K, Shi J, et al. Mechanism of triethanolamine on Portland cement hydration process and microstructure characteristics. Constr Build Mater. 2015;93:457–462. doi: 10.1016/j.conbuildmat.2015.06.018.
  • Qian SZ, Zhou J, Schlangen E. Influence of curing condition and precracking time on the self-healing behavior of engineered cementitious composites. Cem Concr Compos. 2010;32(9):686–693. doi: 10.1016/j.cemconcomp.2010.07.015.
  • Yu Z, Ye G. The pore structure of cement paste blended with fly ash. Constr Build Mater. 2013;45:30–35. doi: 10.1016/j.conbuildmat.2013.04.012.
  • Feng J, Dong H, Wang R, et al. A novel capsule by poly (ethylene glycol) granulation for self-healing concrete. Cem Concr Res. 2020;133:106053. doi: 10.1016/j.cemconres.2020.106053.
  • Guo X, Yuan S, Liu X. The self-healing properties and mechanism of the cracked fly ash-based engineered geopolymer composites (FA-EGC): effects of water and temperature. J Sustain Cement Based Mater. 2023;12(10):1228–1241. doi: 10.1080/21650373.2023.2213227.
  • Qiu J, Siang Tan H, Yang E-H. Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cem Concr Compos. 2016;73:203–212. doi: 10.1016/j.cemconcomp.2016.07.013.
  • Wang X, Xu J, Wang Z, et al. Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity. Constr Build Mater. 2022;337:127581. doi: 10.1016/j.conbuildmat.2022.127581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.