171
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Accelerated carbonation and stabilization of BOF slag: data fitting relationship between particle size and CO2 sequestration

, , , , , & show all

References

  • Pan S-Y, Adhikari R, Chen Y-H, et al. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Cleaner Prod. 2016;137:617–631. doi: 10.1016/j.jclepro.2016.07.112.
  • Association WS. World steel in figures 2022. Brussels, Belgium: Worldsteel. org; WSA. 2022.
  • Waligora J, Bulteel D, Degrugilliers P, et al. Chemical and mineralogical characterizations of LD converter steel slags: a multi-analytical techniques approach. Mater Charact. 2010;61(1):39–48. doi: 10.1016/j.matchar.2009.10.004.
  • Wang Q, Yan P. Hydration properties of basic oxygen furnace steel slag. Constr Build Mater. 2010;24(7):1134–1140. doi: 10.1016/j.conbuildmat.2009.12.028.
  • Yang H, Cao J, Wang Z, et al. Discovery of impurities existing state in carbide slag by chemical dissociation. Int J Miner Process. 2014;130:66–73. doi: 10.1016/j.minpro.2014.05.003.
  • Liu Z, Deng Z, Davis S, et al. Monitoring global carbon emissions in 2022. Nat Rev Earth Environ. 2023;4(4):205–206. doi: 10.1038/s43017-023-00406-z.
  • Gadikota G, Matter J, Kelemen P, et al. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO 3. Phys Chem Chem Phys. 2014;16(10):4679–4693. doi: 10.1039/c3cp54903h.
  • Gadikota G, Park A-h Accelerated carbonation of Ca-and Mg-bearing minerals and industrial wastes using CO2. In Carbon dioxide utilisation. Amsterdam, The Netherlands: Elsevier; 2015. p. 115–137.
  • Polettini A, Pomi R, Stramazzo A. CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects. J Environ Manage. 2016;167:185–195. doi: 10.1016/j.jenvman.2015.11.042.
  • Sanna A, Uibu M, Caramanna G, et al. A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev. 2014;43(23):8049–8080. doi: 10.1039/c4cs00035h.
  • Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem Concr Res. 2002;32(3):459–462. doi: 10.1016/S0008-8846(01)00707-4.
  • Shi C. Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng. 2004;16(3):230–236. doi: 10.1061/(ASCE)0899-1561(2004)16:3(230).
  • Humbert PS, Castro-Gomes J. CO2 activated steel slag-based materials: a review. J Cleaner Prod. 2019;208:448–457. doi: 10.1016/j.jclepro.2018.10.058.
  • Kwek SY, Awang H. Utilization of industrial waste materials for the production of lightweight aggregates: a review. J Sustain Cement-Based Mater. 2021;10(6):353–381. doi: 10.1080/21650373.2021.1891583.
  • Wang Y, Liu J, Hu X, et al. Utilization of accelerated carbonation to enhance the application of steel slag: a review. J Sustain Cement-Based Mater. 2023;12(4):471–486. doi: 10.1080/21650373.2022.2154287.
  • Hu X, He P, Shi C. Carbonate binders: historic developments and perspectives. Cem Concr Res. 2024;175:107352. doi: 10.1016/j.cemconres.2023.107352.
  • Sidhu GS, Guleria H, Sharma D, et al. Strength and permeation characteristics of pervious concrete subjected to accelerated carbonation curing. J Sustain Cement-Based Mater. 2023;12(10):1242–1254. doi: 10.1080/21650373.2023.2213241.
  • Yan Z, Li H, Wang M, et al. The compressive strength, reaction kinetics and phases evolution of CO2-cured cement pastes at low temperatures. J Sustain Cement-Based Mater. 2023;12(12):1509–1518. doi: 10.1080/21650373.2023.2241057.
  • Baciocchi R, Costa G, Polettini A, et al. Effects of thin-film accelerated carbonation on steel slag leaching. J Hazard Mater. 2015;286:369–378. doi: 10.1016/j.jhazmat.2014.12.059.
  • Lei X, Yu H, Feng P, et al. Flue gas carbonation curing of steel slag blocks: effects of residual heat and water vapor. Constr Build Mater. 2023;384:131330. doi: 10.1016/j.conbuildmat.2023.131330.
  • Nielsen P, Boone M, Horckmans L, et al. Accelerated carbonation of steel slag monoliths at low CO2 pressure–microstructure and strength development. J CO2 Utilizat. 2020;36:124–134. doi: 10.1016/j.jcou.2019.10.022.
  • van Zomeren A, Van der Laan SR, Kobesen HB, et al. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag. 2011;31(11):2236–2244. doi: 10.1016/j.wasman.2011.05.022.
  • Yang S, Mo L, Deng M. Effects of ethylenediamine tetra-acetic acid (EDTA) on the accelerated carbonation and properties of artificial steel slag aggregates. Cem Concr Compos. 2021;118:103948. doi: 10.1016/j.cemconcomp.2021.103948.
  • Zhou X, Zheng K, Chen L, et al. An approach to improve the reactivity of basic oxygen furnace slag: accelerated carbonation and the combined use of metakaolin. Constr Build Mater. 2023;379:131218. doi: 10.1016/j.conbuildmat.2023.131218.
  • Ukwattage N, Ranjith P, Li X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement. 2017;97:15–22. doi: 10.1016/j.measurement.2016.10.057.
  • Bauer M, Gassen N, Stanjek H, et al. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Appl Geochem. 2011;26(8):1502–1512. doi: 10.1016/j.apgeochem.2011.05.024.
  • Santos RM, Van Bouwel J, Vandevelde E, et al. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. Int J Greenhouse Gas Control. 2013;17:32–45. doi: 10.1016/j.ijggc.2013.04.004.
  • Ma M, Mehdizadeh H, Guo M-Z, et al. Effect of direct carbonation routes of basic oxygen furnace slag (BOFS) on strength and hydration of blended cement paste. Constr Build Mater. 2021;304:124628. doi: 10.1016/j.conbuildmat.2021.124628.
  • Chang E-E, Chen C-H, Chen Y-H, et al. Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater. 2011;186(1):558–564. doi: 10.1016/j.jhazmat.2010.11.038.
  • Baras A, Li J, Ni W, et al. Evaluation of potential factors affecting steel slag carbonation. Processes. 2023;11(9):2590. doi: 10.3390/pr11092590.
  • Li J, Ni W, Wang X, et al. Mechanical activation of medium basicity steel slag under dry condition for carbonation curing. J Build Eng. 2022;50:104123. doi: 10.1016/j.jobe.2022.104123.
  • Polettini A, Pomi R, Stramazzo A. Carbon sequestration through accelerated carbonation of BOF slag: influence of particle size characteristics. Chem Eng J. 2016;298:26–35. doi: 10.1016/j.cej.2016.04.015.
  • Su T-H, Yang H-J, Shau Y-H, et al. CO2 sequestration utilizing basic-oxygen furnace slag: controlling factors, reaction mechanisms and V–Cr concerns. J Environ Sci (China). 2016;41:99–111. doi: 10.1016/j.jes.2015.06.012.
  • Yadav S, Mehra A. Dissolution of steel slags in aqueous media. Environ Sci Pollut Res Int. 2017;24(19):16305–16315. doi: 10.1007/s11356-017-9036-z.
  • Shi C, Liu M, He P, et al. Factors affecting kinetics of CO2 curing of concrete. J Sustain Cement-Based Mater. 2012;1(1–2):24–33. doi: 10.1080/21650373.2012.727321.
  • Wang D, Zhang H, Liu M, et al. The characterization and mechanism of carbonated steel slag and its products under low CO2 pressure. Mater Today Commun. 2023;35:105827. doi: 10.1016/j.mtcomm.2023.105827.
  • Halikia I, Zoumpoulakis L, Christodoulou E, et al. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis, European Journal of Mineral Processing and Environmental Protection, 1(2001), No. 2, p. 89–102.
  • Karunadasa KSP, Manoratne CH, Pitawala H, et al. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J Phys Chem Solids. 2019;134:21–28. doi: 10.1016/j.jpcs.2019.05.023.
  • Lee H-S, Lim H-S, Ismail MA. Quantitative evaluation of free CaO in electric furnace slag using the ethylene glycol method. Constr Build Mater. 2017;131:676–681. doi: 10.1016/j.conbuildmat.2016.11.047.
  • He S, Sun H G, Tan D, et al. Recovery of titanium compounds from Ti-enriched product of alkali melting Ti-bearing blast furnace slag by dilute sulfuric acid leaching. Procedia Environ Sci. 2016;31:977–984. doi: 10.1016/j.proenv.2016.03.003.
  • Tong Z, Ma G, Zhou D, et al. The indirect mineral carbonation of electric arc furnace slag under microwave irradiation. Sci Rep. 2019;9(1):7676. doi: 10.1038/s41598-019-44162-x.
  • He P, Zhang X, Lü F, et al. Leaching behavior of phosphorous compounds from sewage sludge ash based on quantitative X-ray diffraction analysis. Waste Dispos Sustain Energy. 2020;2(2):113–125. doi: 10.1007/s42768-020-00037-w.
  • Abidoye LK, Das DB. Carbon storage in Portland cement mortar: influences of hydration stage, carbonation time and aggregate characteristics. Clean Technol. 2021;3(3):563–580. doi: 10.3390/cleantechnol3030034.
  • Baciocchi R, Costa G, Polettini A, et al. Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia. 2009;1(1):4859–4866. doi: 10.1016/j.egypro.2009.02.314.
  • Jiang Y, Li L, Lu J-X, et al. Mechanism of carbonating recycled concrete fines in aqueous environment: the particle size effect. Cem Concr Compos. 2022;133:104655. doi: 10.1016/j.cemconcomp.2022.104655.
  • Didyk-Mucha A, Pawlowska A, Sadowski Z. Application of the shrinking core model for dissolution of serpentinite in an acid solution. E3S Web of Conferences. EDP Sciences; 2016. doi: 10.1051/e3sconf/20160801035.
  • Golubev V, Chistyakov D, Mayorov D, et al. Fast solution of shrinking core model for calcination applications. Light metals 2022. Berlin: Springer; 2022. p. 11–21.
  • Wei C, Dong J, Zhang H, et al. Kinetics model adaptability analysis of CO2 sequestration process utilizing steelmaking slag and cold-rolling wastewater. J Hazard Mater. 2021;404(Pt A):124094. doi: 10.1016/j.jhazmat.2020.124094.
  • Pan SY, Liu HL, Chang EE, et al. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor. Chemosphere. 2016;154:63–71. doi: 10.1016/j.chemosphere.2016.03.093.
  • Wesenauer F, Jordan C, Pichler M, et al. An unreacted shrinking core model serves for predicting combustion rates of organic additives in clay bricks. Energy Fuels. 2020;34(12):16679–16692. doi: 10.1021/acs.energyfuels.0c03075.
  • Kavand M, Mollaabbasi R, Ziegler D, et al. Reaction-Diffusion model for gasification of a shrinking single carbon-Anode particle. ACS Omega. 2021;6(12):8002–8015. doi: 10.1021/acsomega.0c05297.
  • Mgaidi A, Jendoubi F, Oulahna D, et al. Kinetics of the dissolution of sand into alkaline solutions: application of a modified shrinking core model. Hydrometallurgy. 2004;71(3-4):435–446. doi: 10.1016/S0304-386X(03)00117-8.
  • Blamey J, Zhao M, Manovic V, et al. A shrinking core model for steam hydration of CaO-based sorbents cycled for CO2 capture. Chem Eng J. 2016;291:298–305. doi: 10.1016/j.cej.2016.01.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.