94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, performance and mechanism of novel polymer-type shrinkage reducing agents for cement-based materials

, , , , , & show all

References

  • Wu L, Farzadnia N, Shi C, et al. Autogenous shrinkage of high performance concrete: a review. Constr Build Mater. 2017;149:62–75. doi: 10.1016/j.conbuildmat.2017.05.064.
  • Zhang X, Liu Z, Wang F. Autogenous shrinkage behavior of ultra-high performance concrete. Constr Build Mater. 2019;226:459–468. doi: 10.1016/j.conbuildmat.2019.07.177.
  • Sun M, Bennett T, Visintin P. Plastic and early-age shrinkage of ultra-high performance concrete (UHPC): experimental study of the effect of water to binder ratios, silica fume dosages under controlled curing conditions. Case Stud Constr Mater. 2022;16:e00948. doi: 10.1016/j.cscm.2022.e00948.
  • Huang K, Shi X, Zollinger D, et al. Use of MgO expansion agent to compensate concrete shrinkage in jointed reinforced concrete pavement under high-altitude environmental conditions. Constr Build Mater. 2019;202:528–536. doi: 10.1016/j.conbuildmat.2019.01.041.
  • Pan Z, Zhu Y, Zhang D, et al. Effect of expansive agents on the workability, crack resistance and durability of shrinkage-compensating concrete with low contents of fibers. Constr Build Mater. 2020;259:119768. doi: 10.1016/j.conbuildmat.2020.119768.
  • Shen P, Lu L, He Y, et al. Investigation on expansion effect of the expansive agents in ultra-high performance concrete. Cem Concr Compos. 2020;105:103425. doi: 10.1016/j.cemconcomp.2019.103425.
  • Liu K, Shui Z, Sun T, et al. Effects of combined expansive agents and supplementary cementitious materials on the mechanical properties, shrinkage and chloride penetration of self-compacting concrete. Constr Build Mater. 2019;211:120–129. doi: 10.1016/j.conbuildmat.2019.03.143.
  • Shen D, Wen C, Zhu P, et al. Influence of barchip fiber on early-age autogenous shrinkage of high-strength concrete internally cured with super absorbent polymers. Constr Build Mater. 2020;264:119983. doi: 10.1016/j.conbuildmat.2020.119983.
  • Wu Z, Shi C, Khayat KH. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: influence of steel fiber content and shape. Compos Part B-Eng. 2019;174:107021. doi: 10.1016/j.compositesb.2019.107021.
  • Fang C, Ali M, Xie T, et al. The influence of steel fibre properties on the shrinkage of ultra-high performance fibre reinforced concrete. Constr Build Mater. 2020;242:117993. doi: 10.1016/j.conbuildmat.2019.117993.
  • Yousefieh N, Joshaghani A, Hajibandeh E, et al. Influence of fibers on drying shrinkage in restrained concrete. Constr Build Mater. 2017;148:833–845. doi: 10.1016/j.conbuildmat.2017.05.093.
  • Mo L, Deng M, Tang M, et al. MgO expansive cement and concrete in China: past, present and future. Cem Concr Res. 2014;57:1–12. doi: 10.1016/j.cemconres.2013.12.007.
  • Polat R, Demirboğa R, Khushefati WH. Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite aggregate on the autogenous shrinkage of mortar. Constr Build Mater. 2015;81:268–275. doi: 10.1016/j.conbuildmat.2015.02.032.
  • Soliman AM, Nehdi ML. Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete. Cem Concr Compos. 2014;46:81–89. doi: 10.1016/j.cemconcomp.2013.11.008.
  • Ding Y, Kusterle W. Compressive stress–strain relationship of steel fibre-reinforced concrete at early age. Cem Concr Res. 2000;30(10):1573–1579. doi: 10.1016/S0008-8846(00)00348-3.
  • Mora-Ruacho J, Gettu R, Aguado A. Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete. Cem Concr Res. 2009;39(3):141–146. doi: 10.1016/j.cemconres.2008.11.011.
  • Leemann A, Nygaard P, Lura P. Impact of admixtures on the plastic shrinkage cracking of self-compacting concrete. Cem Concr Compos. 2014;46:1–7. doi: 10.1016/j.cemconcomp.2013.11.002.
  • Saliba J, Rozière E, Grondin F, et al. Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage. Cem Concr Compos. 2011;33(2):209–217. doi: 10.1016/j.cemconcomp.2010.10.006.
  • Yoo DY, Banthia N, Yoon YS. Effectiveness of shrinkage-reducing admixture in reducing autogenous shrinkage stress of ultra-high-performance fiber-reinforced concrete. Cem Concr Compos. 2015;64:27–36. doi: 10.1016/j.cemconcomp.2015.09.005.
  • Rahoui H, Maruyama I, Vandamme M, et al. Impact of an SRA (hexylene glycol) on irreversible drying shrinkage and pore solution properties of cement pastes. Cem Concr Res. 2021;143:106227. doi: 10.1016/j.cemconres.2020.106227.
  • Li C, Wang Q, Chen J, et al. Effect of polyether-type SRA on the drying shrinkage, pore structure and properties of blended mortar incorporating limestone powder. Constr Build Mater. 2020;264:120173. doi: 10.1016/j.conbuildmat.2020.120173.
  • He Z, Li Z, Chen M, et al. Properties of shrinkage-reducing admixture-modified pastes and mortar. Mater Struct. 2006;39(4):445–453. doi: 10.1007/s11527-005-9004-9.
  • Bian R, Shen J. Synthesis and evaluation of shrinkage-reducing admixture for cementitious materials. Cem Concr Res. 2005;35(3):445–448.
  • Quangphu N, Jiang L, Liu J, et al. Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high-performance concrete. Water Sci Eng. 2008;1(4):67–74.
  • Yang G, Wu Y, Li H, et al. Effect of shrinkage-reducing polycarboxylate admixture on cracking behavior of ultra-high strength mortar. Cem Concr Compos. 2021;122:104117. doi: 10.1016/j.cemconcomp.2021.104117.
  • Wang Y, Pu X. Fatty alcohol polyoxyethylene ether polymer and its application as concrete shrinkage reducing agent CN Patent #1872772, State Intellectual Property Office, 2006 (In Chinese).
  • Gao N, Yu C, Qiao M, et al. Effect of hydrophobicity of side chain of shrinkage-reducing type polycarboxylate superplasticizer on its properties. Polym Mater Sci Eng. 2018;34(7):25–30 (In Chinese).
  • Yamada K, Nakanishi H, Tamaki S, et al. Working mechanism of a shrinkage reducing superplasticizer of new generation. Spec. Publ. 2004;222:171–184.
  • Ran Q, Miao C, Liu J, et al. Performance and mechanism of a multifunctional superplasticizer for concrete. Mater Trans. 2006;47(6):1599–1604. doi: 10.2320/matertrans.47.1599.
  • Zhang J, Ma Y, Wang J, et al. A novel shrinkage-reducing polycarboxylate superplasticizer for cement-based materials: synthesis, performance and mechanisms. Constr Build Mater. 2022;321:126342. doi: 10.1016/j.conbuildmat.2022.126342.
  • Zuo W, Feng P, Zhong P, et al. Effects of novel polymer-type shrinkage-reducing admixture on early age autogenous deformation of cement pastes. Cem Concr Res. 2017;100:413–422. doi: 10.1016/j.cemconres.2017.08.007.
  • Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials. CRC Press, Boca Raton, FL, 2016.
  • He F, Shi C, Hu X, et al. Calculation of chloride ion concentration in expressed pore solution of cement-based materials exposed to a chloride salt solution. Cem Concr Res. 2016;89:168–176. doi: 10.1016/j.cemconres.2016.08.006.
  • Duchesne J, Bérubé MA. Evaluation of the validity of the pore solution expression method from hardened cement pastes and mortars. Cem Concr Res. 1994;24(3):456–462. doi: 10.1016/0008-8846(94)90132-5.
  • Hu X, Shi C, Yuan Q, et al. Changes of pore structure and chloride content in cement pastes after pore solution expression. Cem Concr Compos. 2020;106:103465. doi: 10.1016/j.cemconcomp.2019.103465.
  • Lin X, Liao B, Zhang J, et al. Synthesis and characterization of high-performance cross-linked polycarboxylate superplasticizers. Constr Build Mater. 2019;210:162–171. doi: 10.1016/j.conbuildmat.2019.03.185.
  • Liu X, Wang Z, Zhu J, et al. Synthesis, characterization and performance of a polycarboxylate superplasticizer with amide structure. Colloid Surf A-Physicochem Eng Asp. 2014;448:119–129. doi: 10.1016/j.colsurfa.2014.02.022.
  • Ma Y, Bai J, Shi C, et al. Effect of PCEs with different structures on hydration and properties of cementitious materials with low water-to-binder ratio. Cem Concr Res. 2021;142:106343. doi: 10.1016/j.cemconres.2020.106343.
  • Feng L, Zhang Y, Wang S, et al. Modification of polyvinyl alcohol by copolymerization of butyl methacrylate. J Shenyang Univ Chem Technol. 2017;31(2):152–157 (In Chinese).
  • Xia R, Guan X, Li H, et al. Synthesis research of sustained-release of polycarboxylate superplasticizer. New Build Mater. 2016;43(8):35–38 (In Chinese).
  • Tang X, Zhao C, Yang Y, et al. Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: preparation, performance and mechanism. Constr Build Mater. 2020;252:119052. doi: 10.1016/j.conbuildmat.2020.119052.
  • Tran NP, Gunasekara C, Law DW, et al. A critical review on drying shrinkage mitigation strategies in cement-based materials. J Build Eng. 2021;38:102210. doi: 10.1016/j.jobe.2021.102210.
  • Wang X, Yang W, Ge Y, et al. The influence of shrinkage-reducing agent solution properties on shrinkage of cementitious composite using grey correlation analysis. Constr Build Mater. 2020;264:120194.
  • Zhang Z, Xu L, Tang M. Effect of shrinkage reducing admixture on hydration and pore structure of cement-based materials. J Chin Ceram Soc. 2009;37(7):1244–1248 (In Chinese).
  • Yoo DY, Kang ST, Lee JH, et al. Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics. Cem Concr Res. 2013;54:180–190. doi: 10.1016/j.cemconres.2013.09.006.
  • Yoo DY, Ryu GS, Yuan T, et al. Mitigating shrinkage cracking in posttensioning grout using shrinkage-reducing admixture. Cem Concr Compos. 2017;81:97–108. doi: 10.1016/j.cemconcomp.2017.05.005.
  • Sant G, Lothenbach B, Juilland P, et al. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cem Concr Res. 2011;41(3):218–229. doi: 10.1016/j.cemconres.2010.12.004.
  • Rajabipour F, Sant G, Weiss J. Interactions between shrinkage reducing admixtures (SRA) and cement paste’s pore solution. Cem Concr Res. 2008;38(5):606–615. doi: 10.1016/j.cemconres.2007.12.005.
  • Li P, Yu Q, Brouwers HJH. Effect of PCE-type superplasticizer on early-age behaviour of ultra-high performance concrete (UHPC). Constr Build Mater. 2017;153:740–750. doi: 10.1016/j.conbuildmat.2017.07.145.
  • Xuan M, Wang X. Autogenous shrinkage reduction and strength improvement of ultra-high-strength concrete using belite-rich Portland cement. J Build Eng. 2022;59:105107. doi: 10.1016/j.jobe.2022.105107.
  • De Meyst L, Mannekens E, Van Tittelboom K, et al. The influence of superabsorbent polymers (SAPs) on autogenous shrinkage in cement paste, mortar and concrete. Constr Build Mater. 2021;286:122948. doi: 10.1016/j.conbuildmat.2021.122948.
  • Liu J, Farzadnia N, Shi C, et al. Shrinkage and strength development of UHSC incorporating a hybrid system of SAP and SRA. Cem Concr Compos. 2019;97:175–189. doi: 10.1016/j.cemconcomp.2018.12.029.
  • Zhan P, He Z. Application of shrinkage reducing admixture in concrete: a review. Constr Build Mater. 2019;201:676–690. doi: 10.1016/j.conbuildmat.2018.12.209.
  • Yang L, Shi C, Wu Z. Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete—a review. Compos Part B-Eng. 2019;178:107456. doi: 10.1016/j.compositesb.2019.107456.
  • Bian R. Synthesis and experiment of concrete shrinkage reducing agent. Chem Build Mater. 2005;35(5):43–46 (In Chinese).
  • Zhang W, Lin H, Xue M, et al. Influence of shrinkage reducing admixtures on the performance of cementitious composites: a review. Constr Build Mater. 2022;325:126579. doi: 10.1016/j.conbuildmat.2022.126579.
  • Samouh H, Soive A, Rozière E, et al. Experimental and numerical study of size effect on long-term drying behavior of concrete: influence of drying depth. Mater Struct. 2016;49(10):4029–4048. doi: 10.1617/s11527-015-0771-7.
  • Güneyisi E, Gesoğlu M, Mohamadameen A, et al. Enhancement of shrinkage behavior of lightweight aggregate concretes by shrinkage reducing admixture and fiber reinforcement. Constr Build Mater. 2014;54:91–98. doi: 10.1016/j.conbuildmat.2013.12.041.
  • Demir İ, Sevim Ö, Tekin E. The effects of shrinkage-reducing admixtures used in self-compacting concrete on its strength and durability. Constr Build Mater. 2018;172:153–165. doi: 10.1016/j.conbuildmat.2018.03.250.
  • Wehbe Y, Ghahremaninezhad A. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials. Constr Build Mater. 2017;138:151–162. doi: 10.1016/j.conbuildmat.2016.12.206.
  • Jiang D, Li X, Lv Y, et al. Early-age hydration process and autogenous shrinkage evolution of high performance cement pastes. J Build Eng. 2022;45:103436. doi: 10.1016/j.jobe.2021.103436.
  • Ren J, Luo X, Bai R, et al. Pore characteristics of different phase in nano-modified concrete and their influences on the compressive strength. J Build Eng. 2022;46:103784. doi: 10.1016/j.jobe.2021.103784.
  • Jin S, Zhang J, Han S. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr Build Mater. 2017;135:1–7. doi: 10.1016/j.conbuildmat.2016.12.152.
  • Yilmaz E, Belem T, Bussière B, et al. Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills. Cem Concr Compos. 2011;33(6):702–715. doi: 10.1016/j.cemconcomp.2011.03.013.
  • Lü Q, Qiu Q, Zheng J, et al. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr Build Mater. 2019;228:116986. doi: 10.1016/j.conbuildmat.2019.116986.
  • Lu T, Ren J, Deng X, et al. Numerical study of the autogenous shrinkage of cement pastes with supplementary cementitious materials based on solidification theory. Constr Build Mater. 2023;392:131645. doi: 10.1016/j.conbuildmat.2023.131645.
  • Lu T, Liang X, Liu C, et al. Experimental and numerical study on the mitigation of autogenous shrinkage of cementitious material. Cem Concr Compos. 2023;141:105147. doi: 10.1016/j.cemconcomp.2023.105147.
  • Li Y, Bao J, Guo Y. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures. Constr Build Mater. 2010;24(10):1855–1860. doi: 10.1016/j.conbuildmat.2010.04.018.
  • Zhang W, Hama Y, Na SH. Drying shrinkage and microstructure characteristics of mortar incorporating ground granulated blast furnace slag and shrinkage reducing admixture. Constr Build Mater. 2015;93:267–277. doi: 10.1016/j.conbuildmat.2015.05.103.
  • Wang L, Jin M, Wu Y, et al. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Constr Build Mater. 2021;272:121952. doi: 10.1016/j.conbuildmat.2020.121952.
  • Luo X, Gao J, Li S, et al. Early age hydration and autogenous shrinkage of blended cement containing brick powder. Constr Build Mater. 2023;397:132455. doi: 10.1016/j.conbuildmat.2023.132455.
  • Zhao H, Liu J, Yin X, et al. A multiscale prediction model and simulation for autogenous shrinkage deformation of early-age cementitious materials. Constr Build Mater. 2019;215:482–493. doi: 10.1016/j.conbuildmat.2019.04.225.
  • Luo L, Yao W, Liang G, et al. Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: effect of precursor composition and sodium silicate modulus. J Build Eng. 2023;73:106712. doi: 10.1016/j.jobe.2023.106712.
  • Al Makhadmeh W, Soliman A. On the mechanisms of shrinkage reducing admixture in alkali activated slag binders. J Build Eng. 2022;56:104812. doi: 10.1016/j.jobe.2022.104812.
  • Dueramae S, Tangchirapat W, Chindaprasirt P, et al. Autogenous and drying shrinkages of mortars and pore structure of pastes made with activated binder of calcium carbide residue and fly ash. Constr Build Mater. 2020;230:116962. doi: 10.1016/j.conbuildmat.2019.116962.
  • Cheng S, Wu Z, Wu Q, et al. Mitigation on the shrinkage properties of ultra-high strength concrete via using porous coral sand and shrinkage reducing agent. J Build Eng. 2022;57:104861. doi: 10.1016/j.jobe.2022.104861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.