63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic self-healing effect and mechanism of fiber and biological capsule on mortar cracks

, , , &

References

  • Achal V, Mukherjee A. A review of microbial precipitation for sustainable construction. Constr Build Mater. 2015;93:1224–1235. doi: 10.1016/j.conbuildmat.2015.04.051.
  • Van Damme H. Concrete material science: past, present, and future innovations. Cem Concr Res. 2018;112:5–24. doi: 10.1016/j.cemconres.2018.05.002.
  • Wiktor V, Jonkers HM. Bacteria-based concrete: from concept to market. Smart Mater Struct. 2016;25(8):084006. doi: 10.1088/0964-1726/25/8/084006.
  • Zhu H, Hu Y, Li QB, et al. Restrained cracking failure behavior of concrete due to temperature and shrinkage. Constr Build Mater. 2020;244:118318. doi: 10.1016/j.conbuildmat.2020.118318.
  • Tan LZ, Xu J, Wei YQ, et al. The effect of bacteria bacillus cohnii on the synthesised calcium silicate hydrate (C-S-H) with various calcium to silica ratio in nanoscale. Cem Concr Compos. 2022;134:104779. doi: 10.1016/j.cemconcomp.2022.104779.
  • Kayondo M, Combrinck R, Boshoff W. State-of-the-art review on plastic cracking of concrete. Constr Build Mater. 2019;225(225):886–899. doi: 10.1016/j.conbuildmat.2019.07.197.
  • Diego J, Sanchez FM. Understanding the efficiency of autogenous and autonomous self-healing of conventional concrete mixtures through mechanical and microscopical analysis. Cem Concr Res. 2023;172:107219.
  • Nguyen TH, Ghorbel E, Fares H, et al. Bacterial self-healing of concrete and durability assessment. Cem Concr Compos. 2019;104:103340. doi: 10.1016/j.cemconcomp.2019.103340.
  • Zhu XJ, Mignon A, Nielsen SD, et al. Viability determination of Bacillus sphaericus after encapsulation in hydrogel for self-healing concrete via microcalorimetry and in situ oxygen concentration measurements. Cem Concr Compos. 2021;119:104006. doi: 10.1016/j.cemconcomp.2021.104006.
  • Reinhardt HW, Jooss M. Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem Concr Res. 2003;33(7):981–985. doi: 10.1016/S0008-8846(02)01099-2.
  • Li KF, Li L. Crack-altered durability properties and performance of structural concretes. Cem Concr Res. 2019;124:105811. doi: 10.1016/j.cemconres.2019.105811.
  • Feng JH, Yap XY, Gao J, et al. Rapid self-sealing of macro cracks of cementitious composites by in-situ alginate crosslinking. Cem Concr Res. 2023;165:107074. doi: 10.1016/j.cemconres.2022.107074.
  • Issa CA, Debs P. Experimental study of epoxy repairing of cracks in concrete. Constr Build Mater. 2007;21(1):157–163. doi: 10.1016/j.conbuildmat.2005.06.030.
  • Feng J, Dong H, Wang R, et al. A novel capsule by poly (ethylene glycol) granulation for self-healing concrete. Cem Concr Res. 2020;133:106053. doi: 10.1016/j.cemconres.2020.106053.
  • Jiang L, Li PJ, Wang WJ, et al. A self-healing method for concrete cracks based on microbial-induced carbonate precipitation: bacteria, immobilization, characterization, and application. J Sustain Cem-Based Mater. 2023;13(2): 222–242;
  • Ahmad SSE, Elmahdy MAR, Elshami AA, et al. Bacterial sustainable concrete for repair and rehabilitation of structural cracks. J Sustain Cem-Based Mater. 2023;12(5):627–646.
  • Garg R, Garg R, Eddy NO. Microbial induced calcite precipitation for self-healing of concrete: a review. J Sustain Cem-Based Mater. 2023;12(3):317–330.
  • Dinarvand P, Rashno A. Review of the potential application of bacteria in self-healing and the improving properties of concrete/mortar. J Sustain Cem-Based Mater. 2022;11(4):250–271.
  • Yazici S, Ayekin B, Mardani-Aghabaglou A, et al. Assessment of mechanical properties of steel fiber reinforced mortar mixtures containing lightweight aggregates improved by bacteria. J Sustain Cem-Based Mater. 2023;12(2):97–115.
  • Chetty K, Garbe U, Wang ZY, et al. Bioconcrete based on sulfate-reducing bacteria granules: cultivation, mechanical properties, and self-healing performance. J Sustain Cem-Based Mater. 2023;12(9):1049–1060.
  • Navneet, Chahal Rafat. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater. 2012;28(1):351–356.
  • Wang J, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res. 2014;56(2):139–152. doi: 10.1016/j.cemconres.2013.11.009.
  • Ryparová P, Prošek Z, Schreiberová H, et al. The role of bacterially induced calcite precipitation in self-healing of cement paste. J Build Eng. 2021;39:102299. doi: 10.1016/j.jobe.2021.102299.
  • Oualha M, Bibi S, Sulaiman M, et al. Microbially induced calcite precipitation in calcareous soils by endogenous bacillus cereus, at high pH and harsh weather. J Environ Manage. 2020;257:109965. doi: 10.1016/j.jenvman.2019.109965.
  • Jonkers HM, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng. 2010;36(2):230–235. doi: 10.1016/j.ecoleng.2008.12.036.
  • Wiktor V, Jonkers HM. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos. 2011;33(7):763–770. doi: 10.1016/j.cemconcomp.2011.03.012.
  • Prošek Z, Nežerka V, Plachý T, et al. PVA increases efficiency of bacterially-induced self-healing in cement mortars. Cem Concr Compos. 2022;131:104593. doi: 10.1016/j.cemconcomp.2022.104593.
  • Xiao X, Unluer C, Chu SH, et al. Single bacteria spore encapsulation through layer-by-layer self-assembly of poly(dimethyldiallyl ammonium chloride) and silica nanoparticles for self-healing concrete. Cem Concr Compos. 2023;140:105105. doi: 10.1016/j.cemconcomp.2023.105105.
  • Xiao X, Tan ACY, Unluer C, et al. Development of a functionally graded bacteria capsule for self-healing concrete. Cem Concr Compos. 2023;136:104863. doi: 10.1016/j.cemconcomp.2022.104863.
  • Hu XM, Yang ZY, Wu MY, et al. Evaluation of performance and healing effect of two-component biological self-healing mortar. J Sustain Cem-Based Mater. 2023;13(3):462-475. doi:10.1080/21650373.2023.2282678
  • Wu MY, Hu XM, Zhang Q, et al. Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks. Cem Concr Compos. 2020;113(1):103718. doi: 10.1016/j.cemconcomp.2020.103718.
  • Yuan H, Zhang Q, Hu XM, et al. Application of zeolite as a bacterial carrier in the self-healing of cement mortar cracks. Constr Build Mater. 2022;331(9):127324. doi: 10.1016/j.conbuildmat.2022.127324.
  • Homma D, Mihashi H, Nishiwaki T. Self-healing capability of fibre reinforced cementitious composites. J Adv Concr Technol. 2009;7(3):2141–2154.
  • Li HF, Li Z, Liu Y, et al. Effect of basalt fibers on the mechanical and self-healing properties of expanded perlite solid-loaded microbial mortars. J Build Eng. 2022;62:105201. doi: 10.1016/j.jobe.2022.105201.
  • Wu MY, Hu XM, Zhang Q, et al. Synergistic self-healing effect of fiber and bio-capsule on mortar cracks. Smart Mater Struct. 2022;31(9):095038. doi: 10.1088/1361-665X/ac845e.
  • Wu MY, Hu XM, Zhang Q, et al. Synergistic effect of OH-rich fibers and mineral capsules on the self-healing properties of cement mortar. Cem Concr Compos. 2023;137:104913. doi: 10.1016/j.cemconcomp.2022.104913.
  • Liu JZ, Zhang LH, Li CF, et al. Dispersive characterization and control of fiber in polyvinyl alcohol fiber cement composites. J Chinese Cer Socie. 2015;43(8):1061–1066.
  • Feng JH, Su YL, Qian CX. Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete. Constr Build Mater. 2019;228:116810. doi: 10.1016/j.conbuildmat.2019.116810.
  • Said SH, Razak HA, Othman I. Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers. Constr Build Mater. 2015;75:176–188. doi: 10.1016/j.conbuildmat.2014.10.036.
  • Zhang HJ, Wang M, Shi MQ, et al. The nutrients removal efficiency by pelelith-immobilized microbe in treatment of flowing water in urban Rivers. Guangdong Chem Indus. 2017;44(13):214–215.
  • Wu LY, Miao LC, Sun XH, et al. Concrete crack repair analysis based on pelelith immobilized bacteria. J Sout Univ (Nat Sci Edi) 2019;49(6):1171–1177.
  • Jiang L, Jia GH, Jiang C, et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Constr Build Mater. 2020;232:117222. doi: 10.1016/j.conbuildmat.2019.117222.
  • Wang JY, Snoeck D, Van Vlierberghe S, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater. 2014;68:110–119. doi: 10.1016/j.conbuildmat.2014.06.018.
  • Wang XZ, Xu J, Wang ZP, et al. Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity. Constr Build Mater. 2022;337(27):127581. doi: 10.1016/j.conbuildmat.2022.127581.
  • Ganesh AC, Muthukannan M, Malathy R, et al. An experimental study on effects of bacterial strain combination in fibre concrete and self-healing efficiency. J Civ Eng. 2019;23(10):4368–4377.
  • Singh H, Gupta R. Cellulose fiber as bacteria-carrier in mortar: self-healing quantification using UPV. J Build Eng. 2020;28:101090. doi: 10.1016/j.jobe.2019.101090.
  • Rauf M, Khaliq W, Khushnood RA, et al. Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete. Constr Build Mater. 2020;258:119578. doi: 10.1016/j.conbuildmat.2020.119578.
  • Wang H, Liu CF, Qin CX. Nitrogen and phosphate removal in aquaculture wastewater by a novel filter media vesuvianite and macroalga chondrus ocellatus. J Dalian Fis Univ. 2007;22(6):421–425.
  • Cui XZ, Zhang J, Huang D, et al. Experimental study on the relationship between permeability and strength of pervious concrete. J Mater Civ Eng. 2017;29(11):1–9. doi: 10.1061/(ASCE)MT.1943-5533.0002058.
  • Siddique, Rafat, Singh, Karambir, Singh, Malkit, et al. Properties of bacterial rice husk ash concrete. Constr Build Mater. 2016;121:112–119. doi: 10.1016/j.conbuildmat.2016.05.146.
  • Seifan M, Ebrahiminezhad A, Ghasemi Y, et al. Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: nanobiotechnological approach. Bioprocess Biosyst Eng. 2019;42(1):37–46. doi: 10.1007/s00449-018-2011-3.
  • Anbu P, Kang CH, Shin YJ, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016;5(1):250. doi: 10.1186/s40064-016-1869-2.
  • Kanwal M, Khushnood RA, Adnan F, et al. Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment. Cem Concr Compos. 2023;137:104937. doi: 10.1016/j.cemconcomp.2023.104937.
  • Huang H, Ye G, Damidot D. Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem Concr Res. 2013;52(1):71–81. doi: 10.1016/j.cemconres.2013.05.003.
  • Feng J, Chen BC, Sun WW, et al. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr Build Mater. 2021;280:122460. doi: 10.1016/j.conbuildmat.2021.122460.
  • Dhami NK, Reddy MS, Mukherjee A. Bionnineralization of calcium carbonates and their engineered applications: a review. Front Microbiol. 2013;4:314. doi: 10.3389/fmicb.2013.00314.
  • Prošek Z, Trejbal J, Nežerka V, et al. Recovery of residual anhydrous clinker in finely ground recycled concrete. Resour Conserv Recycl. 2020;155:104640. doi: 10.1016/j.resconrec.2019.104640.
  • Lefever G, Hemelrijck DV, Aggelis DG, et al. Evaluation of self-healing in cementitious materials with superabsorbent polymers through ultrasonic mapping. Constr Build Mater. 2022;344:128272. doi: 10.1016/j.conbuildmat.2022.128272.
  • Xu J, Wang XZ, Zuo JQ, et al. Self-healing of concrete cracks by ceramsite-loaded microorganisms. Adv Mater Sci Eng. 2018;2018:1–8. doi: 10.1155/2018/5153041.
  • Qiu J, He S, Yang EH. Autogenous healing and its enhancement of interface between micro polymeric fiber and hydraulic cement matrix. Cem Concr Res. 2019;124:105830. doi: 10.1016/j.cemconres.2019.105830.
  • He ZF, Xu YT, Yang YL, et al. Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: nano-scale structure and mechanism of the interface. Environ Pollut. 2023;332:121665. doi: 10.1016/j.envpol.2023.121665.
  • Jin DL, Yue LH, Xu ZD. Infared and raman analysis of spherical CaCO3 composite. Chin J Inorg Chem. 2004;20(6):715–720.
  • Mollah MYA, Yu W, Schennach R, et al. A fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem Concr Res. 2000;30(2):267–273. doi: 10.1016/S0008-8846(99)00243-4.
  • Wu MY, Hu XM, Zhang Q, et al. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Constr Build Mater. 2019;209:631–643. doi: 10.1016/j.conbuildmat.2019.03.181.
  • Nishiwaki T, Koda M, Yamada M, et al. Experimental study on self-healing capability of FRCC using different types of synthetic fibers. ACT. 2012;10(6):195–206. doi: 10.3151/jact.10.195.
  • Kan LL, Shi HS, Sakulich AR, et al. Self-healing characterization of engineered cementitious composite materials. ACI Mater J. 2010;107(6):619–626.
  • Yang Z, Hu R, Chen YF, et al. Effect of solidliquid interactions on substrate wettability and dynamic spreading of nanodroplets: a molecular dynamics study. J Phys Chem C. 2020;124(42):23260–23269. doi: 10.1021/acs.jpcc.0c07919.
  • Zhou Y, Peng ZC, Huang JL, et al. A molecular dynamics study of calcium silicate hydrates-aggregate interfacial interactions and influence of moisture. J Cent South Univ. 2021;28(1):16–28. doi: 10.1007/s11771-021-4582-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.