51
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Blockage mechanism analysis and optimization design of 3D concrete printhead

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Xiao J, Hou S, Duan Z, et al. Rheology of 3D printable concrete prepared by secondary mixing of ready-mix concrete. Cem Concr Compos. 2023;138:104958. doi: 10.1016/j.cemconcomp.2023.104958.
  • Cui W, Wang T, Chen X, et al. Study of 3D printed concrete with low-carbon cementitious materials based on its rheological properties and mechanical performances. J Sustain Cem Based Mater. 2023;12(7):832–841. doi: 10.1080/21650373.2023.2189172.
  • Zhang Y, Zhang Y, Yang L, et al. Evaluation of aggregates, fibers and voids distribution in 3D printed concrete. J Sustain Cem Based Mater. 2023;12(7):775–788. doi: 10.1080/21650373.2022.2113168.
  • Labonnote N, Rønnquist A, Manum B, et al. Additive construction: state-of-the-art, challenges and opportunities. Autom Constr. 2016;72:347–366.6. doi: 10.1016/j.autcon.2016.08.02.
  • Albar A, Chougan M, Al- Kheetan MJ, et al. Effective extrusion-based 3D printing system design for cementitious-based materials. Results Eng. 2020;6:100135. doi: 10.1016/j.rineng.2020.100135.
  • Cao X, Yu S, Cui H, et al. 3D printing devices and reinforcing techniques for extruded cement-based materials: a review. Buildings. 2022;12(4):453. doi: 10.3390/buildings12040453.
  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials-Production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020;132:106037. doi: 10.1016/j.cemconres.2020.106037.
  • Nair SAO, Panda S, Santhanam M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders. Cem Concr Compos. 2020;112:103671. doi: 10.1016/j.cemconcomp.2020.103671.
  • Boddepalli U, Panda B, Gandhi ISR. Rheology and printability of Portland cement based materials: a review. J Sustain Cem Based Mater. 2022;12(7):789–807. doi: 10.1080/21650373.2022.2119620.
  • Shenbagam VK, Shaji P, Eswita Y, et al. Carbonation of calcium sulfoaluminate belite binder: mechanism and its implication on properties. J Sustain Cem Based Mater. 2024:1–13. doi: 10.1080/21650373.2024.2306271.
  • Ren C, Wang W, Li G. Preparation of high-performance cementitious materials from industrial solid waste. Constr Build Mater. 2017;152:39–47. doi: 10.1016/j.conbuildmat.2017.06.124.
  • Khalil N, Aouad G, Cheikh KEI, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr Build Mater. 2017;157:382–391. doi: 10.1016/j.conbuildmat.2017.09.109.
  • Wang L, Ma H, Li Z, et al. Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing. Addit Manuf. 2021;46(4):102189.2189. doi: 10.1016/j.addma.2021.10.
  • Yang L, Sepasgozar SME, Shirowzhan S, et al. Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete. Autom Constr. 2023;146:104671. doi: 10.1016/j.autcon.2022.104671.
  • Perrot A, Mélinge Y, Rangeard D, et al. Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta. 2012;51(8):743–754. doi: 10.1007/s00397-012-0638-6.
  • Siddika A, Mamun M, Ferdous A, et al. 3D-printed concrete: applications, performance, and challenges. J Sustain Cem Based Mater. 2019;9(3):127–164. doi: 10.1080/21650373.2019.1705199.
  • Tay Y, Li M, Tan M. Effect of printing parameters in 3D concrete printing: printing region and support structures. J Mater Process Technol. 2019;271:261–270. doi: 10.1016/j.jmatprotec.2019.04.007.
  • Shakor P, Nejadi S, Paul G. A study into the effect of different nozzles shapes and fibre-reinforcement in 3D printed mortar. Materials. 2019;12(10):1708. doi: 10.3390/ma12101708.
  • Li Z, Hojati M, Wu Z, et al. Fresh and hardened properties of extrusion-based 3D-printed cementitious materials: a review. Sustainability. 2020;12(14):5628 doi: 10.3390/su12145628.
  • Cheikh K, Rémond S, Khalil N, et al. Numerical and experimental studies of aggregate blocking in mortar extrusion. Constr Build Mater. 2017;145:452–463. doi: 10.1016/j.conbuildmat.2017.04.032.
  • Roussel N, Spangenberg J, Wallevik J, et al. Numerical simulations of concrete processing: from standard formative casting to additive manufacturing. Cem Concr Res. 2020;135:106075. doi: 10.1016/j.cemconres.2020.106075.
  • Lao W, Yang M, Neng LT, et al. Improving surface finish quality in extrusion-based 3D concrete printing using machine learning-based extrudate geometry control. Virtual Phys Prototy. 2020;15(2):178–193. doi: 10.1080/17452759.2020.1713580.
  • Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2017;162:1–12. doi: 10.1016/j.conbuildmat.2017.12.051.
  • Toutou Z, Roussel N, Lanos C. The squeezing test: a tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Constr Build Mater. 2005;35(10):1891–1899. doi: 10.1016/j.cemconres.2004.09.007.
  • Zhang J, Du W. A visualized flow analysis of the postponed-set mortar with bingham liquid a sing-screw extruder. J Exp Mech. 2010;25(5):598–603.
  • Potente H, Ridder H. Pressure/throughput behavior of a single-screw plasticising unit in consideration of wall slippage. Int Polym Process. 2002;17(2):102–107. doi: 10.3139/217.1679.
  • Potente H, Timmermann K, Kurte-Jardin M. Description of the pressure/throughput behavior of a single-screw plasticating unit in consideration of wall slippage effects for non-Newtonian material and 1-D flow. Int Polym Process. 2006;21(3):272–282.6. doi: 10.3139/217.009.
  • Potente H, Bornemann M, Kurte-Jardin M. Analytical model for the throughput and drive power calculation in the melting section of single screw plasticizing units considering wall-slippage. Int Polym Process. 2009;24(1):23–30. doi: 10.3139/217.2163.
  • Chen H, Lin G, Liu F, et al. Wall ship of UHMWPE film melt extruder. China Synthetic Resin Plastics. 2022;39(1):10–15. doi: 10.19825/j.issn.1002-1396.2022.01.03.
  • Wilczyński K, Buziak K, Lewandowski A, et al. Studies on single-screw extrusion of wood-polymer composites with yield stress and slip effects. AIP Conf Proc. 2020;2205(1):020002. doi: 10.1063/1.5142917.
  • Lewandowski A, Wilczyński K. Global modeling of single screw extrusion with slip effects. Int Polym Process. 2019;34(1):81–90.3. doi: 10.3139/217.365.
  • Händle F. Extrusion in ceramics. Germany: Springer. 2007.
  • Liravi M, Pakzad H, Moosavi A, et al. A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction. Prog Org Coat. 2020;140:105537. doi: 10.1016/j.porgcoat.2019.105537.
  • Zheng K, Zhang J, Dodiuk H, et al. Effect of superhydrophobic composite coatings on drag reduction in laminar flow. ACS Appl Polym Mater. 2020;2(4):1614–1622. doi: 10.1021/acsapm.0c00049.
  • Wang Z, Yan B, An X. Rheological and flow characteristics of fresh concrete in the rotational rheometer. J Sustain Cem Based Mater. 2022;12(5):487–500. doi: 10.1080/21650373.2022.2068164.
  • GB/T 1346-2011. Test methods for water requirement of normal consistency, setting time and soundness of the Portland cement. 2012.
  • Ren C. Experimental study on preparation and application of sulphoaluminate-phosphate cementitious composite material using industrial solid waste [Doctoral dissertation]. Jinan: Shandong University; 2019.
  • Bortoluzzi E, Broon N, Bramante C, et al. The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J Endod. 2009;35(4):550–554. doi: 10.1016/j.joen.2008.12.018.
  • Xu Z, Gao Y, Wang C, et al. Nano-scale hydrophilicity on metal surfaces at room temperature: coupling lattice constants and crystal faces. J Phys Chem C. 2015;119(35):20409–20415. doi: 10.1021/acs.jpcc.5b04237.
  • Liu S, He Z, Hu L. Interfacial microstructure between ultrahigh-performance concrete–normal concrete in fresh-on-fresh casting. Constr Build Mater. 2022;322:126476. doi: 10.1016/j.conbuildmat.2022.126476.
  • Zein A, Vanhove Y, Djelal-Dantec C, et al. Evaluation of internal bleeding in concrete foundation from the Terzaghi’s effective stress postulate. Mater Struct. 2021;54(6):1–15. doi: 10.1617/s11527-021-01828-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.