7,337
Views
2
CrossRef citations to date
0
Altmetric
Review

A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals

, , , , &
Pages 58-80 | Received 02 May 2022, Accepted 23 Jun 2022, Published online: 28 Jun 2023

References

  • Justino CIL, Duarte AC, Rocha-Santos TAP. Recent progress in biosensors for environmental monitoring: a review. Sensors (Basel). 2017;17(12):2918.
  • Theerthagiri J, Lee SJ, Karuppasamy K, et al. Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. J Hazard Mater. 2021;412:125245.
  • Tran H-T, Dang B-T, Thuy LTT, et al. Advanced treatment technologies for the removal of organic chemical sunscreens from wastewater: a review. Curr Poll Rep. 2022. DOI:10.1007/s40726-022-00221-y
  • Zhang Y, Zhu Y, Zeng Z, et al. Sensors for the environmental pollutant detection: are we already there? Coord. Chem Rev. 2021;431:213681.
  • Theerthagiri J, Salla S, Senthil RA, et al. A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology. 2019;30(39):392001.
  • Daunert S, Barrett G, Feliciano JS, et al. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev. 2000;100(7):2705–2738.
  • Zhan S, Wu Y, Wang L, et al. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens Bioelectron. 2016;86:353–368.
  • Voon CH, Yusop NM, Khor SM. The state-of-the-art in bioluminescent whole-cell biosensor technology for detecting various organic compounds in oil and grease content in wastewater: from the lab to the field. Talanta. 2022;241:123271.
  • Wang G-H, Tsai T-H, Kui -C-C, et al. Analysis of bioavailable toluene by using recombinant luminescent bacterial biosensors with different promoters. J Biol Eng. 2021;15(1):2.
  • Hui C-Y, Guo Y, Gao C-X, et al. A tailored indigoidine-based whole-cell biosensor for detecting toxic cadmium in environmental water samples. Environ Technol Inno. 2022;27:102511.
  • He W, Hu ZH, Yuan S, et al. Bacterial bioreporter‐based mercury and phenanthrene assessment in Yangtze river delta soils of China. J Environ Qual. 2018;47(3):562–570.
  • Brányiková I, Lucáková S, Kuncová G, et al. Estimation of Hg(II) in soil samples by bioluminescent bacterial bioreporter E. coli ARL1, and the effect of humic acids and metal ions on the biosensor performance. Sensors. 2020;20(11):3138.
  • Rogers KR. Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta. 2006;568(1–2):222–231.
  • Kaur H, Kumar R, Babu JN, et al. Advances in arsenic biosensor development–a comprehensive review. Biosens Bioelectron. 2015;63:533–545.
  • Gu MB, Mitchell RJ, Kim BC. Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol. 2004;87:269–305.
  • Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol. 2021;37(5):81.
  • Bilal M, Iqbal HMN. Microbial-derived biosensors for monitoring environmental contaminants: recent advances and future outlook. Process Saf Environ Prot. 2019;124:8–17.
  • Chadha U, Bhardwaj P, Agarwal R, et al. Recent progress and growth in biosensors technology: a critical review. J Ind Eng Chem. 2022;109:21–51.
  • Sohrabi H, Hemmati A, Majidi MR, et al. Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: a critical review. TrAC, Trends Anal Chem. 2021;143:116344.
  • Ni K, Hu Y, Ye X, et al. Carbon footprint modeling of a clinical lab. Energies. 2018;11(11):3105.
  • Sangwan KS, Bhakar V, Arora V, et al. Measuring carbon footprint of an Indian university using life cycle assessment. Procedia CIRP. 2018;69:475–480.
  • Larsen HN, Pettersen J, Solli C, et al. Investigating the varbon footprint of a university - the case of NTNU. J Clean Prod. 2013;48:39–47.
  • Nakamura H. Biosensors: monitoring human health for the SDGs sustainable development goals. Biomed J Sci Tech Res. 2018;9:6953–6956.
  • Yang Y, Li W, Liu J. Review of recent progress on DNA-based biosensors for Pb2+ detection. Anal Chim Acta. 2021;1147:124–143.
  • Sarkar P, Banerjee S, Bhattacharyay D, et al. Electrochemical sensing systems for arsenate estimation by oxidation of L-cysteine. Ecotoxicol Environ Saf. 2010;73(6):1495–1501.
  • Stoytcheva M, Sharkova V, Panayotova M. Electrochemical approach in studying the inhibition of acetylcholinesterase by arsenate(III): analytical characterisation and application for arsenic determination. Anal Chim Acta. 1998;364(1–3):195–201.
  • Vinotha Alex A, Mukherjee A. Review of recent developments (2018–2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchem J. 2021;161:105779.
  • Wu Y, Zhan S, Wang F, et al. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution. Chem Commun (Camb). 2012;48(37):4459–4461.
  • McConnell EM, Nguyen J, Li Y. Aptamer-based biosensors for environmental monitoring. Front Chem. 2020;8:434.
  • Van Dyk TK, Majarian WR, Konstantinov KB, et al. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994;60(5):1414–1420.
  • Cha HJ, Srivastava R, Vakharia VN, et al. Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl Environ Microbiol. 1999;65(2):409–414.
  • Eltzov E, Marks RS, Voost S, et al. Flow-through real time bacterial biosensor for toxic compounds in water. Sens Actuators B: Chem. 2009;142(1):11–18.
  • Belkin S, Smulski DR, Vollmer AC, et al. Oxidative stress detection with Escherichia coli harboring a katG’::lux fusion. Appl Environ Microbiol. 1996;62:2252–2256.
  • Kostrzynska M, Leung KT, Lee H, et al. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods. 2002;48(1):43–51.
  • Mitchell RJ, Gu MB. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol. 2004;64(1):46–52.
  • Chen Z, Lu M, Zou D, et al. An E. coli SOS-EGFP biosensor for fast and sensitive detection of DNA damaging agents. J Environ Sci (China). 2012;24(3):541–549.
  • Van Ginkel SW, Hassan SHA, Ok YS, et al. Detecting oxidized contaminants in water using sulfur-oxidizing bacteria. Environ Sci Technol. 2011;45(8):3739–3745.
  • Hassan SH, Van Ginkel SW, Oh SE. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor. Chemosphere. 2013;90(3):965–970.
  • Yang S-H, Cheng K-C, Liao VH-C. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor. Chemosphere. 2017;186:446–452.
  • Rathnayake IVN, Megharaj M, and Naidu R. Green fluorescent protein based whole cell bacterial biosensor for the detection of bioavailable heavy metals in soil environment. Environ Technol Inno. 2021;23:101785.
  • Li P, Wang Y, Yuan X, et al. Development of a whole-cell biosensor based on an ArsR-Pars regulatory circuit from Geobacter sulfurreducens. Environ Sci Ecotech. 2021;6:100092.
  • Assinder SJ, Williams PA. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol. 1990;31:1–69.
  • Ikariyama Y, Nishiguchi S, Koyama T, et al. Fiber-optic-based biomonitoring of benzene derivatives by recombinant E . coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem. 1997;69(13):2600–2605.
  • Willardson BM, Wilkins JF, Rand TA, et al. Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol. 1998;64(3):1006–1012.
  • Li YF, Li FY, Ho CL, et al. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ Pollut. 2008;152(1):123–129.
  • Smirnova IA, Dian C, Leonard GA, et al. Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR. J Mol Biol. 2004;340(3):405–418.
  • Hay AG, Rice JF, Applegate BM, et al. A bioluminescent whole-cell reporter for detection of 2, 4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol. 2000;66(10):4589–4594.
  • Heitzer A, Malachowsky K, Thonnard JE, et al. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol. 1994;60(5):1487–1494.
  • Sticher P, Jaspers MC, Stemmler K, et al. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol. 1997;63(10):4053–4060.
  • Silver S. Bacterial resistances to toxic metal ions–a review. Gene. 1996;179(1):9–19.
  • Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf. 2000;45(3):198–207.
  • Bontidean I, Lloyd JR, Hobman JL, et al. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J Inorg Biochem. 2000;79(1–4):225–229.
  • Bontidean I, Mortari A, Leth S, et al. Biosensors for detection of mercury in contaminated soils. Environ Pollut. 2004;131(2):255–262.
  • Nucifora G, Chu L, and Misra TK, et al. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA. 1989;86(10):3544–3548.
  • Branco R, Cristovao A, Morais PV. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PloS One. 2013;8(1):e54005.
  • Riether KB, Dollard MA, Billard P. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol. 2001;57(5–6):712–726.
  • Beard SJ, Hashim R, Membrillo-Hernández J, et al. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol. 1997;25(5):883–891.
  • Rensing C, Mitra B, and Rosen BP. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA. 1997;94(26):14326–14331.
  • Rensing C, Fan B, Sharma R, et al. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA. 2000;97(2):652–656.
  • Outten CE, Outten FW, O’Halloran TV. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem. 1999;274(53):37517–37524.
  • Outten FW, Outten CE, Hale J, et al. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue. cueR J Biol Chem. 2000;275(40):31024–31029.
  • Tibazarwa C, Corbisier P, Mench M, et al. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut. 2001;113(1):19–26.
  • Hui CY, Guo Y, Liu LS, et al. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv. 2020;10(47):28106–28113.
  • Hao OJ, Shin C-J, Lin C-F, et al. Use of microtox tests for screening industrial wastewater toxicity. Water Sci Technol. 1996;34(10):43–50.
  • LeBlond JB, Duffy LK. Toxicity assessment of total dissolved solids in effluent of Alaskan mines using 22-h chronic microtox® and selenastrum capricornatum assays. Sci Total Environ. 2001;271(1–3):49–59.
  • Kurvet I, Ivask A, Bondarenko O, et al. LuxCDABE—Transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous vibrio fischeri. Sensors. 2011;11(8):7865–7878.
  • Välimaa A-L, Kivistö A, Virta M, et al. Real-time monitoring of non-specific toxicity using a Saccharomyces cerevisiae reporter system. Sensors. 2008;8(10):6433–6447.
  • Matejczyk M, Rosochacki SJ. Potential applications of sos-gfp biosensor to in vitro rapid screening of cytotoxic and genotoxic effect of anticancer and antidiabetic pharmacist residues in surface water. J of Ecol Eng. 2015;16:116–121.
  • Alhadrami HA, Paton GI. The potential applications of SOS- lux biosensors for rapid screening of mutagenic chemicals. FEMS Microbiol Lett. 2013;344(1):69–76.
  • Cui Z, Luan X, Jiang H, et al. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater. Chemosphere. 2018;200:322–329.
  • Rampley CPN, Whitehead PG, Softley L, et al. River toxicity assessment using molecular biosensors: heavy metal contamination in the Turag-Balu-buriganga river systems, Dhaka, Bangladesh. Sci Total Environ. 2020;703:134760.
  • Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol. 2007;73(6):1251–1258.
  • Akboga D, Saltepe B, Bozkurt EU, et al. A recombinase-based genetic circuit for heavy metal monitoring. Biosensors (Basel). 2022;12(2):122.
  • Hurtado-Gallego J, Pulido-Reyes G, and González-Pleiter M, et al. Luminescent microbial bioassays and microalgal biosensors as tools for environmental toxicity evaluation. Handb of Cell Biosens. 2022;1:767–824.
  • Billard P, DuBow MS. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem. 1998;31(1):1–14.
  • Lewis JC, Feltus A, Ensor CM, et al. Applications of reporter genes. Anal Chem. 1998;70(17):579A–585A.
  • Sahli L, Belhiouani H, Burga Pérez KF, et al. Assessment of freshwater sediment quality: potential ecological risk and ecotoxicity tests as complementary approaches. Chem Ecol. 2021;37(3):219–233.
  • Mohseni M, Abbaszadeh J, Maghool -S-S, et al. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea. Ecotoxicol Environ Saf. 2018;148:555–560.
  • Li Y, He X, Zhu W, et al. Bacterial bioluminescence assay for bioanalysis and bioimaging. Anal Bioanal Chem. 2022;414(1):75–83.
  • Cui Y, Lai B, and Tang X. Microbial fuel cell-based biosensors. Biosensors (Basel). 2019;9:92.
  • Do MH, Ngo HH, Guo W, et al. Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ. 2020;712:135612.
  • Sun JZ, Peter Kingori G, Si RW, et al. Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol. 2015;71(6):801–809.
  • Do MH, Ngo HH, Guo W, et al. A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. Sci Total Environ. 2022;811:152261.
  • Xiao N, Selvaganapathy PR, Wu R, et al. Influence of wastewater microbial community on the performance of miniaturized microbial fuel cell biosensor. Bioresour Technol. 2020;302:122777.
  • Askari A, Vahabzadeh F, Mardanpour MM. Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor. J Clean Prod. 2021;294:126349.
  • Wu LC, Tsai TH, and Liu MH, et al. A green microbial fuel cell-based biosensor for in situ chromium (VI) measurement in electroplating wastewater. Sensors (Basel). 2017;17:2461.
  • Khan A, Salama E-S, Chen Z, et al. A novel biosensor for zinc detection based on microbial fuel cell system. Biosens Bioelectron. 2020;147:111763.
  • Zhou T, Li R, Zhang S, et al. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli. Biotechnol Bioeng. 2021;118(1):210–222.
  • Liu X, Silverman AD, Alam KK, et al. Design of a transcriptional biosensor for the portable, on-demand detection of cyanuric acid. ACS Synth Biol. 2020;9(1):84–94.
  • Zeng N, Wu Y, Chen W, et al. Whole-cell microbial bioreporter for soil contaminants detection. Front Bioeng Biotechnol. 2021;9:622994.
  • Chen X, Yao H, Song D, et al. Extracellular chemoreceptor of deca-brominated diphenyl ether and its engineering in the hydrophobic chassis cell for organics biosensing. Chem Eng J. 2022;433:133266.
  • Kannappan S, Ramisetty BCM. Engineered whole-cell-based biosensors: sensing environmental heavy metal pollutants in water—a review. Appl Biochem Biotechnol. 2021;194(4):1814–1840.
  • Singh A, Kumar V. Recent advances in synthetic biology–enabled and natural whole-cell optical biosensing of heavy metals. Anal Bioanal Chem. 2021;413(1):73–82.
  • Ravikumar S, Baylon MG, Park SJ, et al. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact. 2017;16(1):62.
  • Vareda JP, Valente AJM, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage. 2019;246:101–118.
  • Sanità Di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot. 1999;41(2):105–130.
  • Phan CC, Nguyen TQH, Nguyen MK, et al. Aerosol mass and major composition characterization of ambient air in Ho Chi Minh City. Vietnam Int J Environ Sci Technol. 2020;17(6):3189–3198.
  • Karthik V, Karuna B, and Kumar PS, et al. Development of lab-on-chip biosensor for the detection of toxic heavy metals: a review. Chemosphere. 2022;299:134427.
  • Saidur MR, Aziz ARA, Basirun WJ. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron. 2017;90:125–139.
  • Naik S, Jujjavarapu SE. Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water. J Environ Chem Eng. 2021;9(4):105318.
  • Yu D, Bai L, Zhai J, et al. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta. 2017;168:210–216.
  • Liu Y, Guo M, Du R, et al. A gas reporting whole-cell microbial biosensor system for rapid on-site detection of mercury contamination in soils. Biosens Bioelectron. 2020;170:112660.
  • Cheng Z, Wei J, and Gu L, et al. DNAzyme-based biosensors for mercury (II) detection: rational construction, advances and perspectives. J Hazard Mater. 2022;431:128606.
  • Shen Y, Wang M, Chang IS, et al. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresour Technol. 2013;136:707–710.
  • Wu Y, Zhao X, Jin M, et al. Copper removal and microbial community analysis in single-chamber microbial fuel cell. Bioresour Technol. 2018;253:372–377.
  • Zhao S, Liu P, and Niu Y, et al. A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater. Sensors. 2018;18(2):642.
  • Prévoteau A, Rabaey K. Electroactive biofilms for sensing: reflections and perspectives. ACS Sens. 2017;2(8):1072–1085.
  • Wang Z, Lim B, and Choi C. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour Technol. 2011;102(10):6304–6307.
  • Guo X, Sang S, Jian A, et al. A bovine serum albumin-coated magnetoelastic biosensor for the wireless detection of heavy metal ions. Sens Actuators B: Chem. 2018;256:318–324.
  • Kumar T, Naik S, and Jujjavarappu SE. A critical review on early-warning electrochemical system on microbial fuel cell-based biosensor for on-site water quality monitoring. Chemosphere. 2021;291:133098.
  • Chen Y, Li H, Gao T, et al. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II). Sens Actuators B: Chem. 2018;254:214–221.
  • Yang X, He Y, and Wang X, et al. A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+. Appl Surf Sci. 2017;416:581–586.
  • Soldatkin OO, Kucherenko IS, Pyeshkova VM, et al. Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry. 2012;83:25–30.
  • Liu J, Cao Z, and Lu Y, et al. Functional Nucleic Acid Sensors. Chem Rev. 2009;109:1948–1998.
  • Xiao Y, Rowe AA, Plaxco KW. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc. 2007;129(2):262–263.
  • Chen S-Y, Li Z, Li K, et al. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev. 2021;429:213691.
  • Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11(1):328–355.
  • Jayaraman T, Murthy AP, Elakkiya V, et al. Recent development on carbon based heterostructures for their applications in energy and environment: a review. J Ind Eng Chem. 2018;64:16–59.
  • Theerthagiri J, Chandrasekaran S, Salla S, et al. Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation. J Solid State Chem. 2018;267:35–52.
  • Theerthagiri J, Senthil RA, Malathi A, et al. Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Adv. 2015;5:52718–52725.
  • Theerthagiri J, Senthil RA, and Priya A, et al. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3-g-C3N4 nanocomposites. RSC Adv. 2014;4(72):38222–38229.
  • Jayaraman T, Raja SA, and Priya A, et al. Synthesis of a visible-light active V2O5-g-V3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J Chem. 2015;39(2):1367–1374.
  • Ma J, Bai W, Zheng J. A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions. Biosens Bioelectron. 2022;197:113801.
  • Sun J, Gan Y, Liang T, et al. Signal enhancement of electrochemical DNA biosensors for the detection of trace heavy metals. Curr Opin Electrochem. 2019;17:23–29.
  • Lee SJ, Lee H, Begildayeva T, et al. Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering. Biosens Bioelectron. 2022;197:113766.
  • Hashem A, Hossain MAM, Al Mamun M, et al. Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: a review. Appl Surf Sci Adv. 2021;4:100064.
  • Martín-Yerga D, Costa-García A. Recent advances in the electrochemical detection of mercury. Curr Opin Electrochem. 2017;3(1):91–96.
  • Leth S, Maltoni S, Simkus R, et al. Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis: An Int J Devoted to Fundam and Pract Aspects of Electroanalysis. 2002;14(1):35–42.
  • Yang Y, Kang M, and Fang S, et al. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@3D-GO for sensitive and selective detection of Ag+. J Alloys Compd. 2015;652:225–233.
  • Tsekenis G, Filippidou MK, Chatzipetrou M, et al. Heavy metal ion detection using a capacitive micromechanical biosensor array for environmental monitoring. Sens Actuators B: Chem. 2015;208:628–635.
  • Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994;1(4):223–229.
  • Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA−Au bio-bar codes. Anal Chem. 2008;80(16):6323–6328.
  • Shi L, Wang Y, Ding S, et al. A facile and green strategy for preparing newly-designed 3D graphene/gold film and its application in highly efficient electrochemical mercury assay. Biosens Bioelectron. 2017;89:871–879.
  • Zhou D, Zeng L, Pan J, et al. Autocatalytic DNA circuit for Hg2+ detection with high sensitivity and selectivity based on exonuclease III and G-quadruplex DNAzyme. Talanta. 2020;207:120258.
  • Gutiérrez JC, Amaro F, Martín-González A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol. 2015;6:48.
  • Chouteau C, Dzyadevych S, Chovelon J-M, et al. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens Bioelectron. 2004;19(9):1089–1096.
  • Guo M, Wang J, Du R, et al. A test strip platform based on a whole-cell microbial biosensor for simultaneous on-site detection of total inorganic mercury pollutants in cosmetics without the need for predigestion. Biosens Bioelectron. 2020;150:111899.
  • Peng Y, Xu M, and Guo Y, et al. A novel signal amplification biosensor for detection of Cd2+ based on asymmetric PCR. Spectrochim Acta A Mol Biomol Spectrosc. 2022;271:120885.
  • Li J, Yu Y, Qian J, et al. A novel integrated biosensor based on co-immobilizing the mediator and microorganism for water biotoxicity assay. Analyst. 2014;139(11):2806–2812.
  • Yu D, Zhai J, Yong D, et al. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water. Analyst. 2013;138(11):3297–3302.
  • Weber R, Watson A, Forter M, et al. Persistent organic pollutants and landfills-a review of past experiences and future challenges. Waste Manage Res. 2011;29(1):107–121.
  • Tuan Tran H, Lin C, Bui X-T, et al. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresour Technol. 2022;344:126249.
  • Begildayeva T, Lee SJ, Yu Y, et al. Production of copper nanoparticles exhibiting various morphologies via pulsed laser ablation in different solvents and their catalytic activity for reduction of toxic nitroaromatic compounds. J Hazard Mater. 2021;409:124412.
  • Atar N, Eren T, Yola ML, et al. A sensitive molecular imprinted surface plasmon resonance nanosensor for selective determination of trace triclosan in wastewater. Sens Actuators B: Chem. 2015;216:638–644.
  • Ejeian F, Etedali P, Mansouri-Tehrani H-A, et al. Biosensors for wastewater monitoring: a review. Biosens Bioelectron. 2018;118:66–79.
  • Zehani N, Fortgang P, Lachgar MS, et al. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron. 2015;74:830–835.
  • Pan D, Gu Y, Lan H, et al. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal Chim Acta. 2015;853:297–302.
  • Rodriguez-Mozaz S, De Alda ML, Barceló D. Analysis of bisphenol A in natural waters by means of an optical immunosensor. Water Res. 2005;39(20):5071–5079.
  • Kochana J, Wapiennik K, Kozak J, et al. Tyrosinase-based biosensor for determination of bisphenol A in a flow-batch system. Talanta. 2015;144:163–170.
  • Dempsey E, Diamond D, Collier A. Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly (thionine) film. Biosens Bioelectron. 2004;20(2):367–377.
  • Tschmelak J, Proll G, Gauglitz G. Optical biosensor for pharmaceuticals, antibiotics, hormones, endocrine disrupting chemicals and pesticides in water: assay optimization process for estrone as example. Talanta. 2005;65(2):313–323.
  • Abd-El-Haleem D, Ripp S, and Scott C, et al. A luxCDABE-based bioluminescent bioreporter for the detection of phenol. J Ind Microbiol Biotechnol. 2002;29(5):233–237.
  • Tschmelak J, Proll G, Gauglitz G. Verification of performance with the automated direct optical TIRF immunosensor (River analyser) in single and multi-analyte assays with real water samples. Biosens Bioelectron. 2004;20(4):743–752.
  • Tschmelak J, Proll G, Gauglitz G. Ultra-sensitive fully automated immunoassay for detection of propanil in aqueous samples: steps of progress toward sub-nanogram per liter detection. Anal Bioanal Chem. 2004;379(7–8):1004–1012.
  • Chen P, Qiao X, Liu J, et al. Dual-signaling amplification electrochemical aptasensor based on hollow polymeric nanospheres for acetamiprid detection. ACS Appl Mater Interfaces. 2019;11(16):14560–14566.
  • Mauriz E, Calle A, Abad A, et al. Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens Bioelectron. 2006;21(11):2129–2136.
  • Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide. Biosens Bioelectron. 2022;199:113906.
  • Doong R-A, Shih H-M, Lee S-H. Sol–gel-derived array DNA biosensor for the detection of polycyclic aromatic hydrocarbons in water and biological samples. Sens Actuators B: Chem. 2005;111:323–330.
  • Nomngongo PN, Ngila JC, Msagati TA, et al. Determination of selected persistent organic pollutants in wastewater from landfill leachates, using an amperometric biosensor. Phys Chem Earth Parts A/B/C. 2012;50:252–261.
  • Lambert P, Fingas M, Goldthorp M. An evaluation of field total petroleum hydrocarbon (TPH) systems. J Hazard Mater. 2001;83(1–2):65–81.
  • Wasilewski T, Gębicki J, Kamysz W. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sens Actuators B: Chem. 2018;257:511–537.
  • Brito NF, Oliveira DS, Santos TC, et al. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol. 2020;104(20):8631–8648.
  • Chung HT, Meshref MNA, Ranjan Dhar B. A review and roadmap for developing microbial electrochemical cell-based biosensors for recalcitrant environmental contaminants, emphasis on aromatic compounds. Chem Eng J. 2021;424:130245.
  • Roy R, Ray S, Chowdhury A, et al. Tunable multiplexed whole-cell biosensors as environmental diagnostics for ppb-level detection of aromatic pollutants. ACS Sens. 2021;6(5):1933–1939.
  • Patel R, Zaveri P, Mukherjee A, et al. Development of fluorescent protein-based biosensing strains: a new tool for the detection of aromatic hydrocarbon pollutants in the environment. Ecotoxicol Environ Saf. 2019;182:109450.
  • Verma ML, Rani V. Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: a review. Environ Chem Lett. 2021;19(2):1657–1666.
  • Thavarajah W, Verosloff MS, Jung JK, et al. A primer on emerging field-deployable synthetic biology tools for global water quality monitoring. NPJ Clean Water. 2020;3(1):18.
  • Shahar H, Tan LL, Ta GC, et al. Detection of halogenated hydrocarbon pollutants using enzymatic reflectance biosensor. Sens Actuators B: Chem. 2019;281:80–89.
  • Riangrungroj P, Bever CS, Hammock BD, et al. A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure. Sci Rep. 2019;9(1):12466.
  • Brewer R, Nagashima J, Kelley M, et al. Risk-based evaluation of total petroleum hydrocarbons in vapor intrusion studies. Int J Env Res Public Health. 2013;10:2441–2467.
  • Kuppusamy S, Maddela NR, Megharaj M, et al. Methodologies for analysis and identification of total petroleum hydrocarbons. In: Kuppusamy S, Maddela NR, Megharaj M, et al, editors. Total petroleum hydrocarbons: environmental fate, toxicity, and remediation. Cham: Springer International Publishing; 2020. p. 29–55.
  • Okparanma RN, Mouazen AM. Determination of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) in soils: a review of spectroscopic and nonspectroscopic techniques. Appl Spectrosc Rev. 2013;48(6):458–486.
  • Mao K, Zhang H, Wang Z, et al. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron. 2020;148:111785.
  • Tsai S-T, Cheng W-J, and Zhang Q-X, et al. Gold-specific biosensor for monitoring wastewater using genetically engineered Cupriavidus metallidurans CH34. ACS Synth Biol. 2021;10(12):3576–3582.
  • Yamashita T, Hasegawa T, Hayashida Y, et al. Energy savings with a biochemical oxygen demand (BOD)- and pH-based intermittent aeration control system using a BOD biosensor for swine wastewater treatment. Biochem Eng J. 2022;177:108266.
  • Gao G, Fang D, Yu Y, et al. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta. 2017;167:208–216.
  • Patel R, Mukherjee A, Zaveri P, et al. Optimization of immobilization process and survival study of microbial sensing strains used for aromatic hydrocarbon detection in industrial wastewater. Water Environ J. 2020;34(S1):937–948.
  • Liu B, Lei Y, Li B. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens Bioelectron. 2014;62:308–314.
  • Adekunle A, Raghavan V, Tartakovsky B. A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring. Bioelectrochemistry. 2019;126:105–112.
  • Logroño W, Guambo A, Pérez M, et al. A terrestrial single chamber microbial fuel cell-based niosensor for biochemical oxygen demand of synthetic rice washed wastewater. Sensors. 2016;16(1):101.
  • Olaniran AO, Hiralal L, Pillay B. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J Environ Monit. 2011;13(10):2914–2920.
  • Tardy GM, Lóránt B, Gyalai-Korpos M, et al. Microbial fuel cell biosensor for the determination of biochemical oxygen demand of wastewater samples containing readily and slowly biodegradable organics. Biotechnol Lett. 2021;43(2):445–454.
  • Corbella C, Hartl M, Fernandez-gatell M, et al. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands. Sci Total Environ. 2019;660:218–226.
  • Berberich J, Li T, and Sahle-Demessie E. Chapter 11 - Biosensors for monitoring water pollutants: a case study with arsenic in groundwater. In: Ahuja S, editor. Sep. Sci. Technol. Vol. 11. Massachusetts, United States: Academic Press; 2019. p. 285–328.
  • Rajkumar P, Ramprasath T, and Selvam GS. 12 - A simple whole cell microbial biosensors to monitor soil pollution. In: New pesticides and soil sensors, A.M. Grumezescu. (editor) Massachusetts, United States: Academic Press;2017. 437–481.
  • Babapoor A, Hajimohammadi R, Jokar SM, et al. Biosensor design for detection of mercury in contaminated soil using rhamnolipid biosurfactant and luminescent bacteria. J Chem. 2020;2020:9120959.
  • Hashwan SSB, Khir MHBM, Al-Douri Y, et al. Recent progress in the development of biosensors for chemicals and pesticides detection. IEEE Access. 2020;8:82514–82527.
  • Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel). 2021;21(4):1109.