3,702
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A panoramic view of technological landscape for bioethanol production from various generations of feedstocks

, , , , , , & show all
Pages 81-112 | Received 21 Apr 2022, Accepted 25 Jun 2022, Published online: 04 Jul 2023

References

  • Himmel ME, Ding S-Y, Johnson DK, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–807. DOI:10.1126/science.1137016
  • Devi A, Singh A, Bajar S, et al. Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng. 2021;9(5):105798. DOI:10.1016/j.jece.2021.105798
  • Abnisa F, Arami-Niya A, Daud WMAW, et al. Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes. BioEnergy Res. 2013;6(2):830–840. DOI:10.1007/s12155-013-9313-8
  • Kundu A, Sahu JN, Redzwan G, et al. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int J Hydrogen Energy. 2013;38(4):1745–1757. DOI:10.1016/j.ijhydene.2012.11.031
  • Vanhala P, Bergström I, Haaspuro T, et al. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Sci Total Environ. 2016;557:51–57.
  • Ginni G, S K, R YK, et al. Valorization of agricultural residues: different biorefinery routes. J Environ Chem Eng. 2021;9(4):105435. DOI:10.1016/j.jece.2021.105435
  • EIA. EIA projects 28% increase in world energy use by 2040. 2017; Available from: https://www.eia.gov/todayinenergy/detail.php?id=32912.
  • Sharma N, Sharma N. Second generation bioethanol production from lignocellulosic waste and its future perspectives: a review. Int J Curr Microbiol Appl Sci. 2018;7(5):1285–1290.
  • Helen Mountford DW, Lorena G, Chirag G, et al., COP26: key Outcomes from the UN Climate Talks in Glasgow. 2021; Available from: https://www.wri.org/insights/cop26-key-outcomes-un-climate-talks-glasgow.
  • Cremonez PA, Feroldi M, Cézar Nadaleti W, et al. Biodiesel production in Brazil: current scenario and perspectives. Renew Sust Energ Rev. 2015;42:415–428.
  • Lin C-Y, Lu C. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: a review. Renew Sust Energ Rev. 2021;136:110445.
  • IEA. Renewables 2020. 2020; Available from: https://www.iea.org/reports/renewables-2020/transport-biofuels.
  • Association, R.F., Annual Ethanol Production U.S. and World Ethanol Production. 2021; Available from: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production.
  • Vallejos ME, Kruyeniski J, Area MC, Second-generation bioethanol from industrial wood waste of South American species. 2017.
  • Voegele E IEA predicts growth in global ethanol production through 2023. 2018; Available from: http://www.ethanolproducer.com/articles/15673/eia-predicts-growth-in-global-ethanol-production-through-2023.
  • Voegele E EIA increases 2021, 2022 forecasts for ethanol blending. 2021; Available from: http://www.ethanolproducer.com/articles/18312/eia-increases-2021-2022-forecasts-for-ethanol-blending.
  • Barros S, Woody, K. Corn ethanol production booms in Brazil. Report No. BR2020-0041, Global Agricultural Information Network. Brasilia, Brazil: United States Deparment of Agriculture (USDA): Brasilia; 2020
  • Barros S. Biofuels annual—Brazil. Annual report BR2020-0032. Global Agricultural Information Network. Brasilia, Brazil: United States Deparment of Agriculture (USDA); 2020.
  • de Lima LM, Bacchi MRP. Global ethanol market: commercialization trends, regulations, and key drivers. In Chandel AK, Silveira NHL, editors. Advances in sugarcane biorefinery. Vol. 1, Amsterdam, Netherlands: Elsevier; 2018. p. 253–277.
  • EPA. Economics of Biofuels. 2021; Available from: https://www.epa.gov/environmental-economics/economics-biofuels.
  • Flach B, Lieberz, S, Bolla, S. Biofuels annual—European Union. Annual report E42020-0032. Global agricultural information network. Washington (DC): US Department of Agriculture Foreign Agricultural Service; 2020.
  • Kim G, China - Peoples Republic of Biofuels Annual China Will Miss E10 by 2020 Goal by Wide Margin. 2019.
  • Chandra A. Biofuels Annual. New Delhi: United States Department of Agriculture; 2021.
  • Tracker S Sustainable Development Goals/Affordable and Clean Energy. Available from: https://sdg-tracker.org/energy.
  • IEA, I., UNSD, World Bank, WHO, Tracking SDG7 the Energy Progress Report 2021. 2021, IEA, IRENA, UNSD, World Bank, WHO.
  • IEA. Transport Biofuels. 2021; Available from: https://www.iea.org/reports/transport-biofuels.
  • Nazari MT, Mazutti J, Basso LG, et al. Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review. Environment. Dev Sustainability. 2021;23(8):11139–11156. DOI:10.1007/s10668-020-01110-4
  • Singh S, et al. Bioethanol Production Scenario in India: potential and Policy Perspective. In: Chandel AK Sukumaran RKeditors. Sustainable Biofuels Development in India. Cham: Springer International Publishing; 2017. pp. 21–37.
  • Tracker S Sustainable Development Goals/Responsible Consumption and Production. Available from: https://sdg-tracker.org/sustainable-consumption-production.
  • Tracker S Sustainable Development Goals/Decent Work and Economic Growth. Available from: https://sdg-tracker.org/economic-growth.
  • Mat Aron NS, Khoo KS, Chew KW, et al. Sustainability of the four generations of biofuels–a review. Int J Energy Res. 2020;44(12):9266–9282. DOI:10.1002/er.5557
  • Alalwan HA, Alminshid AH, Aljaafari HA. Promising evolution of biofuel generations. Subject review. Renew Energy Focus. 2019;28:127–139.
  • Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol Biotechnol. 2018;56(2):174–187.
  • Cheah WY, Sankaran R, Show PL, et al. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J. 2020;7(1):1115. DOI:10.18331/BRJ2020.7.1.4
  • Panahi Y, Yari Khosroushahi A, Sahebkar A, et al. Impact of Cultivation Condition and Media Content onChlorella vulgaris Composition. Adv Pharm Bull. 2019;9(2):182–194. DOI:10.15171/apb.2019.022
  • Vonshak A. Micro-algae: laboratory growth techniques and outdoor biomass production. In: Coombs J, Hall DO, Long SP, Scurlock JMO, editors. Techniques in bioproductivity and photosynthesis, 2nd ed. Vol. 1. Oxford, United Kingdom: Pergamon; 1985. p. 188–200.
  • Leong W-H, Lim J-W, Lam M-K, et al. Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renew Sust Energ Rev. 2018;91:950–961.
  • Moravvej Z, Makarem MA, Rahimpour MR. Chapter 20 - the fourth generation of biofuel. In: Basile A Dalena F, editors. Second and Third Generation of Feedstocks. 2019. pp. 557–597.
  • Ale S, Femeena PV, Mehan S, Cibin R. Bioenergy with carbon capture and storage. In: José Carlos Magalhães Pires JCM, Gonçalves ALDC, Editors. Environmental impacts of bioenergy crop production and benefits of multifunctional bioenergy systems, Vol. 1 London, United Kingdom: Academic Press; 2019. p. 195–217.
  • Pazhany AS, Henry RJ. Genetic Modification of Biomass to Alter Lignin Content and Structure. Ind Eng Chem Res. 2019;58(35):16190–16203.
  • Abdullah B, Syed Muhammad SAF, Shokravi Z, et al. Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sust Energ Rev. 2019;107:37–50.
  • Bhuyar P, Trejo, M, Mishra, P et al. Advancements of fermentable sugar yield by pretreatment and steam explosion during enzymatic saccharification of Amorphophallus sp. starchy tuber for bioethanol production. Fuel. 2022;323:124406.
  • Berlowska J, Pielech-Przybylska K, Balcerek M, et al. Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp. Energies. 2017;10(9):1255. DOI:10.3390/en10091255
  • Liu Z-H, Chen H-Z. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Biores Technol. 2016;201:15–26.
  • Pooja NS, Sajeev MS, Jeeva ML, et al. Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF). 3 Biotech. 2018;8(1):69. DOI:10.1007/s13205-018-1095-4
  • Laltha M, Sewsynker-Sukai Y, Eb GK. Development of microwave-assisted alkaline pretreatment methods for enhanced sugar recovery from bamboo and corn cobs: process optimization, chemical recyclability and kinetics of bioethanol production. Ind Crops Prod. 2021;174:114166.
  • Joy SP, Krishnan C. Modified organosolv pretreatment for improved cellulosic ethanol production from sorghum biomass. Ind Crops Prod. 2022;177:114409.
  • Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, et al. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renewable Energy. 2020;146:1031–1040.
  • Smachetti MES, Coronel, CD, Salerno, GL et al. Sucrose-to-ethanol microalgae-based platform using seawater. Algal Res. 2020;451:101733.
  • Alfonsín V, Maceiras R, Gutiérrez C. Bioethanol production from industrial algae waste. Waste Manage. 2019;87:791–797.
  • Osman MEH, Abo-Shady AM, Elshobary ME, et al. Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. Environ Sci Pollut Res. 2020;27(26):32481–32493. DOI:10.1007/s11356-020-09534-1
  • Mohapatra S, Ray RC, Ramachandran S. Bioethanol from biorenewable feedstocks: technology, economics, and challenges. In: Ray RC, Ramachandran S, Editors. Bioethanol production from food crops. Vol. 1. London, United Kingdom: Academic Press; 2019. p. 3–27.
  • Sindhu R, Gnansounou E, Binod P, et al. Bioconversion of sugarcane crop residue for value added products – an overview. Renewable Energy. 2016;98:203–215.
  • Soam S, Kumar R, Gupta RP, et al. Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme. Energy. 2015;83:307–315.
  • Carioca J, Leal M, Ethanol production from sugar-based feedstocks. 2017.
  • Marx S, Brandling J, Van Der Gryp P. Ethanol production from tropical sugar beet juice. Afr J Biotechnol. 2012;11(54):11709–11720.
  • Paroha S, Singh S, Gupta A. Sugar beet-the potential feedstocks for alcohol production. Int J Agric Sci. 2020;12(8):9776–9778.
  • Sandesh Suresh K, Suresh PV, Kudre TG. 4 - Prospective ecofuel feedstocks for sustainable production. In: Azad K, editor. Advances in Eco-Fuels for a Sustainable Environment. Cambridge, United Kingdom: Woodhead Publishing; 2019. Vol. 1. pp. 89–117.
  • Mathur S, Umakanth AV, Tonapi VA, et al. Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels. 2017;10(1):1–19. DOI:10.1186/s13068-017-0834-9
  • Umakanth AV, Bhargavi HA, Keerthi L, et al. Sweet Sorghum as First-Generation Biofuel Feedstock and Its Commercialization. In: Tonapi VA, Talwar HS, Are AK, et al., editors. Sorghum in the 21st Century: food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer SingaporeSpringer Singapore; 2020. Vol. 1. pp. 705–721. DOI:10.1007/978-981-15-8249-3_28
  • Erdurmus C, et al. Bioethanol and sugar yields of sweet sorghum. The Int J of Eng and Sci(ijes). 2018;7(11):21–26.
  • Bušić A, Marđetko N, Kundas S, et al. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol. 2018;56(3):289–311. DOI:10.17113/ftb.56.03.18.5546
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy. 2004;26(4):361–375.
  • Zabed H, Sahu JN, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev. 2017;71(C):475–501.
  • Hoang T-D, Nghiem N. Recent Developments and Current Status of Commercial Production of Fuel Ethanol. Fermentation. 2021;7(4):314.
  • Chen S, Xu Z, Li X, et al. Integrated bioethanol production from mixtures of corn and corn stover. Bioresour Technol. 2018;258:18–25.
  • Statista. Global wheat production from 2011/2012 to 2021/2022. 2022; Available from: https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/.
  • Statista. Leading wheat producers worldwide from 2016/2017 to 2021/22. 2022; Available from: https://www.statista.com/statistics/237908/global-top-wheat-producing-countries/.
  • Belboom S, Bodson B, Léonard A. Does the production of Belgian bioethanol fit with European requirements on GHG emissions? Case of wheat. Biomass Bioenergy. 2015;74:58–65.
  • Mohanty SK, Swain MR. Bioethanol production from corn and wheat: food, fuel, and future. In: Ray RC, Ramachandran S, editors. Bioethanol production from food crops. London, United Kingdom: Academic Press; 2019. Vol. 1. pp. 45–59.
  • Mikulski D, Kłosowski G. Microwave-assisted dilute acid pretreatment in bioethanol production from wheat and rye stillages. Biomass Bioenergy. 2020;136:105528.
  • Krajang M, Malairuang K, Sukna J, et al. Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters. Biotechnol Biofuels. 2021;14(1):1–15. DOI:10.1186/s13068-021-01903-3
  • Pradyawong S, Juneja A, Sadiq M, et al. Comparison of Cassava Starch with Corn as a Feedstock for Bioethanol Production. Energies. 2018;11(12):3476. DOI:10.3390/en11123476
  • Niju S, Swathika M, Balajii M. Pretreatment of lignocellulosic sugarcane leaves and tops for bioethanol production. In: Pirozzi D, Sannino F, editors. Second and Third Generation of Q9 Feedstocks. Lignocellulosic biomass to liquid biofuels. Academic Press: London, United Kingdom; 2020. pp. 301–324.
  • Sharma D, Saini A. Cellulosic Ethanol Feedstock: diversity and Potential. In: Sharma D, Saini A, editors. Lignocellulosic Ethanol Production from a Biorefinery Perspective: sustainable Valorization of Waste. Singapore: Springer Singapore; 2020. Vol. 1. pp. 23–63. DOI:10.1007/978-981-15-4573-3_2
  • Belgacem MN, Gandini A. Production, Chemistry and Properties of Cellulose-Based Materials. In: Plackett D, editor. Biopolymers – New Materials for Sustainable Films and Coatings. Wiley, Hoboken, New Jersey, U.S.; 2011. Vol. 1. pp. 151–178.
  • Brodeur G, Yau E, Badal K, et al. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011;2011:1–17.
  • Yousuf A, Pirozzi D, Sannino F. Chapter 1 - Fundamentals of lignocellulosic biomass. In: Pirozzi D, and Sannino F, editors. Lignocellulosic Biomass to Liquid Biofuels. London, United Kingdom: Academic Press; 2020. Vol. 1. pp. 1–15.
  • Ponnusamy VK, Nguyen DD, Dharmaraja J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Biores Technol. 2019;271:462–472.
  • Swain MR, Singh A, Sharma AK, et al. Chapter 11 - Bioethanol Production from Rice- and Wheat Straw: an Overview. In: Ray RC, Ramachandran S, editors. Bioethanol Production from Food Crops. London, United Kingdom: Academic Press; 2019. Vol. 1. pp. 213–231.
  • Ziaei-Rad Z, Fooladi J, Pazouki M, et al. Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: an economically viable method for wheat straw fractionation. Biomass Bioenergy. 2021;151:106140.
  • Yuan Z, Wen Y, Li G. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Biores Technol. 2018;259:228–236.
  • Abraham A, Mathew AK, Sindhu R, et al. Potential of rice straw for bio-refining: an overview. Bioresour Technol. 2016;215:29–36.
  • Takano M, Hoshino K. Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. Bioresources Bioprocess. 2018;5(1):16.
  • Anu A, Kumar A, et al. Process optimization for chemical pretreatment of rice straw for bioethanol production. Renewable Energy. 2020;156:1233–1243.
  • Jin X, Song J, Liu G-Q. Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus. Energy. 2020;190:116395.
  • Canilha L, Chandel AK, Suzane dos Santos Milessi T, et al. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol. 2012;2012:1–15.
  • Furlan FF, Filho RT, Pinto FH, et al. Bioelectricity versus bioethanol from sugarcane bagasse: is it worth being flexible? Biotechnol Biofuels. 2013;6(1):1–12. DOI:10.1186/1754-6834-6-142
  • Khattab SM, Watanabe T. Bioethanol from sugarcane bagasse: status and perspectives. In: Bioethanol production from food crops. Elsevier; 2019. pp. 187–212.
  • Jugwanth Y, Sewsynker-Sukai Y, Gueguim Kana EB. Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: optimization and kinetic studies. Fuel. 2020;262:116552.
  • Lask J, Wagner M, Trindade LM, et al. Life cycle assessment of ethanol production from miscanthus: a comparison of production pathways at two European sites. GCB Bioenergy. 2019;11(1):269–288. DOI:10.1111/gcbb.12551
  • Nicolas B, Dufour A, Meng X, et al. Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuel Bioprod Biorefin. 2012;6(5):580–598. DOI:10.1002/bbb.1353
  • Kang KE, Jeong J-S, Kim Y, et al. Development and economic analysis of bioethanol production facilities using lignocellulosic biomass. J Biosci Bioeng. 2019;128(4):475–479. DOI:10.1016/j.jbiosc.2019.04.004
  • Zhang X, Fu J, Lin G, et al. Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China. Energies. 2017;10(2):260. DOI:10.3390/en10020260
  • Schmer MR, Vogel, KP, Mitchell, RB, et al. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. U.S.A. 2008;105(2):464–469.
  • Dien BS, Mitchell RB, Bowman MJ, et al. Bioconversion of Pelletized Big Bluestem, Switchgrass, and Low-Diversity Grass Mixtures into Sugars and Bioethanol. Front Energy Res. 2018;6. DOI:10.3389/fenrg.2018.00129.
  • Sudhakar K, Mamat R, Samykano M, et al. An overview of marine macroalgae as bioresource. Renew Sust Energ Rev. 2018;91:165–179.
  • de Farias Silva CE, Bertucco A. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem. 2016;51(11):1833–1842.
  • Vassilev SV, Vassileva CG. Composition, properties and challenges of algae biomass for biofuel application: an overview. Vol. 181. Fuel; 2016. pp. 1–33.
  • Chen H, Zhou D, Luo G, et al. Macroalgae for biofuels production: progress and perspectives. Renew Sust Energ Rev. 2015;47:427–437.
  • Sirajunnisa AR, Surendhiran D. Algae – a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sust Energ Rev. 2016;66:248–267.
  • Qari H, Rehan M, Nizami A-S. Key Issues in Microalgae Biofuels: a Short Review. Energy Procedia. 2017;142:898–903.
  • Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):1–21.
  • Sulfahri S, Mushlihah S, et al. Fungal pretreatment as a sustainable and low cost option for bioethanol production from marine algae. J Clean Prod. 2020;265:121763.
  • Phwan CK, Chew KW, Sebayang AH, et al. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol Biofuels. 2019;12(1):191. DOI:10.1186/s13068-019-1533-5
  • Niphadkar S, Bagade P, Ahmed S. Bioethanol production: insight into past, present and future perspectives. Biofuels. 2018;9(2):229–238.
  • Fu C, Mielenz, JR, Xiao, X, et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. U.S.A. 2011;108(9):3803–3808.
  • Brunecky R, Selig MJ, Vinzant TB, et al. In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels. 2011;4(1):1. DOI:10.1186/1754-6834-4-1
  • Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol. 2015;33:8–14.
  • Fasahati P, Liu JJ, Ohlrogge JB, et al. Process design and economics for production of advanced biofuels from genetically modified lipid-producing sorghum. Appl Energy. 2019;239:1459–1470.
  • Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks. J Clean Prod. 2020;245:118857.
  • Szambelan K, Nowak J, Szwengiel A, et al. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods in bioethanol production and formation of volatile by-products from selected corn cultivars. Ind Crops Prod. 2018;118:355–361.
  • Bertrand E, Vandenberghe, L.P., Soccol, C.R., et al., Chapter 8. First Generation bioethanol Bioethanol de première génération, in Green Fuels Technology. 2016, Springer: Cham.
  • Naqvi M, Yan J. First‐generation biofuels. Handbook of Clean Energy Systems. 2015;1–18.
  • Bergmann JC, Trichez, D., Sallet, L.P. et al. Technological advancements in 1G ethanol production and recovery of by-products based on the biorefinery concept. In: Chandel AK, Silveira MHL, editors. Advances in sugarcane biorefinery. Netherland: Elsevier, 2018. Vol. 1. pp. 73–95.
  • Kumar B, Bhardwaj, N., Agrawal, K. et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Vol. 199. Fuel Processing Technology; 2020. p. 106244.
  • Ani FN. Utilization of bioresources as fuels and energy generation. In: Rashi MH, editor. Electric Renewable Energy Systems. Netherland: Elsevier Inc; 2016. Vol. 1. pp. 140–155.
  • Bajpai P. Production of bioethanol. In: Bajpai P, editor. Developments in Bioethanol. Singapore: Springer; 2021. Vol. 1. pp. 41–110. DOI:10.1007/978-981-15-8779-5_10
  • Singh A, Bajar S, Devi A, et al. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresour Technol Rep. 2021;14:100652.
  • Sánchez ÓJ, Montoya S. Production of Bioethanol from Biomass: an Overview. In: Gupta VK Tuohy MG, editors. Biofuel Technologies: recent Developments. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. pp. 397–441.
  • Kennes D, Abubackar HN, Diaz M, et al. Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol. 2016;91(2):304–317. DOI:10.1002/jctb.4842
  • Coyne JM, Gupta, V.K., Donovon, A.O. et al. The role of fungal enzymes in global biofuel production technologies. In: Gupta VK, Tuohy MG, editors. Biofuel Technologies: Recent Developments. Berlin Heidelberg: Springer-Verlag, 2013. Vol. 1. pp. 121–143.
  • Paulova L, Patakova P, Branska B, et al. Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv. 2015;33(6):1091–1107. DOI:10.1016/j.biotechadv.2014.12.002
  • de Souza Vandenberghe LP, Bittencourt GA, Valladares-Diestra KK, et al. Application of enzymes in microbial fermentation of biomass wastes for biofuels and biochemicals production. In: Tong YW, Zhang L, Zhang J, et al., editors. Biomass, biofuels, biochemicals. Elsevier: Amsterdam, Netherlands. 2022. Vol. 1, pp. 283–316.
  • Branco RH, Serafim LS, Xavier AM. Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock. Fermentation. 2018;5(1):4.
  • Tiwari A, Kiran T, Pandey A. Chapter 14 - Algal cultivation for biofuel production. In: Basile A, and Dalena F, editors. Second and Third Generation of Feedstocks. Elsevier; 2019. Vol. 1. pp. 383–403.
  • Proksch G Growing Sustainability-Integrating Algae Cultivation into the Built Environment. 2014.
  • Zahira Y, Kamrul KF, Renganathan R, et al. The Current Methods for the Biomass Production of the Microalgae from Wastewaters: an Overview. World Appl Sci J. 2014;31(10):1744–1758.
  • Saad MG, Dosoky NS, Zoromba MS, et al. Algal Biofuels: current Status and Key Challenges. Energies. 2019;12(10):1920. DOI:10.3390/en12101920
  • Roselet F, Vandamme D, Muylaert K, et al. Harvesting of Microalgae for Biomass Production. In: Wand Z, and Alam M, editors. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Singapore: Springer; 2019;1:211-243. DOI:10.1007/978-981-13-2264-8_10
  • Bibi R, Ahmad Z, Imran M, et al. Algal bioethanol production technology: a trend towards sustainable development. Renew Sust Energ Rev. 2017;71(C):976–985.
  • Scholz MJ, Weiss TL, Jinkerson RE, et al. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall. Eukaryotic Cell. 2014;13(11):1450–1464. DOI:10.1128/EC.00183-14
  • Huang J, Wei M, Ren R, et al. Morphological changes of blocklets during the gelatinization process of tapioca starch. Carbohydr Polym. 2017;163:324–329.
  • Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, et al. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J. 2018;5(1):780–791.
  • Abomohra AE-F, Elshobary M. Biodiesel, bioethanol, and biobutanol production from microalgae. In: Alam, M., Wang, Z. (eds), Microalgae Biotechnol Dev Biofuel Wastewater Treat. 2019;293–321. DOI:10.1007/978-981-13-2264-8_13
  • Paul V, Rai S, Tripathi AD, et al. Impact of Fermentation Types on Enzymes Used for Biofuels Production. In: Srivastava M, Srivastava N, Mishra P, and Gupta VK, editors. Bioprocessing for Biofuel Production: Strategies to Improve Process Parameters. Springer-Verlag Berlin Heidelberg; 2013;1:1–27.
  • Zabed H, Faruq G, Sahu JN, et al. Bioethanol Production from Fermentable Sugar Juice. Sci World J. 2014;2014:957102.
  • Md F, Abdul Quay M, Morshed Ah M, et al. Analysis of Key Factors Affecting Ethanol Production by Saccharomyces cerevisiae IFST-072011. Biotechnology. 2012;11(4):248–252. DOI:10.3923/biotech.2012.248.252
  • Bakhtawar J, Sadia, S., Irfan, M. et al. Effect of bioprocess parameters on biofuel production. In: Bioprocessing for Biofuel Production: Strategies to Improve Process Parameters. Springer, 2021;1:95–126.
  • Onsoy T, Thanonkeo P, Thanonkeo S, et al. Ethanol production from Jerusalem artichoke by Zymomonasmobilis in batch fermentation. Current Appl Sci Technol. 2007;7(1–1):55–60.
  • Lin Y, Zhang W, Li C, et al. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy. 2012;47:395–401.
  • Bernardi AV, Gerolamo LE, Uyemura SA, et al. A thermophilic, pH-tolerant, and highly active GH10 xylanase from Aspergillus fumigatus boosted pre-treated sugarcane bagasse saccharification by cellulases. Ind Crops Prod. 2021;170:113697.
  • Azhar SHM, Abdulla R, Jambo SA, et al. Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 2017;10:52–61.
  • Raven S, Srivastava C, Kaushik H, et al. Fungal Cellulases: new Avenues in Biofuel Production. In: Srivastava N, Srivastava M, Ramteke P, and Mishra P, editors. Approaches to Enhance Industrial Production of Fungal Cellulases. Cham: Fungal Biology. Springer; 2019. DOI:10.1007/978-3-030-14726-6_1
  • Zohri AA, Ramadan AM, El-Tabakh MM, et al. Microbial analysis and alcoholic fermentation studies for Delta beet molasses. Egyptian Sugar Journal. 2013;6:35–56.
  • Lemuz CR, Dien BS, Singh V, et al. Development of an ethanol yield procedure for dry‐grind corn processing. Cereal Chem. 2009;86(3):355–360. DOI:10.1094/CCHEM-86-3-0355
  • Deesuth O, Laopaiboon P, Jaisil P, et al. Optimization of nitrogen and metal ions supplementation for very high gravity bioethanol fermentation from sweet sorghum juice using an orthogonal array design. Energies. 2012;5(9):3178–3197. DOI:10.3390/en5093178
  • Xu E, Wu Z, Jiao A, et al. Effect of exogenous metal ions and mechanical stress on rice processed in thermal-solid enzymatic reaction system related to further alcoholic fermentation efficiency. Food Chem. 2018;240:965–973.
  • Ghazanfar M, Irfan M, Nadeem M, et al. Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation. 2022;8(4):148. DOI:10.3390/fermentation8040148
  • Babu BK. Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by clostridium strain p11. Oklahoma State University; 2010.
  • Chang Y-H, Chang K-S, Chen C-Y, et al. Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation. 2018;4(2):45. DOI:10.3390/fermentation4020045
  • Fiedurek J, Skowronek M, Gromada A. Selection and adaptation of Saccharomyces cerevisiae to increased ethanol tolerance and production. Pol J Microbiol. 2011;60(1):51–58.
  • Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv. 2008;26(1):89–105.
  • Sharma D, Saini A. Saccharification Fermentation and Process Integration. In: Lignocellulosic Ethanol Production from a Biorefinery Perspective: sustainable Valorization of Waste. Singapore: Springer; 2020. pp. 111–158.
  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, et al. Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549–556. DOI:10.1016/j.tibtech.2006.10.004
  • Mehmood N, Alayoubi R, Husson E, et al. Kluyveromyces marxianus, an attractive yeast for ethanolic fermentation in the presence of imidazolium ionic liquids. Int J Mol Sci. 2018;19(3):887. DOI:10.3390/ijms19030887
  • Fernández-Sandoval MT, Galíndez-Mayer J, Bolívar F, et al. Xylose–glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions. Microb Cell Fact. 2019;18(1):1–11. DOI:10.1186/s12934-019-1191-0
  • Tran D-T, Lin C-W, Lai C-Y, et al. Ethanol Production from Lignocelluloses by Native Strain Klebsiella oxytoca THLC0409. Waste Biomass Valorization. 2011;2(4):389. DOI:10.1007/s12649-011-9082-6
  • Singh N, Mathur AS, Gupta RP, et al. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924. Biores Technol. 2018;250:860–867.
  • Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol. 2002;52(Pt 4):1155–1160.
  • Babu BK, Atiyeh HK, Wilkins MR, et al. Effect of the reducing agent dithiothreitol on ethanol and acetic acid production by Clostridium strain P11 using simulated biomass-based syngas. Biol. Eng. Trans. 2010;3(1):19–35.
  • Hermansyah H, Novia N, Wiraningsih M. Bioethanol production from cellulose by Candida tropicalis, as an alternative microbial agent to produce ethanol from lignocellulosic biomass. Sriwijaya J Environ. 2016;1(1):10–13.
  • Jamai L, Ettayebi K, Yamani J, et al. Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase. Bioresour Technol. 2007;98(14):2765–2770. DOI:10.1016/j.biortech.2006.09.057
  • Díaz-Blanco DI, de La Cruz JR, López-Linares JC, et al. Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Ind Crops Prod. 2018;114:154–163.
  • Pedraza L, Flores A, Toribio H, et al. Sequential Thermochemical Hydrolysis of Corncobs and Enzymatic Saccharification of the Whole Slurry Followed by Fermentation of Solubilized Sugars to Ethanol with the Ethanologenic Strain Escherichia coli MS04. BioEnergy Res. 2016;9(4):1046–1052. DOI:10.1007/s12155-016-9756-9
  • Saha BC, Qureshi N, Kennedy GJ, et al. Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production. Bioresour Technol. 2015;190:182–188.
  • Kim S, Park JM, Kim CH. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Appl Biochem Biotechnol. 2013;169(5):1531–1545.
  • García-Aparicio M, Oliva JM, Manzanares P, et al. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel. 2011;90(4):1624–1630. DOI:10.1016/j.fuel.2010.10.052
  • Choi G-W, Kang H-W, Kim Y-R, et al. Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnol Bioprocess Eng. 2008;13(6):765–771. DOI:10.1007/s12257-008-0184-3
  • Zhang K, Feng H. Fermentation potentials of Zymomonasmobilis and its application in ethanol production from low-cost raw sweet potato. Afr J Biotechnol. 2010;9(37):6122–6128.
  • Singh A, Bishnoi NR. Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Ind Crops Prod. 2012;37(1):334–341.
  • Izmirlioglu G, Demirci A. Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel. 2016;181:643–651.
  • Oberoi HS, Vadlani PV, Brijwani K, et al. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem. 2010;45(8):1299–1306. DOI:10.1016/j.procbio.2010.04.017
  • Martín JFG, Cuevas M, Bravo V, et al. Ethanol production from olive prunings by autohydrolysis and fermentation with Candida tropicalis. Renewable Energy. 2010;35(7):1602–1608. DOI:10.1016/j.renene.2009.12.015
  • Canilha L, Carvalho W, de Almeida Felipe MDG, et al. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol. 2010;161(1–8):84–92. DOI:10.1007/s12010-009-8792-8
  • Bellido C, Bolado S, Coca M, et al. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Biores Technol. 2011;102(23):10868–10874. DOI:10.1016/j.biortech.2011.08.128
  • Wang Y, Liu P, Zhang G, et al. Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing. Renew Sust Energ Rev. 2021;137:110586.
  • Rocha-Meneses L, Ferreira JA, Mushtaq M, et al. Genetic modification of cereal plants: a strategy to enhance bioethanol yields from agricultural waste. Ind Crops Prod. 2020;150:112408.
  • Akram F, Haq IU, Imran W, et al. Insight perspectives of thermostable endoglucanases for bioethanol production: a review. Renewable Energy. 2018;122:225–238.
  • Song H-T, Liu S-H, Gao Y, et al. Simultaneous saccharification and fermentation of corncobs with genetically modified Saccharomyces cerevisiae and characterization of their microstructure during hydrolysis. Bioengineered. 2016;7(3):198–204. DOI:10.1080/21655979.2016.1178424
  • Tomás-Pejó EO, M J, Ballesteros M. Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res. 2008;67(11):874–884.
  • Wang Z, Chen M, Xu Y, et al. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Biotechnol Lett. 2008;30(4):657–663. DOI:10.1007/s10529-007-9597-x
  • Chou H-H, Su H-Y, Chow T-J, et al. Engineering cyanobacteria with enhanced growth in simulated flue gases for high-yield bioethanol production. Biochem Eng J. 2021;165:107823.
  • Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng. 2013;15:196–205.
  • Velmurugan R, Incharoensakdi A. Heterologous Expression of Ethanol Synthesis Pathway in Glycogen Deficient Synechococcus elongatus PCC 7942 Resulted in Enhanced Production of Ethanol and Exopolysaccharides. Front Plant Sci. 2020;11. DOI:10.3389/fpls.2020.00074
  • Chow T-J, Su H-Y, Tsai T-Y, et al. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Biores Technol. 2015;184:33–41.
  • Thapa LP, Lee SJ, Yang X. Improved bioethanol production from metabolic engineering of Enterobacter aerogenes ATCC 29007. Process Biochem. 2015;50(12):2051–2060.
  • Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol Biofuels. 2017;10(1):125.
  • Wang M, Luan G, Lu X. Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. J Biotechnol. 2020;317:1–4.
  • Yang P, Zhang H, Jiang S. Construction of recombinant sestc Saccharomyces cerevisiae for consolidated bioprocessing, cellulase characterization, and ethanol production by in situ fermentation. 3 Biotech. 2016;6(2): 192-192. DOI:10.1007/s13205-016-0512-9
  • Yang P, Wu Y, Zheng Z, et al. CRISPR-Cas9 Approach Constructing Cellulase sestc-Engineered Saccharomyces cerevisiae for the Production of Orange Peel Ethanol. Front Microbiol. 2018;9. DOI:10.3389/fmicb.2018.02436.
  • McBride J, Zietsman JJ, Van Zyl WH, et al. Utilization of cellobiose by recombinant β-glucosidase-expressing strains of Saccharomyces cerevisiae: characterization and evaluation of the sufficiency of expression. Enzyme Microb Technol. 2005;37(1):93–101. DOI:10.1016/j.enzmictec.2005.01.034
  • Divate NR, Chen G-H, Divate RD, et al. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Bioengineered. 2017;8(5):524–535. DOI:10.1080/21655979.2016.1257449
  • Zazulya A, Semkiv M, Dmytruk K, et al. Adaptive Evolution for the Improvement of Ethanol Production During Alcoholic Fermentation with the Industrial Strains of Yeast Saccharomyces Cerevisiae. Cytol Genet. 2020;54(5):398–407. DOI:10.3103/S0095452720050059
  • Zhang Q, Jin Y-L, Fang Y, et al. Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high-gravity bioethanol fermentation. Electron J Biotechnol. 2019;41:88–94.
  • Novelli Poisson GF, Juárez ÁB, Noseda DG, et al. Adaptive evolution strategy to enhance the performance of scheffersomyces stipitis for industrial cellulosic ethanol production. Ind Biotechnol. 2020;16(5):281–289. DOI:10.1089/ind.2020.0008
  • Yan Z, Zhang J, Bao J. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution. Biores Technol. 2021;329:124926.
  • Shui Z-X, Qin H, Wu B, et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol. 2015;99(13):5739–5748. DOI:10.1007/s00253-015-6616-z
  • Wang Y, Manow R, Finan C, et al. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biotechnol. 2011;38(9):1371–1377. DOI:10.1007/s10295-010-0920-5
  • Wallace-Salinas V, Gorwa-Grauslund MF. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels. 2013;6(1):151.
  • Sarkar P, Mukherjee M, Goswami G, et al. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose. J Ind Microbiol Biotechnol. 2020;47(3):329–341. DOI:10.1007/s10295-020-02270-y
  • Shen Y, Chen X, Peng B, et al. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol. 2012;96(4):1079–1091. DOI:10.1007/s00253-012-4418-0
  • Jilani SB, Venigalla SSK, Mattam AJ, et al. Improvement in ethanol productivity of engineered E. coli strain SSY13 in defined medium via adaptive evolution. J Ind Microbiol Biotechnol. 2017;44(9):1375–1384. DOI:10.1007/s10295-017-1966-4
  • Tian L, Papanek B, Olson DG, et al. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol Biofuels. 2016;9(1):116. DOI:10.1186/s13068-016-0528-8
  • Narayanan V, Sànchez i Nogué V, van Niel EWJ, et al. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express. 2016;6(1):1–13. DOI:10.1186/s13568-016-0234-8
  • Devi A, Bajar, S., Kour, H. et al. Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach. BioEnergy Res. 2022;15:1820–1841. DOI:10.1007/s12155-022-10401-9
  • Patel A, Shah AR. Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. 2021;6(2):108–128.
  • Raj T, Chandrasekhar K, Naresh Kumar A, et al. Recent advances in commercial biorefineries for lignocellulosic ethanol production: current status, challenges and future perspectives. Biores Technol. 2022;344:126292.
  • Wu C, Jiang P, Guo Y, et al. Isolation and characterization of Ulva prolifera actin1 gene and function verification of the 5′ flanking region as a strong promoter. Bioengineered. 2018;9(1):124–133. DOI:10.1080/21655979.2017.1325041
  • Suryanarayan S, Nori, S.S., Kumar, S. et al. Process of production of renewable chemicals and biofuels from seaweeds. U.S. Patent 9,688,595. SEA6 ENERGY PRIVATE Ltd.; 2017.
  • Ghosh PK, Mondal D., Maiti P. Process for improved seaweed biomass conversion for fuel intermediates, agricultural nutrients and fresh water. U.S. Patent 9,452,993. Council of Scientific and Industrial Research CSIR; 2016.
  • Gao JA, Method for producing alcohol and feed by utilizing seaweed chemical waste material. 2007. Patent No: CN101024847.
  • Mody KH, Ghosh, P.K., Sana, B. et al. Process for integrated production of ethanol and seaweed sap from kappaphycus alverezii. U.S. Patent 8,969,056; 2015.
  • Copp EA, Glantz D. Environmentally-friendly kelp-based energy saving lubricants, biofuels, and other industrial products. U.S. Patent 8,167,959; 2012.
  • Reddy CR, Baghel RS, Trivedi N, et al. Integrated process to recover a spectrum of bioproducts from fresh seaweeds. U.S. Patent No. 10,000,579; 2021. Washington, DC: U.S. Patent and Trademark Office.
  • Godvin Sharmila V, Pugazhendi, A., Bajhaiya, A.K. et. al. Biofuel production from Macroalgae: present scenario and future scope. Bioengineered. 2021;12(2):9216–9238. DOI:10.1080/21655979.2021.1996019
  • Papong S, Rewlay-Ngoen C, Itsubo N, et al. Environmental life cycle assessment and social impacts of bioethanol production in Thailand. J Clean Prod. 2017;157:254–266.
  • Sydney EB, Letti LAJ, Karp SG, et al. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresour Technol Rep. 2019;7:100234.
  • Qin Z, Dunn JB, Kwon H, et al. Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol. GCB Bioenergy. 2016;8(6):1136–1149. DOI:10.1111/gcbb.12333
  • Scully MJ, Norris GA, Alarcon Falconi TM, et al. Carbon intensity of corn ethanol in the United States: state of the science. Environ Res Lett. 2021;16(4):043001. DOI:10.1088/1748-9326/abde08
  • Bessou C, Lehuger S, Gabrielle B, et al. Using a crop model to account for the effects of local factors on the LCA of sugar beet ethanol in Picardy region, France. Int J Life Cycle Assess. 2013;18(1):24–36. DOI:10.1007/s11367-012-0457-0
  • Gallejones P, Pardo G, Aizpurua A, et al. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Sci Total Environ. 2015;505:1191–1201.
  • Morales M, Quintero J, Conejeros R, et al. Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sust Energ Rev. 2015;42:1349–1361.
  • Maga D, Thonemann N, Hiebel M, et al. Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int J Life Cycle Assess. 2019;24(2):266–280. DOI:10.1007/s11367-018-1505-1
  • Shuai W, Chen N, Li B, et al. Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass Bioenergy. 2016;92:40–47.
  • Hassan MK, Chowdhury R, Ghosh S, et al. Energy and environmental impact assessment of Indian rice straw for the production of second-generation bioethanol. Sustainable Energy Technol Assess. 2021;47:101546.
  • Rathnayake M, Chaireongsirikul T, Svangariyaskul A, et al. Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw. J Clean Prod. 2018;190:24–35.
  • Hossain N, Zaini J, Indra Mahlia TM. Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renew Sust Energ Rev. 2019;115:109371.
  • Baig KS, Wu J, Turcotte G. Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol. Int J Energy Res. 2019;43(4):1411–1427.