1,518
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Waste Valorization towards Industrial Products through Chemo- and Enzymatic- Hydrolysis

, , , , ORCID Icon &
Article: 2184480 | Received 30 Jul 2022, Accepted 17 Sep 2022, Published online: 28 Jun 2023

References

  • World Population Prospects [Internet]. 2019 [cited 2022 Mar 2]. Available from: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900
  • Ng HS, Kee PE, Yim HS, et al. Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour Technol. 2020;302:122889.
  • Barros MV, Salvador R, de Francisco AC, Piekarski CM, et al. Mapping of research lines on circular economy practices in agriculture: from waste to energy. Renewable Sustainable Energy Rev. 2020;131:109958.
  • Orejuela-Escobar LM, Landázuri AC, Goodell B. Second generation biorefining in Ecuador: circular bioeconomy, zero waste technology, environment and sustainable development: the nexus. J Bioresour Bioprod. 2021;6(2):83–28.
  • Prandi B, Faccini A, Lambertini F, et al. Food wastes from agrifood industry as possible sources of proteins: a detailed molecular view on the composition of the nitrogen fraction, amino acid profile and racemisation degree of 39 food waste streams. Food Chem. 2019;286:567–575.
  • Chojnacka K, Moustakas K, Witek-Krowiak A. Bio-based fertilizers: a practical approach towards circular economy. Bioresour Technol. 2020;295:122223.
  • Sun T, Xiao W, Jiang C, et al. Producing amino acid fertilizer by hydrolysis of the fermented mash of food waste with the synergy of three proteases expressed by engineered Candida utilis. Bioresour Technol Reports [Internet]. 2019 [[cited 2022 Mar 2]];7:100268. Available from. DOI:10.1016/j.biteb.2019.100268
  • Zhu GY, Zhu X, Wan XL, et al. Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water. J Anal Appl Pyrolysis. 2010;88(2):187–191.
  • Di Domenico Ziero H, Buller LS, Mudhoo A, et al. An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. J Environ Chem Eng. 2020;8(5):104406.
  • Huang J, Zhao Q, Bu W, et al. Ultrasound-assisted hydrolysis of lard for free fatty acids catalyzed by combined two lipases in aqueous medium. Bioengineered [Internet]. 2020[cited 2022 May 30];11(1):241–250. 10.1080/21655979.2020.1729678. Available from.
  • Chojnacka K, Skrzypczak D, Mikula K, et al. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J Clean Prod. 2021;313:127902.
  • Bhat AP, Holkar CR, Jadhav AJ, et al. Acoustic and hydrodynamic cavitation assisted hydrolysis and valorisation of waste human hair for the enrichment of amino acids. Ultrason Sonochem [Internet]. 2021 [[cited 2022 Mar 2]];71:105368. Available from. DOI:10.1016/j.jclepro.2021.127902
  • Izydorczyk G, Mikula K, Skrzypczak D, et al. Valorization of poultry slaughterhouse waste for fertilizer purposes as an alternative for thermal utilization methods. J Hazard Mater. 2022;424:127328.
  • Chaitanya Reddy C, Khilji IA, Gupta A, et al. Valorization of keratin waste biomass and its potential applications. J Water Process Eng. 2021;40:101707.
  • Sanchis-Sebastiá M, Ruuth E, Stigsson L, et al. Novel sustainable alternatives for the fashion industry: a method of chemically recycling waste textiles via acid hydrolysis. Waste Manag. 2021;121:248–254.
  • Manna MS, Biswas S, Bhowmick TK, et al. Acid hydrolysis of the waste newspaper: comparison of process variables for finding the best condition to produce quality fermentable sugars. J Environ Chem Eng. 2020;8(5):104345.
  • Karanicola P, Patsalou M, Stergiou PY, et al. Ultrasound-assisted dilute acid hydrolysis for production of essential oils, pectin and bacterial cellulose via a citrus processing waste biorefinery. Bioresour Technol. 2021;342:126010.
  • Shakirova F, Shishov A, Bulatov A. Hydrolysis of triglycerides in milk to provide fatty acids as precursors in the formation of deep eutectic solvent for extraction of polycyclic aromatic hydrocarbons. Talanta. 2022;237:122968.
  • Quijote KL, Go AW, Agapay RC, et al. Lipid-dense and pre-functionalized post-hydrolysis spent coffee grounds as raw material for the production of fatty acid methyl ester. Energy Convers Manag. 2021;240:114216.
  • Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med [Internet]. 2020 [[cited 2022 May 2]];160:696–718. Available from. DOI:10.1016/j.freeradbiomed.2020.09.002
  • Bhavsar P, Zoccola M, Patrucco A, et al. Comparative study on the effects of superheated water and high temperature alkaline hydrolysis on wool keratin. Text Res J. 2017[cited 2022 May 3];87(14):1696–1705. Internet Available from. 10.1177/0040517516658512.
  • Popko M, Michalak I, Wilk R, et al. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules. 2018[cited 2022 May 2];23(2):470. Internet Available from. 10.3390/molecules23020470.
  • Vasan P, Mandal AB, Dutta N, et al. Digestibility of amino acids of maize, low tannin sorghum, pearl millet and finger millet in caecectomized roosters. Asian-Australasian J Anim Sci [Internet]. 2008[cited 2022 May 3];21(5):701–706. Available from. 10.5713/ajas.2008.70296.
  • Van Duivenbooden N, De Wit CT, Van Keulen H. Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modelling. Fertil Res. 1996;44(1):37–49.
  • Nambi J. THE NUTRITIONAL EVALUATION of DRIED POULTRY WASTE as a FEED INGREDIENT for BROILER CHICKENS •NIYBRSmr of umnA*’ a THESIS SUBMITTED in FULFILMENT for the DEGREE of DOCTOR of PHILOSOPHY in ANIMAL PRODUCTION of the UNIVERSITY of NAIROBI. University Way, Nairobi, Kenia: University of Nairobi, 1987.
  • Ifeanyi O, Uchegbu M, Charles OI. Evaluation of phytochemical and nutritional composition of ginger rhizome powder influence of nutritional stressors on day old chicks development in hot humid tropical environment of Southeastern Nigeria view project identification of genetic signature in four indigenous breeds of chicken of South Africa using metabolomics view project. 2014 [cited 2022 May 4]. Available from: https://www.researchgate.net/publication/290891476
  • Ajayi OB, Akomolafe SF, Akinyemi FT. Food value of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria. ISRN Nutr [Internet]. 2013 [[cited 2022 May 4]];2013:1–5. Available from. DOI:10.5402/2013/359727
  • Kumar Sharma G, Ahmad Khan S. Bioremediation of sewage wastewater using selective algae for manure production. Int J Environ Eng Manag [Internet]. 2013 [[cited 2022 May 4]];4:573–580. Available from http://www.ripublication.com/ijeem.htm
  • Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol [Internet]. 2015[cited 2022 May 3];27(3):1109–1119. Available from. 10.1007/s10811-014-0428-x.
  • Abbey L, Annan N, Asiedu SK, et al. Amino acids, mineral nutrients, and efficacy of vermicompost and seafood and municipal solid wastes composts. Int J Agron [Internet]. 2018 [[cited 2022 May 3]];2018:1–6. Available from. DOI:10.1155/2018/6419467
  • John NM, Edem SO, Ndaeyo NU, et al. Physical composition of municipal solid waste and nutrient contents of its organic component in uyo municipality, Nigeria. J Plant Nutr [Internet]. 2006[cited 2022 May 4];29(2):189–194. Available from. 10.1080/01904160500464836.
  • Sánchez-Gómez R, Garde-Cerdán T, Zalacain A, et al. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: effect on amino acids and fermentative volatile content. Food Chem [Internet]. 2016 [[cited 2022 May 4]];197:132–140. Available from. DOI:10.1016/j.foodchem.2015.10.034
  • Organic NPK values | The Nutrient Company [Internet]. [cited 2022 May 4]. Available from: https://www.thenutrientcompany.com/organic-npk-values
  • Nateghpour B, Kavoosi G, Mirakhorli N. Amino acid profile of the peel of three citrus species and its effect on the combination of amino acids and fatty acids Chlorella vulgaris. J Food Compos Anal [Internet]. 2021 [[cited 2022 May 3]];98:103808. Available from. DOI:10.1016/j.jfca.2021.103808
  • Guerrero CC, Carrasco de Brito J, Lapa N, et al. Re-use of industrial orange wastes as organic fertilizers. Bioresour Technol [Internet]. 1995[cited 2022 May 4];53(1):43–51. Available from. 10.1016/0960-8524(95)00050-O.
  • Campos DA, Ribeiro TB, Teixeira JA, et al. Integral valorization of pineapple (Ananas comosus L.) by-products through a green chemistry approach towards added value ingredients. Foods [Internet]. 2020[cited 2022 May 4];9(1):60. Available from. 10.3390/foods9010060.
  • Liu CH, Liu Y, Fan C, et al. The effects of composted pineapple residue return on soil properties and the growth and yield of pineapple. J Soil Sci Plant Nutr [Internet]. 2013 [cited 2022 May 4]; 13. 0–0 Available from: ahead. 10.4067/S0718-95162013005000034.
  • Ibrahim HM, Salama MF, El-Banna HA. Shrimp’s waste: chemical composition, nutritional value and utilization. Nahrung/Food [Internet]. 1999cited 2022 May 4];43(6):418–423. Available from. 10.1002/(SICI)1521-3803(19991201)43:6<418:AID-FOOD418>3.0.CO;2-6.
  • Gómez-Juárez C, Castellanos R, Ponce-Noyola T, et al. Protein recovery from slaughterhouse wastes. Bioresour Technol [Internet]. 1999[cited 2022 May 3];70(2):129–133. Available from. 10.1016/S0960-8524(99)00030-9.
  • Roy M, Karmakar S, Debsarcar A, et al. Application of rural slaughterhouse waste as an organic fertilizer for pot cultivation of solanaceous vegetables in India. 2013 [cited 2022 May 4]. Available from: www.SID.ir
  • Fischer H, Romano N, Sinha AK. Conversion of spent coffee and donuts by black soldier fly (Hermetia illucens) larvae into potential resources for animal and plant farming. Insects [Internet]. 2021[cited 2022 May 3];12(4):332. Available from. 10.3390/insects12040332.
  • Afriliana A, Hidayat E, Yoshiharu M, et al. Evaluation of potency spent coffee grounds for make black compost. E3S Web Conf [Internet]. 2020 [[cited 2022 May 4]];142:4002. Available from. DOI:10.1051/e3sconf/202014204002
  • Rashaid AHB, Harrington PB, Jackson GP. Amino acid composition of human scalp hair as a biometric classifier and investigative lead. Anal Methods [Internet]. 2015[cited 2022 May 3];7(5):1707–1718. Available from. 10.1039/C4AY02588A.
  • Ward WH, Binkley CH, Snell NS. Amino acid composition of normal wools, wool fractions, mohair, feather, and feather fractions. Text Res J [Internet]. 1955[cited 2022 May 4];25(4):314–325. Available from. 10.1177/004051755502500403.
  • Di Mola I, Cozzolino E, Ottaiano L, et al. Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy [Internet]. 2019[cited 2022 Mar 14];9(10):571. Available from. 10.3390/agronomy9100571.
  • Surendra KC, Angelidaki I, Khanal SK. Bioconversion of waste-to-resources (BWR-2021): valorization of industrial and agro-wastes to fuel, feed, fertilizer, and biobased products. Bioresour Technol [Internet]. 2022 [[cited 2022 Mar 2]];347:126739. Available from. DOI:10.1016/j.biortech.2022.126739
  • Colantoni A, Recchia L, Bernabei G, et al. Analyzing the environmental impact of chemically-produced protein hydrolysate from leather waste vs. enzymatically-produced protein hydrolysate from legume grains. Agriculture [Internet]. 2017[cited 2022 Mar 14];7(8):62. Available from. http://www.mdpi.com/2077-0472/7/8/62.
  • Bekchanov M. Potentials of waste and wastewater resources recovery and re-use (RRR) options for improving water, energy and nutrition security. SSRN Electron J. 2017. DOI:10.2139/ssrn.2977212
  • Busato JG, de Carvalho CM, Zandonadi DB, et al. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. Environ Sci Pollut Res. 2018;25(36):35811–35820.
  • data.worldbank.org. Total fisheries production (metric tons) | data [internet]. [cited 2021 Aug 28]. Available from: https://data.worldbank.org/indicator/ER.FSH.PROD.MT
  • Guidoni LLC, Martins GA, Guevara MF, et al. Full-scale composting of different mixtures with meal from dead pigs: process monitoring, compost quality and toxicity. Waste Biomass Valorization. 2021;12(11):5923–5935.
  • Hannah R, Roser M. Meat and dairy production. OurWorldInData.org [Internet]. 2017 [cited 2021 Aug 28]. Available from: https://ourworldindata.org/meat-production
  • Jayathilakan K, Sultana K, Radhakrishna K, et al. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol [Internet]. 2012[cited 2021 Aug 28];49(3):278. Available from. 10.1007/s13197-011-0290-7.
  • Kroiss H, Rechberger H, Egle L. Phosphorus in water quality and waste management. Integr Waste Manag - Vol II [Internet]. 2011 [cited 2022 Apr 28]; Available from; https://www.intechopen.com/chapters/18487.
  • Mateo-Sagasta J, Raschid-Sally L, Thebo A. Global wastewater and sludge production, treatment and use. Wastewater Econ Asset an Urban World. 2015;1:15–38. https://link.springer.com/chapter/10.1007/978-94-017-9545-6_2.
  • Olsen RL, Toppe J, Karunasagar I. Challenges and realistic opportunities in the use of byproduct from processing of fish and shellfish. Trends Food Sci Technol. 2014;36(2):144–151.
  • Seidavi AR, Zaker-Esteghamati H, Scanes CG. Chicken processing: impact, co-products and potential. Worlds Poult Sci J. 2019;75(1):55–68.
  • Correa DF, Beyer HL, Possingham HP, et al. Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy [Internet]. 2019[cited 2022 May 8];11(8):914–929. Available from. 10.1111/gcbb.12619.
  • Araújo R, Vázquez Calderón F, Sánchez López J, et al. Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Front Mar Sci. 2021;7:1247.
  • Chastain JP, Camberato JJ, Skewes P. Poultry manure production and nutrient content. https://www.researchgate.net/publication/265021539_3-b-1_Poultry_Manure_Production_and_Nutrient_Content_NUTRIENT_CONTENT_OF_POULTRY_MANURE.
  • Reith JF, Hofsteede MJN, Langbroek W. The nitrogen content of meat and the calculation of the meat content of meat products. J Sci Food Agric [Internet]. 1955[cited 2022 May 8];6(6):317–323. Available from. 10.1002/jsfa.2740060605.
  • AMCAN. Seafood nitrogen factors. Anal Methods [Internet]. 2014 [cited 2022 May 8];6 (13): 4490–4492. Available from 10.1039/C4AY90042A.
  • Boulos S, Tännler A, Nyström L. Nitrogen-to-protein conversion factors for edible insects on the Swiss market: t. molitor, A. domesticus, and L. migratoria. Front Nutr. 2020;7:89.
  • Protein and amino acids - recommended dietary allowances - NCBI bookshelf [internet]. [cited 2022 Sep 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK234922/
  • Rocca S, Agostini A, Giuntoli J, et al. Biofuels from algae: technology options, energy balance and GHG emissions. 2015 [cited 2022 May 8]. Available from: https://ec.europa.eu/jrc
  • Mendes LBB, Viegas CV, Joao RR, et al. Microalgae production: a sustainable alternative for a low-carbon economy transition. Open Microalgae Biotechnol [Internet]. 2021[cited 2022 May 8];1(1):1–7. Available from. 10.2174/2666395302101010001.
  • Directive 2008/98/EC of the European parliament and of the council of 19 November 2008 on waste and repealing certain directives (text with EEA relevance) [internet]. 2022 [cited 2022 Sep 12]. Available from: https://eur–lex-europa-eu.translate.goog/legal-content/EN/TXT/?uri=celex:32008L0098&_x_tr_sl=en&_x_tr_tl=pl&_x_tr_hl=pl&_x_tr_pto=op,sc
  • Regulation (EC) No 1069/2009 of the European parliament and of the council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation) 2009 [cited 2022 Sep 12]. [Internet]. Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1069
  • Amalia S, Angga SC, Iftitah ED, et al. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography. Heliyon [Internet]. 2021[cited 2022 Sep 12];7(8):e07707. Available from. 10.1016/j.heliyon.2021.e07707.
  • Albuquerque JCS, Araújo MLH, Rocha MVP, et al. Acid hydrolysis conditions for the production of fine chemicals from Gracilaria birdiae alga biomass. Algal Res [Internet]. 2021 [[cited 2022 Jan 4]];53:102139. Available from. DOI:10.1016/j.algal.2020.102139
  • Lorenzo-Hernando A, Ruiz-Vegas J, Vega-Alegre M, et al. Recovery of proteins from biomass grown in pig manure microalgae-based treatment plants by alkaline hydrolysis and acidic precipitation. Bioresour Technol [Internet]. 2019 [[cited 2022 May 3]];273:599–607. Available from. DOI:10.1016/j.biortech.2018.11.068
  • Du C, Abdullah JJ, Greetham D, et al. Valorization of food waste into biofertiliser and its field application. J Clean Prod [Internet]. 2018 [[cited 2022 Jan 4]];187:273–284. Available from. DOI:10.1016/j.jclepro.2018.03.211
  • Sortino O, Dipasquale M, Montoneri E, et al. 90 % yield increase of red pepper with unexpectedly low doses of compost soluble substances. Agron Sustain Dev [Internet]. 2013[cited 2022 May 2];33(2):433–441. Available from. 10.1007/s13593-012-0117-6.
  • Baglieri A, Cadili V, Mozzetti Monterumici C, et al. Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci Hortic (Amsterdam) [Internet]. 2014 [[cited 2022 May 2]];176:194–199. Available from. DOI:10.1016/j.scienta.2014.07.002
  • Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci. 2018 [cited 2022 May 11]; 192(335): Available from 10.3390/ijms19020335.
  • Di Mola I, Ottaiano L, Cozzolino E, et al. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants [Internet]. 2019[cited 2022 Mar 14];8(11):522. Available from. 10.3390/plants8110522.
  • Zhu X, Wang L, Zhang Z, et al. Combination of fiber-degrading enzymatic hydrolysis and lactobacilli fermentation enhances utilization of fiber and protein in rapeseed meal as revealed in simulated pig digestion and fermentation in vitro. Anim Feed Sci Technol [Internet]. 2021 [[cited 2022 Mar 14]];278:115001. Available from. DOI:10.1016/j.anifeedsci.2021.115001
  • Xu X, Ji H, Yu H, et al. Influence of replacing fish meal with enzymatic hydrolysates of defatted silkworm pupa (Bombyx mori L.) on growth performance, body composition and non-specific immunity of juvenile mirror carp (Cyprinus carpio var. specularis). Aquac Res [Internet]. 2018[cited 2022 Mar 14];49(4):1480–1490. Available from. 10.1111/are.13603.
  • Wei Y, Liang M, Xu H, et al. Taurine alone or in combination with fish protein hydrolysate affects growth performance, taurine transport and metabolism in juvenile turbot (Scophthalmus maximus L.). Aquac Nutr [Internet]. 2019[cited 2022 Mar 14];25(2):396–405. Available from. 10.1111/anu.12865.
  • Jindřichová B, Burketová L, Montoneri E, et al. Biowaste-derived hydrolysates as plant disease suppressants for oilseed rape. J Clean Prod [Internet]. 2018 [[cited 2022 Mar 14]];183:335–342. Available from. DOI:10.1016/j.jclepro.2018.02.112
  • Prado KS, Spinacé MAS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. Int j biol macromol. 2019;122:410–416.
  • Revati R, Majid MSA, Ridzuan MJM, et al. Characterisation of structural and physical properties of cellulose nanofibers from Pennisetum purpureum. IOP Conf Ser Mater Sci Eng. 2019;670(1):670.
  • Doh H, Lee MH, Whiteside WS. Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass. Food Hydrocoll. 2020;102:105542.
  • Yanagisawa M, Kawai S, Murata K. Strategies for the production of high concentrations of bioethanol from seaweeds [Internet]. Bioengineered. 2013[cited 2022 May 30];4(4):224–235. Available from. 10.4161/bioe.23396.
  • Mandik YI, Cheirsilp B, Srinuanpan S, et al. Zero-waste biorefinery of oleaginous microalgae as promising sources of biofuels and biochemicals through direct transesterification and acid hydrolysis. Process Biochem. 2020;95:214–222.
  • Mishra A, Ghosh S. Bioethanol production from various lignocellulosic feedstocks by a novel “fractional hydrolysis” technique with different inorganic acids and co-culture fermentation. Fuel. 2019;236:544–553.
  • Gorlov IF, Titov EI, Semenov GV, et al. Collagen from porcine skin: a method of extraction and structural properties. Int J Food Prop. 2018;21(1):1031–1042.
  • Shavandi A, Bekhit AEDA, Carne A, et al. Evaluation of keratin extraction from wool by chemical methods for bio-polymer application. J Bioact Compat Polym. 2017;32(2):163–177.
  • Ayala JR, Montero G, Coronado MA, et al. Characterization of orange peel waste and valorization to obtain reducing sugars. Molecules. 2021;26(5):1348.
  • Mahmoodi P, Karimi K, Taherzadeh MJ. Efficient conversion of municipal solid waste to biofuel by simultaneous dilute-acid hydrolysis of starch and pretreatment of lignocelluloses. Energy Convers Manag. 2018;166:569–578.
  • Chen C, Wang Z, Wang G, et al. Various natural nanocellulose fibers from windmill palm. J Text Inst. 2021;112(8):1316–1323.
  • Evdokimova OL, Alves CS, Krsmanović Whiffen RM, et al. Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose. J Zhejiang Univ Sci B. 2021;22:450–461.
  • Plermjai K, Boonyarattanakalin K, Mekprasart W, et al. Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis. AIP Conf Proc. 2018;020005:1–7.
  • Abral H, Ariksa J, Mahardika M, et al. Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocoll. 2020;98:105266.
  • de Souza LM, Assis RQ, Pinilla CMB, et al. Eucalyptus spp. cellulose nanocrystals obtained by acid hydrolysis and ultrasound processing for structural strengthening in paper packaging. Wood Sci Technol. 2021;55(3):639–657.
  • El Achaby M, El Miri N, Hannache H, et al. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int j biol macromol. 2018;117:592–600.
  • Albuquerque JCS, Araújo MLH, Rocha MVP, et al. Acid hydrolysis conditions for the production of fine chemicals from Gracilaria birdiae alga biomass. Algal Res. 2021;53:102139.
  • Zaeni A, Safitri E, Fuadah B, et al. Microwave-assisted hydrolysis of chitosan from shrimp shell waste for glucosammine hydrochlorid production. J Phys Conf Ser. 2017;846:012011.
  • Di Domenico Ziero H, Ampese LC, Sganzerla WG, et al. Subcritical water hydrolysis of poultry feathers for amino acids production. J Supercrit Fluids. 2022;181:105492.
  • Sinthusamran S, Benjakul S, Kijroongrojana K, et al. Yield and chemical composition of lipids extracted from solid residues of protein hydrolysis of Pacific white shrimp cephalothorax using ultrasound-assisted extraction. Food Biosci. 2018;26:169–176.
  • Cotta MA. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5 [Internet]. Bioengineered. 2012[cited 2022 May 30];3(4):197–202. Available from. 10.4161/bioe.19874.
  • Cedillo VB, Prieto A, María MJ. Potential of Ophiostoma piceae sterol esterase for biotechnologically relevant hydrolysis reactions [Internet]. Bioengineered. 2012[cited 2022 Jul 5];4(4):249–253. Available from. 10.4161/bioe.22818.
  • Xu D, Zhang Z, Liu Z, et al. Using enzymatic hydrolyzate as new nitrogen source for L-tryptophan fermentation by E.Coli [Internet]. Bioengineered. 2019[cited 2022 Jul 5];11(1):1–10. Available from. 10.1080/21655979.2019.1700092.
  • Deng JJ, Mao HH, Fang W, et al. Enzymatic conversion and recovery of protein, chitin, and astaxanthin from shrimp shell waste. J Clean Prod. 2020;271:271.
  • Van Nguyen N, Hai PD, My VT, et al. Improving product added-value from shrimp (Litopenaeus vannamei) waste by using enzymatic hydrolysis and response surface methodology. J Aquat Food Prod Technol. 2021;30:880–892.
  • Osman A, Merwad AR, Mohamed AH, et al. Foliar spray with pepsin-and papain-whey protein hydrolysates promotes the productivity of pea plants cultivated in clay loam soil. Molecules [Internet]. 2021 [[cited 2022 Mar 14]];26:2805. Available from. https://www.mdpi.com/1420-3049/26/9/2805
  • Noman A, Xu Y, AL-Bukhaiti WQ, et al. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem. 2018;67:19–28.
  • Rajabzadeh M, Pourashouri P, Shabanpour B, et al. Amino acid composition, antioxidant and functional properties of protein hydrolysates from the roe of rainbow trout (Oncorhynchus mykiss). Int J Food Sci Technol. 2018;53:313–319.
  • Mangano V, Gervasi T, Rotondo A, et al. Protein hydrolysates from anchovy waste: purification and chemical characterization. Nat Prod Res. 2021;35:399–406.
  • Benhabiles MS, Abdi N, Drouiche N, et al. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit. Mater Sci Eng C [Internet]. 2012 [[cited 2022 Mar 2]];32:922–928. Available from https://linkinghub.elsevier.com/retrieve/pii/S0928493112000653
  • Anzani C, Prandi B, Tedeschi T, et al. Degradation of collagen increases nitrogen solubilisation during enzymatic hydrolysis of fleshing meat. Waste Biomass Valorization. 2018;9:1113–1119.
  • Lee S, Akeprathumchai S, Bundidamorn D, et al. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass [Internet]. 2021 [[cited 2022 Jul 5]];12:5110–5124. Available from DOI:10.1080/21655979.2021.1961662
  • Apte AA, Senger RS, Fong SS. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis. Bioengineered [Internet]. 2014 [[cited 2022 Jul 5]];5:243–253. Available from https://www.tandfonline.com/doi/abs/10.4161/bioe.29160
  • Martínez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids [Internet]. 2017 [[cited 2022 Sep 8]];49:2091–2098. Available from https://pubmed.ncbi.nlm.nih.gov/28929442/
  • Drummond L, Álvarez C, Mullen AM. Proteins recovery from meat processing coproducts. Sustain Meat Prod Process. 2018;4:69–83.
  • Lan M, Li W, Chang C, et al. Enhancement on enzymolysis of pigskin with ultrasonic assistance [Internet]. 2020 [[cited 2022 Jul 5]];11:397–407. Available from DOI:10.1080/21655979.2020.1736736
  • Hu K, Jia SQ, Yang C, et al. Combined freezing-thawing pretreatment and microbial electrolysis cell for enhancement of highly concentrated organics degradation from dewatered sludge [Internet]. 2020 [[cited 2022 Jul 5]];11:301–310. Available from DOI:10.1080/21655979.2020.1736735
  • Gao S, Lu D, Qian T, et al. Thermal hydrolyzed food waste liquor as liquid organic fertilizer. Sci Total Environ. 2021;775:1–9/145786.
  • Nurdiawati A, Nakhshiniev B, Gonzales HB, et al. Nitrogen mineralization dynamics of liquid feather hydrolysates obtained by hydrothermal treatment. Appl Soil Ecol. 2019;134:98–104.
  • Trigueros E, Sanz MT, Alonso-Riaño P, et al. Recovery of the protein fraction with high antioxidant activity from red seaweed industrial solid residue after agar extraction by subcritical water treatment. J Appl Phycol. 2021;33:1181–1194.
  • Tu Y, Huang J, Xu P, et al. Subcritical water hydrolysis treatment of waste biomass for nutrient extraction. BioResources [Internet]. 2016 [[cited 2022 Sep 11]];11:5389–5403. Available from https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_2_5389_Tu_Subcritical_Water_Hydrolysis_Treatment
  • Hwang IH, Aoyama H, Abe N, et al. Subcritical hydrothermal treatment for the recovery of liquid fertilizer from scallop entrails. Environ Technol (United Kingdom). 2015;36:11–18.
  • Kalambura S, Krička T, Kiš D, et al. High-risk bio-waste processing by alkaline hydrolysis and isolation of amino acids. Teh Vjesn - Tech Gaz [Internet]. 2016 [[cited 2022 May 2]];23:1771–1776. Available from http://hrcak.srce.hr/169366
  • Berechet MD, Simion D, Stanca M, et al. Keratin hydrolysates extracted from sheep wool with potential use as organic fertilizer. Leather Footwear J [Internet]. 2020 [[cited 2022 May 3]];20:267–276. Available from http://revistapielarieincaltaminte.ro/revistapielarieincaltaminteresurse/en/fisiere/full/vol20-nr3/article5_vol20_issue3.pdf
  • Trakselyte-Rupsiene K, Juodeikiene G, Cernauskas D, et al. Integration of ultrasound into the development of plant-based protein hydrolysate and its bio-stimulatory effect for growth of wheat grain seedlings in vivo. Plants [Internet]. 2021 [[cited 2022 Mar 14]];10:1319. Available from. https://www.mdpi.com/2223-7747/10/7/1319
  • Massaya J, Mills-Lamptey B, Chuck CJ. Soil amendments and biostimulants from the hydrothermal processing of spent coffee grounds. Waste and Biomass Valorization [Internet]. 2022 [[cited 2022 Mar 14]];13:2889–2904. Available from https://link.springer.com/10.1007/s12649-022-01697-x
  • Orts Á, Tejada M, Parrado J, et al. Production of biostimulants from okara through enzymatic hydrolysis and fermentation with Bacillus licheniformis: comparative effect on soil biological properties. Environ Technol [Internet]. 2019 [[cited 2022 Mar 14]];40:2073–2084. Available from. DOI:10.1080/09593330.2018.1436596
  • Remme J, Tveit GM, Toldnes B, et al. Production of protein hydrolysates from cod (Gadus morhua) heads: lab and pilot scale studies. J Aquat Food Prod Technol [Internet]. 2022 [[cited 2022 Mar 14]];31:114–127. Available from. DOI:10.1080/10498850.2021.2021341
  • Kang S-W, Jeong C, Seo D-C, et al. Liquid fertilizer production by alkaline hydrolysis of carcasses and the evaluation of developed fertilizer in hot pepper cultivation. Process Saf Environ Prot [Internet]. 2019 [[cited 2022 Mar 14]];122:307–312. Available from https://linkinghub.elsevier.com/retrieve/pii/S0957582018314253
  • Akdeniz N, Yi S. Alkaline hydrolysis of swine mortalities and using hydrolysates to grow lettuce hydroponically. Trans ASABE [Internet]. 2021 [[cited 2022 May 3]];64:73–82. Available from https://elibrary.asabe.org/abstract.asp?AID=51967&t=3&dabs=Y&redir=&redirType=
  • Holkar CR, Jadhav AJ, Bhavsar PS, et al. Acoustic cavitation assisted alkaline hydrolysis of wool based keratins to produce organic amendment fertilizers. ACS Sustain Chem Eng [Internet]. 2016 [[cited 2022 May 2]];4:2789–2796. Available from. DOI:10.1021/acssuschemeng.6b00298
  • Rojas J, Ciro Y, Quintero J. Production of a new biofertilizer from shrimp exoskeletons using a microwave-assisted alkaline hydrolysis. Agric Res Updat. 2017;17:199–216.
  • Tang Y, Xie H, Sun J, et al. Alkaline thermal hydrolysis of sewage sludge to produce high-quality liquid fertilizer rich in nitrogen-containing plant-growth-promoting nutrients and biostimulants. Water Res [Internet]. 2022 [[cited 2022 May 3]];211:118036. Available from http://www.ncbi.nlm.nih.gov/pubmed/35032873
  • Malik SS, Pandey RK, Nair UR, et al. Alkaline hydrolysis of resin-based combustible cartridge case and application of its hydrolysate as crop fertilizer. J Hazardous, Toxic, Radioact Waste [Internet]. 2012 [[cited 2022 May 3]];16:304–310. Available from. DOI:10.1061/%28ASCE%29HZ.2153-5515.0000131
  • Gaidau C, Stanca M, Niculescu M-D, et al. Wool keratin hydrolysates for bioactive additives preparation. Materials (Basel) [Internet]. 2021 [[cited 2022 Mar 14]];14:4696. Available from. https://www.mdpi.com/1996-1944/14/16/4696
  • Gousterova A, Nustorova M, Goshev I, et al. Alkaline hydrolysate of waste sheep wool aimed as fertilizer. Biotechnol Biotechnol Equip [Internet]. 2003 [[cited 2022 May 3]];17:140–145. Available from. DOI:10.1080/13102818.2003.10817072
  • Nustorova M, Braikova D, Gousterova A, et al. Chemical, microbiological and plant analysis of soil fertilized with alkaline hydrolysate of sheep’s wool waste. World J Microbiol Biotechnol [Internet]. 2006 [[cited 2022 May 3]];22:383–390. Available from. DOI:10.1007/s11274-005-9045-9
  • Zainescu G, Hanu A, Constantinescu RR, et al. Research on the hydrolysis of hide waste in the presence of natural polymers [internet]. 2016 [cited 2022 May 3]. page 519–524. Available from: http://icams.ro/icamsresurse/2016/proceedings/IV_Industrial_Ecology_14.pdf