1,724
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Sustainable circular biorefinery approach for novel building blocks and bioenergy production from algae using microbial fuel cell

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 246-289 | Received 24 Apr 2023, Accepted 11 Jul 2023, Published online: 23 Jul 2023

References

  • IEA. CO2 emissions – Global Energy Review 2021 – Analysis - IEA [Internet]. 2021 [cited 2022 Jun 7]. Available from: https://www.iea.org/reports/global-energy-review-2021/co2-emissions.
  • Benson NU, Bassey DE, Palanisami T. COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon. 2021;7(2):e06343. doi: 10.1016/j.heliyon.2021.e06343
  • Schmaltz E, Melvin EC, Diana Z, et al. Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int. 2020;144:106067. doi: 10.1016/j.envint.2020.106067
  • United Nations. Transforming our world: the 2030 agenda for sustainable development. A/RES/70/1 Seventieth session. 2015
  • Zhang X, Fevre M, Jones GO, et al. Catalysis as an enabling science for sustainable polymers. Chem Rev [Internet]. 2018 [cited 2022 Jun 7];118(2):839–885. doi: 10.1021/acs.chemrev.7b00329
  • Balina K, Romagnoli F, Blumberga D. Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia. 2017;128:504–511. doi: 10.1016/j.egypro.2017.09.067
  • Loh SR, Tan IS, Foo HCY, et al. Exergy analysis of a holistic zero waste macroalgae-based third-generation bioethanol biorefinery approach: biowaste to bioenergy. Environ Technol Innov. 2023;30:103089. doi: 10.1016/j.eti.2023.103089
  • Wong KH, Tan IS, Foo HCY, et al. Third-generation bioethanol and L-lactic acid production from red macroalgae cellulosic residue: prospects of Industry 5.0 algae. Energy Convers Manag [Internet]. 2022 [cited 2022 Jan 7];253:115155. doi: 10.1016/j.enconman.2021.115155.
  • Grasa ET, Ögmundarson Ó, Gavala HN, et al. Commodity chemical production from third-generation biomass: a techno-economic assessment of lactic acid production. Biofuel Bioprod Biorefin [Internet]. 2021;15(1):257–281. doi: 10.1002/bbb.2160
  • Kostas ET, Adams JMM, Ruiz HA, et al. Macroalgal biorefinery concepts for the circular bioeconomy: a review on biotechnological developments and future perspectives. Renew Sust Energ Rev. 2021;151:111553. doi: 10.1016/j.rser.2021.111553
  • Tong KTX, Tan IS, Foo HCY, et al. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. Biomass Convers Biorefin [Internet]. 2022 [cited 2022 Mar 18];1:1–37. doi: 10.1007/s13399-022-02561-7
  • Tong KTX, Tan IS, Foo HCY, et al. Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresour Technol. 2021;342:125880. doi: 10.1016/j.biortech.2021.125880
  • Gebreslassie TR, Nguyen PKT, Yoon HH, et al. Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell. Bioresour Technol. 2021;336:125269. doi: 10.1016/j.biortech.2021.125269
  • Okoroafor T, Haile S, Velasquez-Orta S. Life cycle assessment of microbial electrosynthesis for commercial product generation. J Hazard Toxic Radioact Waste [Internet]. 2021 [cited 2022 Jun 8];25(1):04020062. doi: 10.1061/(ASCE)HZ.2153-5515.0000537.
  • Savla N, Suman PS, Pandit S, et al. Techno-economical evaluation and life cycle assessment of microbial electrochemical systems: a review. Curr Res Green Sustainable Chem. 2021;4:100111. doi: 10.1016/j.crgsc.2021.100111
  • Kasirajan S, Umapathy D, Chandrasekar C, et al. Preparation of poly(lactic acid) from Prosopis juliflora and incorporation of chitosan for packaging applications. J Biosci Bioeng. 2019;128(3):323–331. doi: 10.1016/j.jbiosc.2019.02.013
  • IEA IEA. Biorefineries: adding value to the sustainable utilisation of biomass. 2013;
  • Christodoulou X, Okoroafor T, Parry S, et al. The use of carbon dioxide in microbial electrosynthesis: advancements, sustainability and economic feasibility. J CO2 Util. 2017;18:390–399. doi: 10.1016/j.jcou.2017.01.027
  • Kumar B, Bhardwaj N, Agrawal K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol. 2020;199:106244. doi: 10.1016/j.fuproc.2019.106244
  • FAO F and A. Fisheries and Aquaculture Department - Yearbook of Fishery and Aquaculture Statistics - Aquaculture production [Internet]. 2019 [cited 2022 Jun 1]. Available from: http://www.fao.org/fishery/static/Yearbook/YB2017_USBcard/navigation/index_content_aquaculture_e.htm.
  • Cesário MT, da Fonseca MMR, Marques MM, et al. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv. 2018;36(3):798–817. doi: 10.1016/j.biotechadv.2018.02.006
  • Li Y, Zhu C, Jiang J, et al. Catalytic hydrothermal liquefaction of Gracilaria corticata macroalgae: effects of process parameter on bio-oil up-gradation. Bioresour Technol. 2021;319:124163. doi: 10.1016/j.biortech.2020.124163
  • Ravanal MC, Camus C, Buschmann AH, et al. Production of Bioethanol From Brown Algae. Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts: New Technologies, Challenges and Opportunities. Energy. Woodhead Publishing; 2019. p. 69–88. doi: 10.1016/B978-0-12-817937-6.00004-7
  • Rocher DF, Cripwell RA, Viljoen-Bloom M. Engineered yeast for enzymatic hydrolysis of laminarin from brown macroalgae. Algal Res. 2021;54:102233. doi: 10.1016/j.algal.2021.102233
  • Madany MA, Abdel-Kareem MS, Al-Oufy AK, et al. The biopolymer ulvan from Ulva fasciata: extraction towards nanofibers fabrication. Int j biol macromol. 2021;177:401–412. doi: 10.1016/j.ijbiomac.2021.02.047
  • Ho M, Carpenter RC. Differential growth responses to water flow and reduced pH in tropical marine macroalgae. J Exp Mar Biol Ecol. 2017;491:58–65. doi: 10.1016/j.jembe.2017.03.009
  • Fisheries and Aquaculture Department. The State of World Fisheries and Aquaculture 2022. The State of World Fisheries and Aquaculture 2022 [Internet]. 2022 [cited 2023 Jun 1]; Available from: https://www.fao.org/3/cc0461en/online/sofia/2022/aquaculture-production.html.
  • Duarte CM, Gattuso JP, Hancke K, et al. Global estimates of the extent and production of macroalgal forests. Global Ecol Biogeogr [Internet]. 2022 [cited 2023 Jun 1];31(7):1422–1439. doi: 10.1111/geb.13515
  • Raven JA. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. European J Phycol [Internet]. 2017 [cited 2022 Jun 14];52(4):506–522. doi: 10.1080/0967026220171362593
  • Seghetta M, Hou X, Bastianoni S, et al. Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – a step towards a regenerative bioeconomy. J Clean Prod. 2016;137:1158–1169. doi: 10.1016/j.jclepro.2016.07.195
  • Wahl M, Schneider Covachã S, Saderne V, et al. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations. Limnol Oceanogr [Internet]. 2018;63(1):3–21. doi: 10.1002/lno.10608
  • PEA PEA Sustainable plastics strategy • Plastics Europe [Internet]. 2021 [cited 2021 Oct 27]. Available from: https://plasticseurope.org/knowledge-hub/sustainable-plastics-strategy/.
  • Alfonsín V, Maceiras R, Gutiérrez C. Bioethanol production from industrial algae waste. Waste Manage. 2019;87:791–797. doi: 10.1016/j.wasman.2019.03.019
  • Farobie O, Matsumura Y, Syaftika N, et al. Recent advancement on hydrogen production from macroalgae via supercritical water gasification. Bioresour Technol Rep. 2021;16:100844. doi: 10.1016/j.biteb.2021.100844
  • Bolognesi S, Cecconet D, Callegari A, et al. Bioelectrochemical treatment of municipal solid waste landfill mature leachate and dairy wastewater as co-substrates. Environ Sci Pollut Res. 2021;28(19):24639–24649. doi: 10.1007/s11356-020-10167-7
  • Hoang AT, Nižetić S, Ng KH, et al. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere. 2022;287:132285. doi: 10.1016/j.chemosphere.2021.132285
  • Kannan N, Donnellan P. Algae-assisted microbial fuel cells: a practical overview. Bioresour Technol Rep. 2021;15:100747. doi: 10.1016/j.biteb.2021.100747
  • Nguyen PKT, Kim J, Das G, et al. Optimization of simultaneous dark fermentation and microbial electrolysis cell for hydrogen production from macroalgae using response surface methodology. Biochem Eng J. 2021;171:108029. doi: 10.1016/j.bej.2021.108029
  • Zhang Y, Zhao Y, Zhou M. A photosynthetic algal microbial fuel cell for treating swine wastewater. 2019 Environ Sci Pollut Res [Internet]. [cited 2023 May 29];26(6):6182–6190. doi: 10.1007/s11356-018-3960-4.
  • European Bioplastics. Global bioplastics production defies challenges by showing significant increase [Internet]. 2022 [cited 2023 Apr 3]. Available from: https://www.european-bioplastics.org/global-bioplastics-production-defies-challenges-by-showing-significant-increase/
  • Jem KJ, Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Poly Res. 2020;3(2):60–70. doi: 10.1016/j.aiepr.2020.01.002
  • Li Y, Sun Y, Li J, et al. Research on the influence of microplastics on marine life. IOP Conf Ser Earth Environ Sci. 2021;631(1):012006. doi: 10.1088/1755-1315/631/1/012006
  • Verla AW, Enyoh CE, Verla EN, et al. Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci [Internet]. 2019 [cited 2023 Jun 4];1(11):1–30. doi; 10.1007/s42452-019-1352-0
  • Chamas A, Moon H, Zheng J, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng [Internet]. 2020 [cited 2023 Jun 3];8(9):3494–3511. doi: 10.1021/acssuschemeng.9b06635
  • Rosenboom JG, Langer R, Traverso G. Bioplastics for a circular economy. Nat Rev Mater[Internet]. 2022 [cited 2023 Jun 4];7(2):117–137. doi; 10.1038/s41578-021-00407-8
  • Li FJ, Tan LC, Zhang SD, et al. Compatibility, steady and dynamic rheological behaviors of polylactide/poly(ethylene glycol) blends. J Appl Polym Sci [internet]. 2016 [cited 2022 Jun 22];133(4): doi: 10.1002/app.42919.
  • Lin H-T, Huang M-Y, Kao T-Y, et al. Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation. Fermentation [Internet]. 2020 [cited 2021 Sep 2];6(1):37. doi: 10.3390/fermentation6010037
  • Chai CY, Tan IS, Foo HCY, et al. Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. Bioresour Technol. 2021;330:124930. doi: 10.1016/j.biortech.2021.124930
  • Pohanka M. D-Lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int. 2020;2020:1–9. doi: 10.1155/2020/3419034
  • Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol [Internet]. 2019 [cited 2023 Jun 4];127(6):1612–1626. doi: 10.1111/jam.14290.
  • Morettini G, Palmieri M, Capponi L, et al. Comprehensive characterization of mechanical and physical properties of PLA structures printed by FFF-3D-printing process in different directions. Prog Addit Manuf [Internet]. 2022 [cited 2023 Jun 5];7:1111–1122. doi: 10.1007/s40964-022-00285-8
  • Casalini T, Rossi F, Castrovinci A, et al. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol. 2019;7:259. doi: 10.3389/fbioe.2019.00259
  • Morão A, de Bie F. Life cycle impact assessment of Polylactic Acid (PLA) produced from sugarcane in Thailand. J Polym Environ [Internet]. 2019 [cited 2022 Jun 9];27(11):2523–2539. doi: 10.1007/s10924-019-01525-9.
  • Abdul-Latif NIS, Ong MY, Nomanbhay S, et al. Estimation of carbon dioxide (CO2) reduction by utilization of algal biomass bioplastic in Malaysia using carbon emission pinch analysis (CEPA). Bioengineered. 2020;11(1):154. doi: 10.1080/21655979.2020.1718471
  • Coppola G, Gaudio MT, Lopresto CG, et al. Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Syst Environ. 2021;5(2):231–251. doi: 10.1007/s41748-021-00208-7
  • Feng S, Takahashi K, Miura H, et al. One-pot synthesis of lactic acid from glycerol over a Pt/L-Nb2O5 catalyst under base-free conditions. Fuel Process Technol. 2020;197:106202. doi: 10.1016/j.fuproc.2019.106202
  • Abedi E, Hashemi SMB. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon [Internet]. 2020 [cited 2023 Jun 6];6(10):e04974. doi: 10.1016/j.heliyon.2020.e04974.
  • Chen Y, Dong L, Alam MA, et al. Carbon catabolite repression governs diverse physiological processes and development in aspergillus nidulans. MBio [Internet]. 2022 [cited 2023 Jun 6];13(1): doi: 10.1128/mbio.03734-21.
  • Tan J, Abdel-Rahman MA, Numaguchi M, et al. Thermophilic Enterococcus faecium QU 50 enabled open repeated batch fermentation for L-lactic acid production from mixed sugars without carbon catabolite repression. RSC Adv [Internet]. 2017 [cited 2023 Jun 6];7(39):24233–24241. doi: 10.1039/C7RA03176A
  • Lu Y, Song S, Tian H, et al. Functional analysis of the role of CcpA in Lactobacillus plantarum grown on fructooligosaccharides or glucose: A transcriptomic perspective. Microb Cell Fact [Internet]. 2018 [cited 2023 Jun 7];17(1):1–11. doi: 10.1186/s12934-018-1050-4
  • Onyeabor M, Martinez R, Kurgan G, et al. Engineering transport systems for microbial production. Adv Appl Microbiol. 2020;111:33–87.
  • Ahorsu R, Cintorrino G, Medina F, et al. Microwave processes: a viable technology for obtaining xylose from walnut shell to produce lactic acid by Bacillus coagulans. J Clean Prod. 2019;231:1171–1181. doi: 10.1016/j.jclepro.2019.05.289
  • Arioli S, Della Scala G, Remagni MC, et al. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation. Int J Food Microbiol. 2017;247:55–64. doi: 10.1016/j.ijfoodmicro.2016.01.006
  • Wang Y, Wu J, Lv M, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng Biotechnol [Internet] . 2021 [cited 2023 Jun 8];9:612285. doi: 10.3389/fbioe.2021.612285
  • Higashi M, Toyodome T, Kano K, et al. Photoelectrochemical lactate production from pyruvate via in situ NADH regeneration over a hybrid system of CdS photoanode and lactate dehydrogenase. Electrochim Acta. 2023;460:142590. doi: 10.1016/j.electacta.2023.142590
  • Bellut K, Krogerus K, Arendt EK. Lachancea fermentati strains isolated from kombucha: fundamental insights, and practical application in low alcohol beer brewing. Front Microbiol. 2020;11:764. doi: 10.3389/fmicb.2020.00764
  • Kumar P, Chandrasekhar K, Kumari A, et al. Electro-fermentation in aid of bioenergy and biopolymers. Energies. 2018;11:343. doi: 10.3390/en11020343
  • Shanthi Sravan J, Tharak A, Annie Modestra J, et al. Emerging trends in microbial fuel cell diversification - critical analysis. Bioresour Technol. 2021;326:124676. doi: 10.1016/j.biortech.2021.124676
  • Moscoviz R, Toledo-Alarcón J, Trably E, et al. Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol. 2016;34(11):856–865. doi: 10.1016/j.tibtech.2016.04.009
  • Yoruklu HC, Koroglu EO, Demir A, et al. The Electromotive-Induced Regulation of Anaerobic Fermentation: Electrofermentation. Microbial Electrochemical Technology. Biomass, Biofuels and Biochemicals. Elsevier; 2019. p. 739–756. doi: 10.1016/B978-0-444-64052-9.00030-3
  • Choi O, Sang BI. Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels. 2016;9(1):1–14. doi: 10.1186/s13068-016-0426-0
  • Yamashita T, Yokoyama H. Molybdenum anode: a novel electrode for enhanced power generation in microbial fuel cells, identified via extensive screening of metal electrodes. Biotechnol Biofuels [Internet]. 2018 [cited 2022 Jul 24];11(1):1–13. doi: 10.1186/s13068-018-1046-7.
  • Avci O, Büyüksünetçi YT, Güley Z, et al. L. Lactis Subsp. Lactis of cheese origin based microbial fuel cell. ChemistrySelect. 2021;6(32):8270–8274. doi: 10.1002/slct.202102229
  • Babu Arulmani SR, Ganamuthu HL, Ashokkumar V, et al. Biofilm formation and electrochemical metabolic activity of Ochrobactrum Sp JSRB-1 and Cupriavidus Sp JSRB-2 for energy production. Environ Technol Innov. 2020;20:101145. doi: 10.1016/j.eti.2020.101145
  • Selvaraj D, Somanathan A, Jeyakumar RB, et al. Generation of electricity by the degradation of electro-Fenton pretreated latex wastewater using double chamber microbial fuel cell. Int J Energy Res [Internet]. 2020 [cited 2023 Jun 10];44(15):12496–12505. doi: 10.1002/er.5503
  • . Palanisamy D, Chockalingam LR, Murugan D. Microbial fuel cell for effluent treatment and sustainable power generation. Energy Sources Part A [Internet]. 2020 [cited 2023 Jun 10];1–13. doi: 10.1080/1556703620201796844.
  • Winfield J, Greenman J, Ieropoulos I. Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes. Int J Hydrogen Energy [Internet]. 2019 [cited 2023 Jun 10];44(29):15344. doi: 10.1016/j.ijhydene.2019.04.024.
  • Lawson K, Rossi R, Regan JM, et al. Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresour Technol. 2020;316:123919. doi: 10.1016/j.biortech.2020.123919
  • Farah Nadiah Rusli S, Hani Abu Bakar M, Jemiah Abdul Rani S, et al. Aryl diazonium modification for improved graphite fiber brush in microbial fuel cell. JSM [Internet]. 2018;47(12):3017–3023. doi: 10.17576/jsm-2018-4712-11
  • Ucar D, Zhang Y, Angelidaki I. An overview of electron acceptors in microbial fuel cells. Front Microbiol. 2017;8:248548. doi: 10.3389/fmicb.2017.00643
  • Wang D, Hu J, Liu B, et al. Degradation of refractory organics in dual-cathode electro-Fenton using air-cathode for H2O2 electrogeneration and microbial fuel cell cathode for Fe2+ regeneration. J Hazard Mater. 2021;412:125269. doi: 10.1016/j.jhazmat.2021.125269
  • Liu C, Liu H, Liu L. Potassium permanganate as an oxidant for a microfluidic direct formate fuel cell. Int J Electrochem Sci [Internet]. 2019 [cited 2023 Jun 11];14(5):4557–4570. doi: 10.20964/2019.05.01.
  • Victoria AD, Mercy FT. Enhancing electricity generation with the use of KMnO 4 as an electron acceptor in microbial fuel cell. Jordan J Biol Sci [Internet]. 2021 [cited 2023 Jun 11];14:229–238. doi: 10.54319/jjbs/140205
  • Tang C, Zhao Y, Kang C, et al. Towards concurrent pollutants removal and high energy harvesting in a pilot-scale CW-MFC: insight into the cathode conditions and electrodes connection. Chem Eng J. 2019;373:150–160. doi: 10.1016/j.cej.2019.05.035
  • Giordano E, Berretti E, Capozzoli L, et al. Boosting DMFC power output by adding sulfuric acid as a supporting electrolyte: effect on cell performance equipped with platinum and platinum group metal-free cathodes. J Power Sources. 2023;563:232806. doi: 10.1016/j.jpowsour.2023.232806
  • Halim MA, Rahman MO, Eti IA, et al.Electricity generation in different cell connections with optimized anodic materials in microbial fuel cells. Energy Sources Part A [Internet]. 2020 [cited 2023 Jun 11];1–13. doi: 10.1080/1556703620201851818
  • Mahajan R, Krishna H, Singh AK, et al. A review on copper and its alloys used as electrode in EDM. IOP Conf Ser Mater Sci Eng [Internet]. 2018 [cited 2023 Jun 11];377:012183. doi: 10.1088/1757-899X/377/1/012183.
  • Zhou Q, Yao H. Recent development of carbon electrode materials for electrochemical supercapacitors. Energy Rep. 2022;8:656–661. doi: 10.1016/j.egyr.2022.09.167
  • Angelaalincy MJ, Navanietha Krishnaraj R, Shakambari G, et al. Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Front Energy Res. 2018;6:308237. doi: 10.3389/fenrg.2018.00063
  • Atnafu T, Leta S. A novel fragmented anode biofilm microbial fuel cell (FAB–MFC) integrated system for domestic wastewater treatment and bioelectricity generation. Bioresour Bioprocess [Internet]. 2021 [cited 2023 Jun 12];8(1):1–17. doi: 10.1186/s40643-021-00442-x
  • Kumar SS, Kumar V, Malyan SK, et al. Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel. 2019;254:115526. doi: 10.1016/j.fuel.2019.05.109
  • Lee SH, Lee KS, Sorcar S, et al. Wastewater treatment and electricity generation from a sunlight-powered single chamber microbial fuel cell. J Photochem Photobiol A Chem. 2018;358:432–440. doi: 10.1016/j.jphotochem.2017.10.030
  • Ou S, Kashima H, Aaron DS, et al. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell. J Power Sources. 2017;347:159–169. doi: 10.1016/j.jpowsour.2017.02.031
  • Masoudi M, Rahimnejad M, Mashkour M. Fabrication of anode electrode by a novel acrylic based graphite paint on stainless steel mesh and investigating biofilm effect on electrochemical behavior of anode in a single chamber microbial fuel cell. Electrochim Acta. 2020;344:136168. doi: 10.1016/j.electacta.2020.136168
  • Kim T, Yeo J, Yang Y, et al. Boosting voltage without electrochemical degradation using energy-harvesting circuits and power management system-coupled multiple microbial fuel cells. J Power Sources. 2019;410-411:171–178. doi: 10.1016/j.jpowsour.2018.11.010
  • Koffi NJ, Okabe S. High voltage generation from wastewater by microbial fuel cells equipped with a newly designed low voltage booster multiplier (LVBM). Sci Rep [Internet]. 2020 [cited 2023 Jun 12];10(1):1–9. doi: 10.1038/s41598-020-75916-7
  • Tejedor-Sanz S, Stevens ET, Li S, et al. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. Elife. 2022;11:70684. doi: 10.7554/eLife.70684
  • Greenman J, Gajda I, You J, et al. Microbial fuel cells and their electrified biofilms. Biofilm. 2021;3:100057. doi: 10.1016/j.bioflm.2021.100057
  • Varanasi JL, Prasad S, Singh H, et al. Improvement of bioelectricity generation and microalgal productivity with concomitant wastewater treatment in flat-plate microbial carbon capture cell. Fuel. 2020;263:116696. doi: 10.1016/j.fuel.2019.116696
  • Cai W, Lesnik KL, Wade MJ, et al. Incorporating microbial community data with machine learning techniques to predict feed substrates in microbial fuel cells. Biosens Bioelectron. 2019;133:64–71. doi: 10.1016/j.bios.2019.03.021
  • Rodrigues ICB, Leão VA. Producing electrical energy in microbial fuel cells based on sulphate reduction: a review. Environ Sci Pollut Res [Internet]. 2020 [cited 2023 Jun 13];27(29):36075–36084. doi: 10.1007/s11356-020-09728-7.
  • Shirkosh M, Hojjat Y, Mardanpour MM. Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Sci Rep [Internet]. 2022 [cited 2022 Jul 5];12(1):1–16. doi: 10.1038/s41598-022-11472-6
  • Schwab L, Rago L, Koch C, et al. Identification of Clostridium cochlearium as an electroactive microorganism from the mouse gut microbiome. Bioelectrochemistry. 2019;130:107334. doi: 10.1016/j.bioelechem.2019.107334
  • Ren H, Tian H, Gardner CL, et al. A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m −3. Nanoscale [Internet]. 2016 [cited 2022 Jul 5];8:3539–3547. doi: 10.1039/C5NR07267K
  • Mai-Prochnow A, Clauson M, Hong J, et al. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep. 2016;6(1):1–11. doi: 10.1038/srep38610
  • Pinto D, Coradin T, Laberty-Robert C. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells. Bioelectrochemistry. 2018;120:1–9. doi: 10.1016/j.bioelechem.2017.10.008
  • Ndayisenga F, Yu Z, Yan G, et al. Using easy-to-biodegrade co-substrate to eliminate microcystin toxic on electrochemically active bacteria and enhance bioelectricity generation from cyanobacteria biomass. Sci Total Environ. 2021;751:142292. doi: 10.1016/j.scitotenv.2020.142292
  • García-Mayagoitia S, Fernández-Luqueño F, Morales-Acosta D, et al. Energy generation from pharmaceutical residual water in microbial fuel cells using ordered mesoporous carbon and bacillus subtilis as bioanode. ACS Sustain Chem Eng. 2019;7:12179–12187. doi: 10.1021/acssuschemeng.9b01281
  • Vilas Boas J, Oliveira VB, Marcon LRC, et al. Optimization of a single chamber microbial fuel cell using Lactobacillus pentosus: influence of design and operating parameters. Sci Total Environ. 2019;648:263–270. doi: 10.1016/j.scitotenv.2018.08.061
  • You LX, Liu LD, Xiao Y, et al. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry. 2018;119:196–202. doi: 10.1016/j.bioelechem.2017.10.005
  • Jiang H, Ali MA, Xu Z, et al. Integrated microfluidic flow-through microbial fuel cells. Sci Rep [Internet]. 2017 [cited 2022 Jul 26];7:1–12. doi: 10.1038/srep41208
  • Dai HN, Duong Nguyen TA, My LE LP, et al. Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent. Int J Hydrogen Energy. 2021;46(31):16612–16621. doi: 10.1016/J.IJHYDENE.2020.09.264
  • Ghasemi M, Ahmad A, Jafary T, et al. Assessment of immobilized cell reactor and microbial fuel cell for simultaneous cheese whey treatment and lactic acid/electricity production. Int J Hydrogen Energy. 2017;42(14):9107–9115. doi: 10.1016/j.ijhydene.2016.04.136
  • Jothinathan D, Wilson RT Comparative analysis of power production of pure, coculture, and mixed culture in a microbial fuel cell. 2017;39:520–527. doi: 10.1080/1556703620161233306.
  • Jiang Y, Song R, Cao L, et al. Harvesting energy from cellulose through Geobacter sulfurreducens in Unique ternary culture. Anal Chim Acta. 2019;1050:44–50. doi: 10.1016/j.aca.2018.10.059
  • Ren J, Li N, Du M, et al. Study on the effect of synergy effect between the mixed cultures on the power generation of microbial fuel cells. Bioengineered. 2021;12(1):844. doi: 10.1080/21655979.2021.1883280
  • Abdel-Gelel IY, Abdel-Mongy M, Hamza HA, et al. Bioelectricity production from different types of bacteria using mfc under optimizing factors and new bacterial strain bioelectricity production isolated from milk sample in Egypt. Ann. Romanian Soc. Cell Biol. 2021;25:1583–6258.
  • Lin T, Bai X, Hu Y, et al. Synthetic Saccharomyces cerevisiae-Shewanella oneidensis consortium enables glucose-fed high-performance microbial fuel cell. AIChE J. 2017;63(6):1830–1838. doi: 10.1002/aic.15611
  • Kim C, Song YE, Lee CR, et al. Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B. J Ind Microbiol Biotechnol. 2016;43(10):1397–1403. doi: 10.1007/s10295-016-1807-x
  • Kondaveeti S, Lee SH, Park HD, et al. Specific enrichment of different Geobacter sp. in anode biofilm by varying interspatial distance of electrodes in air-cathode microbial fuel cell (MFC). Electrochim Acta. 2020;331:135388. doi: 10.1016/j.electacta.2019.135388
  • Tian T, Fan X, Feng M, et al. Flavin-mediated extracellular electron transfer in Gram-positive bacteria Bacillus cereus DIF1 and Rhodococcus ruber DIF2. RSC Adv. 2019;9(70):40903–40909. doi: 10.1039/C9RA08045G
  • Wai Chun CN, Tajarudin HA, Ismail N, et al. Elucidation of mechanical, physical, chemical and thermal properties of microbial composite films by integrating sodium alginate with Bacillus subtilis sp. Polymers. 2021;13(13):2103. doi: 10.3390/polym13132103
  • Cao Y, Mu H, Liu W, et al. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact [Interneet]. 2019 [cited 2023 Jun 14];18(1):1–14. doi: 10.1186/s12934-019-1087-z
  • Hatti-Kaul R, Chen L, Dishisha T, et al. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett. 2018;365(20):213. doi: 10.1093/femsle/fny213
  • Franza T, Gaudu P. Quinones: more than electron shuttles. Res Microbiol. 2022;173(6–7):103953. doi: 10.1016/j.resmic.2022.103953
  • Seselj N, Engelbrekt C, Zhang J. Graphene-supported platinum catalysts for fuel cells. Sci Bull (Beijing). 2015;60(9):864–876. doi: 10.1007/s11434-015-0745-8
  • Kouzuma A, Kato S, Watanabe K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol. 2015;6:477. doi: 10.3389/fmicb.2015.00477
  • Ou S, Kashima H, Aaron DS, et al. Multi-variable mathematical models for the air-cathode microbial fuel cell system. J Power Sources. 2016;314:49–57. doi: 10.1016/j.jpowsour.2016.02.064
  • Gandomi YA, Aaron DS, Zawodzinski TA, et al. In Situ potential distribution measurement and validated model for all-vanadium redox flow battery. J Electrochem Soc. 2016;163(1):A5188–A5201. doi: 10.1149/2.0211601jes
  • Chen J, Lv Y, Wang Y, et al. Endogenous inorganic carbon buffers accumulation and self-buffering capacity enhancement of air-cathode microbial fuel cells through anolyte recycling. Sci Total Environ. 2019;676:11–17. doi: 10.1016/j.scitotenv.2019.04.282
  • Bajracharya S, Vanbroekhoven K, Buisman CJN, et al. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Dis. 2017;202:433–449. doi: 10.1039/C7FD00050B
  • Nelabhotla ABT, Dinamarca C. Electrochemically mediated CO2 reduction for bio-methane production: a review. Rev Environ Sci Biotechnol. 2018;17(3):531–551. doi: 10.1007/s11157-018-9470-5
  • Jin X, Zhang Y, Li X, et al. Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading. Environ Sci Technol. 2017;51(16):9371–9378. doi: 10.1021/acs.est.7b01574
  • Lovley DR. Syntrophy goes electric: direct interspecies electron transfer. Annu. Rev. Microbiol. 2017;71:643–664. doi: 10.1146/annurev-micro-030117-020420
  • Xiao L, Sun R, Zhang P, et al. Simultaneous intensification of direct acetate cleavage and CO2 reduction to generate methane by bioaugmentation and increased electron transfer. Chem Eng J. 2019;378:122229. doi: 10.1016/j.cej.2019.122229
  • Vassilev I, Hernandez PA, Batlle-Vilanova P, et al. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng. 2018;6(7):8485–8493. doi: 10.1021/acssuschemeng.8b00739
  • Batlle-Vilanova P, Ganigué R, Ramió-Pujol S, et al. Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction. Bioelectrochemistry. 2017;117:57–64. doi: 10.1016/j.bioelechem.2017.06.004
  • de Araújo Cavalcante W, Leitão RC, Gehring TA, et al. Anaerobic fermentation for n-caproic acid production: a review. Process Biochemistry query. 2017;54:106–119. doi: 10.1016/j.procbio.2016.12.024
  • Dykstra CM, Pavlostathis SG. Methanogenic biocathode microbial community development and the role of bacteria. Environ Sci Technol. 2017;51(9):5306–5316. doi: 10.1021/acs.est.6b04112
  • Molenaar SD, Saha P, Mol AR, et al. Competition between methanogens and acetogens in biocathodes: a comparison between potentiostatic and galvanostatic control. IJMS. 2017;18(1):204. doi: 10.3390/ijms18010204
  • Rewatkar P, Bandapati M, Goel S. Miniaturized additively manufactured co-laminar microfluidic glucose biofuel cell with optimized grade pencil bioelectrodes. Int J Hydrogen Energy. 2019;44(59):31434–31444. doi: 10.1016/j.ijhydene.2019.10.002
  • Xu Q, Zhang F, Xu L, et al. The applications and prospect of fuel cells in medical field: a review. Renew Sust Energ Rev. 2017;67:574–580. doi: 10.1016/j.rser.2016.09.042
  • Slaughter G, Kulkarni T. A self-powered glucose biosensing system. Biosens Bioelectron. 2016;78:45–50. doi: 10.1016/j.bios.2015.11.022
  • Yang Y, Ye D, Li J, et al. Microfluidic microbial fuel cells: from membrane to membrane free. J Power Sources. 2016;324:113–125. doi: 10.1016/j.jpowsour.2016.05.078
  • Gerami A, Alzahid Y, Mostaghimi P, et al. Microfluidics for porous systems: fabrication, microscopy and applications. Transp Porous Media [Internet]. 2019 [cited 2022 Jul 18];130(1):277–304. doi: 10.1007/s11242-018-1202-3
  • He Y, Wu Y, Fu JZ, et al. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis [Internet]. 2016 [cited 2022 Jul 21];28(8):1658–1678. doi: 10.1002/elan.201600043
  • Luo X, Xie W, Wang R, et al. Fast start-up microfluidic microbial fuel cells with serpentine microchannel. Front Microbiol. 2018;9:2816. doi: 10.3389/fmicb.2018.02816
  • Nath D, Sai Kiran P, Rewatkar P, et al. Escherichia coli fed paper-based microfluidic microbial fuel cell with MWCNT composed bucky paper bioelectrodes. IEEE Trans NanoBiosci. 2019;18(3):510–515. doi: 10.1109/TNB.2019.2919930
  • Wang H, Park J, Do RZ. Practical energy harvesting for microbial fuel cells: a review. Environ Sci Technol. 2015;49(6):3267–3277. doi: 10.1021/es5047765
  • Goel S. From waste to watts in micro-devices: review on development of membraned and membraneless microfluidic microbial fuel cell. Appl Mater Today. 2018;11:270–279. doi: 10.1016/j.apmt.2018.03.005
  • Mahoney SA, Rufford TE, Johnson D, et al. The effect of rank, lithotype and roughness on contact angle measurements in coal cleats. Int J Coal Geol. 2017;179:302–315. doi: 10.1016/j.coal.2017.07.001
  • Bowden SA, Tanino Y, Akamairo B, et al. Recreating mineralogical petrographic heterogeneity within microfluidic chips: assembly, examples, and applications. Lab Chip [Internet]. 2016 [cited 2022 Jul 19];16(24):4677–4681. doi: 10.1039/C6LC01209D
  • Mousavi MR, Ghasemi S, Sanaee Z, et al. Improvement of the microfluidic microbial fuel cell using a nickel nanostructured electrode and microchannel modifications. J Power Sources. 2019;437:226891. doi: 10.1016/j.jpowsour.2019.226891
  • Rewatkar P, Goel S. Microfluidic paper based membraneless biofuel cell to harvest energy from various beverages. J Electrochem Sci Eng [Internet]. 2020. [cited 2022 Jul 20];10(1):49–54. doi: 10.5599/jese.687.
  • Hashemi N, Lackore JM, Sharifi F, et al. A paper-based microbial fuel cell operating under continuous flow condition. 2016;4:98–103. doi: 10.1142/S2339547816400124.
  • González-Guerrero MJ, Del Campo FJ, Esquivel JP, et al. Paper-based enzymatic microfluidic fuel cell: from a two-stream flow device to a single-stream lateral flow strip. J Power Sources. 2016;326:410–416. doi: 10.1016/j.jpowsour.2016.07.014
  • Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng. 2017;110:442–458. doi: 10.1016/j.compositesb.2016.11.034
  • Tran P, Ngo TD, Ghazlan A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Compos B Eng. 2017;108:210–223. doi: 10.1016/j.compositesb.2016.09.083
  • Freyman MC, Kou T, Wang S, et al. 3D printing of living bacteria electrode. Nano Res [Internet]. 2019 [cited 2022 Jul 21];13(5):1318–1323. doi: 10.1007/s12274-019-2534-1
  • Bian B, Wang C, Hu M, et al. Application of 3D printed porous copper anode in microbial fuel cells. Front Energy Res. 2018;6:50. doi: 10.3389/fenrg.2018.00050
  • You J, Preen RJ, Bull L, et al. 3D printed components of microbial fuel cells: towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technol Assess. 2017;19:94–101. doi: 10.1016/j.seta.2016.11.006
  • Theodosiou P, Greenman J, Ieropoulos I. Towards monolithically printed Mfcs: development of a 3d-printable membrane electrode assembly (mea). Int J Hydrogen Energy. 2019;44(9):4450–4462. doi: 10.1016/j.ijhydene.2018.12.163
  • Thiam BG, El Magri A, Vanaei HR, et al. 3D printed and conventional membranes—a review. Polymers. 2022;14(5):1023. doi: 10.3390/polym14051023
  • Sonawane JM, Yadav A, Ghosh PC, et al. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron. 2017;90:558–576. doi: 10.1016/j.bios.2016.10.014
  • Vilajeliu-Pons A, Puig S, Salcedo-Dávila I, et al. Long-term assessment of six-stacked scaled-up MFCs treating swine manure with different electrode materials. Environ Sci Water Res Technol. 2017;3(5):947–959. doi: 10.1039/C7EW00079K
  • Chen BY, Tsao YT, Chang SH. Cost-effective surface modification of carbon cloth electrodes for microbial fuel cells by candle soot coating. Coatings. 2018;8(12):468. doi: 10.3390/coatings8120468
  • Liu C, Sun C, Gao Y, et al. Improving the electrochemical properties of carbon paper as cathodes for microfluidic fuel cells by the electrochemical activation in different solutions. ACS Omega [Internet]. 2021 [cited 2022 Jul 24];6(29):19153–19161. doi: 10.1021/acsomega.1c02507
  • Fogel R, Limson JL. Applications of Nanomaterials in Microbial Fuel Cells. Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Cham: Springer; 2016. p. 551–575. doi: 10.1007/978-3-319-29930-3_14
  • Bandapati M, Rewatkar P, Krishnamurthy B, et al. Functionalized and enhanced HB pencil graphite as bioanode for glucose-O2 biofuel cell. IEEE Sens J. 2019;19(3):802–811. doi: 10.1109/JSEN.2018.2878582
  • Chang SH, Huang BY, Wan TH, et al. Surface modification of carbon cloth anodes for microbial fuel cells using atmospheric-pressure plasma jet processed reduced graphene oxides. RSC Adv. 2017;7(89):56433–56439. doi: 10.1039/C7RA11914C
  • Tejedor-Sanz S, Quejigo JR, Berná A, et al. The planktonic relationship between fluid-like electrodes and bacteria: Wiring in motion. ChemSuschem. 2017;10(4):693–700. doi: 10.1002/cssc.201601329
  • Wang W, Xiong F, Zhu S, et al. Defect engineering in molybdenum-based electrode materials for energy storage. eScience. 2022;2(3):278–294. doi: 10.1016/j.esci.2022.04.005
  • Saadi M, Pézard J, Haddour N, et al. Stainless steel coated with carbon nanofiber/PDMS composite as anodes in microbial fuel cells. Mater Res Express. 2020;7(2):025504. doi: 10.1088/2053-1591/ab6c99
  • Liang Y, Feng H, Shen D, et al. Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes. J Power Sources. 2017;342:98–104. doi: 10.1016/j.jpowsour.2016.12.020
  • Parkhey P, Sahu R. Microfluidic microbial fuel cells: recent advancements and future prospects. Int J Hydrogen Energy. 2021;46(4):3105–3123. doi: 10.1016/j.ijhydene.2020.07.019
  • Kim B, Chang IS. Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (Mmea-MFCs) stacking system by resistor control. Bioresour Technol. 2018;262:338–341. doi: 10.1016/j.biortech.2018.04.112
  • Li L, Nikiforidis G, Leung MKH, et al. Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: model, simulations and experiments. Appl Energy. 2016;177:729–739. doi: 10.1016/j.apenergy.2016.05.072
  • Rewatkar P, Enaganti PK, Rishi M, et al. Single-step inkjet-printed paper-origami arrayed air-breathing microfluidic microbial fuel cell and its validation. Int J Hydrogen Energy. 2021;46(71):35408–35419. doi: 10.1016/j.ijhydene.2021.08.102
  • Venkata Mohan S, Nikhil GN, Chiranjeevi P, et al. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol. 2016;215:2–12. doi: 10.1016/j.biortech.2016.03.130
  • Hessami MJ, Cheng SF, Ambati RR, et al. Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. Biotech [Internet] . 2019 [cited 2021 Sep 1];9:1–8. doi: 10.1007/s13205-018-1549-8.
  • Garcia Vaquero M, Rajauria G, Tiwari B, et al. Conventional extraction techniques: Solvent extraction. Sustainable Seaweed Technol: Cultivation, Biorefinery, and Applications. Advances in Green and Sustainable Chemistry. Elsevier; 2020. p. 171–189. doi: 10.1016/B978-0-12-817943-7.00006-8
  • Park EY, Park JK. Hydrochloric acid-catalyzed hydrothermal pretreatment of brown seaweed residues for enhancing biofuel production. BioResources. 2020;15(1):1629–1640. doi: 10.15376/biores.15.1.1629-1640
  • Ra CH, Nguyen TH, Jeong GT, et al. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour Technol. 2016;209:66–72. doi: 10.1016/j.biortech.2016.02.106
  • Thompson TM, Young BR, Baroutian S. Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process Technol. 2019;195:106151. doi: 10.1016/j.fuproc.2019.106151
  • Hebbale D, Ramachandra TV. Optimal sugar release from macroalgal feedstock with dilute acid pretreatment and enzymatic hydrolysis. Biomass Convers Biorefin. 2021;1:1–14.
  • Gu D, Wang K, Lu T, et al. Vibrio parahaemolyticus CadC regulates acid tolerance response to enhance bacterial motility and cytotoxicity. J Fish Dis. 2021;44(8):1155. doi: 10.1111/jfd.13376
  • Tamilarasan K, Banu JR, Kumar MD, et al. Influence of mild-ozone assisted disperser pretreatment on the enhanced biogas generation and biodegradability of green marine macroalgae. Front Energy Res. 2019;7:89. doi: 10.3389/fenrg.2019.00089
  • Cao L, IKM Y, Cho DW, et al. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol. 2019;273:251–258. doi: 10.1016/j.biortech.2018.11.013
  • Travaini R, Martín-Juárez J, Lorenzo-Hernando A, et al. Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol. 2016;199:2–12. doi: 10.1016/j.biortech.2015.08.143
  • Perrone OM, Rossi JS, de Souza Moretti MM, et al. Influence of ozonolysis time during sugarcane pretreatment: effects on the fiber and enzymatic saccharification. Bioresour Technol. 2017;224:733–737. doi: 10.1016/j.biortech.2016.11.043
  • Mulakhudair AR, Hanotu J, Zimmerman W. Exploiting ozonolysis-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment. Biomass Bioenergy. 2017;105:147–154. doi: 10.1016/j.biombioe.2017.06.018
  • Sulfahri MS, Langford A, Langford A, et al. Ozonolysis as an effective pretreatment strategy for bioethanol production from marine algae. Bioenerg Res [Internet]. 2020 [cited 2021 Nov 29];13(4):1269–1279. doi. 10.1007/s12155-020-10131-w
  • Alexandri M, Neu A-K, Schneider R, et al. Evaluation of various Bacillus coagulans isolates for the production of high purity L-lactic acid using defatted rice bran hydrolysates. Int J Food Sci Technol. 2019;54(4):1321–1329. doi: 10.1111/ijfs.14086
  • Wu Z-Z, Li D-Y, Cheng Y-S. Application of ensilage as a green approach for simultaneous preservation and pretreatment of macroalgae Ulva lactuca for fermentable sugar production. Clean Technol Environ Policy. 2018;20(9):2057–2065. doi: 10.1007/s10098-018-1574-7
  • Mis Solval K, Chouljenko A, Chotiko A, et al. Growth kinetics and lactic acid production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in media containing egg white hydrolysates. LWT. 2019;105:393–399. doi: 10.1016/j.lwt.2019.01.058
  • Iñiguez-Franco F, Auras R, Dolan K, et al. Chemical recycling of poly(lactic acid) by water-ethanol solutions. Polym Degrad Stab. 2018;149:28–38. doi: 10.1016/j.polymdegradstab.2018.01.016
  • Adhikari D, Mukai M, Kubota K, et al. Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. J Agric Chem Environ. 2016;5(01):23–34. doi: 10.4236/jacen.2016.51003
  • Tripathi N, Misra M, Mohanty AK. Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: recent developments, challenges, and opportunities. ACS Eng Au. 2021 [cited 2022 Jun 6];1(1):7–38. doi: 10.1021/acsengineeringau.1c00011
  • United Nations. COP26: Together for our planet | United Nations. Climate Action [Internet]. 2021 [cited 2023 May 24]; Available from: https://www.un.org/en/climatechange/cop26.
  • Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. Bioresour Bioprocess [Internet]. 2021 [cited 2022 Jul 13];8(1):1–13. doi: 10.1186/s40643-021-00365-7