1,990
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A data-driven machine learning approach for discovering potent LasR inhibitors

, , , , , & show all
Article: 2243416 | Received 10 Mar 2023, Accepted 28 Jul 2023, Published online: 08 Aug 2023

References

  • Langendonk RF, Neill DR, Fothergill JL. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies. Front Cell Infect Microbiol. 2021;11:665759. doi: 10.3389/fcimb.2021.665759
  • Hsu J. How COVID-19 is accelerating the threat of antimicrobial resistance. BMJ. 2020;369:m1983. doi: 10.1136/bmj.m1983
  • Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(9):1133–342. doi: 10.1099/jmm.0.009142-0
  • Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998;27(Suppl 1):S93–99. doi: 10.1086/514909
  • Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002;95(Suppl 41):22–26.
  • Ding F, Oinuma K-I, Smalley NE, et al. The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. MBio. 2018;9(4): doi: 10.1128/mBio.01274-18
  • Rasmussen TB, Givskov M. Quorum sensing inhibitors: a bargain of effects. Microbiol (Reading). 2006;152(4):895–904. doi: 10.1099/mic.0.28601-0
  • Pearson JP, Gray KM, Passador L, et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Nat Acad Sci. 1994;91(1):197–201. doi: 10.1073/pnas.91.1.197
  • Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin a expression. Infect Immun. 1993;61(4):1180–1184. doi: 10.1128/iai.61.4.1180-1184.1993
  • Elnegery AA, Mowafy WK, Zahra TA, et al. Study of quorum-sensing LasR and RhlR genes and their dependent virulence factors in Pseudomonas aeruginosa isolates from infected burn wounds. Access Microbiol. 2021;3(3):000211. doi: 10.1099/acmi.0.000211
  • Wang Y, Gao L, Rao X, et al. Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018;8(1):13344. doi: 10.1038/s41598-018-30813-y
  • Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, et al. Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain Pseudomonas aeruginosa ID4365, a natural mutant in lasR. FEMS Microbiol Lett. 2020;367(12). doi: 10.1093/femsle/fnaa092
  • Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol. 2011;37(2):121–140. doi: 10.3109/1040841X.2010.532479
  • Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol. 2009;12(2):182–191. doi: 10.1016/j.mib.2009.01.005
  • Kim K, Kim YU, Koh BH, et al. HHQ and PQS, two Pseudomonas aeruginosa quorum‐sensing molecules, down‐regulate the innate immune responses through the nuclear factor‐κB pathway. Immunology. 2010;129(4):578–588. doi: 10.1111/j.1365-2567.2009.03160.x
  • Müsken M, Di Fiore S, Dötsch A, et al. Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology. 2010;156(2):431–441. doi: 10.1099/mic.0.033290-0
  • Lesic B, Lépine F, Déziel E, et al. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLOS Pathogens. 2007;3(9):e126. doi: 10.1371/journal.ppat.0030126
  • Komor U, Bielecki P, Loessner H, et al. Biofilm formation by Pseudomonas aeruginosa in solid murine tumors–a novel model system. Microbes Infect. 2012;14(11):951–958. doi: 10.1016/j.micinf.2012.04.002
  • Rampioni G, Falcone M, Heeb S, et al. Unravelling the genome-wide contributions of specific 2-Alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLOS Pathogens. 2016;12(11):e1006029. doi: 10.1371/journal.ppat.1006029
  • O’Brien KT, Noto JG, Nichols-O’Neill L, et al. Potent irreversible inhibitors of LasR quorum sensing in Pseudomonas aeruginosa. ACS Med Chem Lett. 2015;6(2):162–167. doi: 10.1021/ml500459f
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 2010;9(2):117–128. doi: 10.1038/nrd3013
  • Bottomley MJ, Muraglia E, Bazzo R, et al. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem. 2007;282(18):13592–13600. doi: 10.1074/jbc.M700556200
  • Zou Y, Nair SK. Molecular basis for the recognition of structurally distinct autoinducer mimics by the Pseudomonas aeruginosa LasR quorum-sensing signaling receptor. Chem Biol. 2009;16(9):961–970. doi: 10.1016/j.chembiol.2009.09.001
  • Kiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol. 2002;184(17):4912–4919. doi: 10.1128/jb.184.17.4912-4919.2002
  • Schuster M, Urbanowski ML, Greenberg EP. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A. 2004;101(45):15833–15839. doi: 10.1073/pnas.0407229101
  • O’Reilly MC, Dong S-H, Rossi FM, et al. Structural and biochemical studies of non-native agonists of the LasR quorum-sensing receptor reveal an L3 loop “out” conformation for LasR. Cell Chem Biol. 2018;25(9):1128–1139.e1123. doi: 10.1016/j.chembiol.2018.06.007
  • Shah M, Taylor VL, Bona D, et al. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol Cell. 2021;81(3):571–583.e576. doi: 10.1016/j.molcel.2020.12.011
  • Paczkowski JE, McCready AR, Cong J-P, et al. An autoinducer analogue reveals an alternative mode of ligand binding for the LasR quorum-sensing receptor. ACS Chem Biol. 2019;14(3):378–389. doi: 10.1021/acschembio.8b00971
  • Gerdt JP, McInnis CE, Schell TL, et al. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by nonlactone ligands. Chem Biol. 2014;21(10):1361–1369. doi: 10.1016/j.chembiol.2014.08.008
  • Stacy DM, Le Quement ST, Hansen CL, et al. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem. 2013;11(6):938–954. doi: 10.1039/C2OB27155A
  • Srinivasarao S, Nandikolla A, Nizalapur S, et al. Design, synthesis and biological evaluation of 1,2,3-triazole based 2-aminobenzimidazoles as novel inhibitors of LasR dependent quorum sensing in Pseudomonas aeruginosa. RSC Adv. 2019;9(50):29273–29292. doi: 10.1039/C9RA05059K
  • Srinivasarao S, Nizalapur S, Yu TT, et al. Design, synthesis and biological evaluation of triazole-containing 2-phenylindole and salicylic acid as quorum sensing inhibitors against Pseudomonas aeruginosa. ChemistrySelect. 2018;3(32):9170–9180. doi: 10.1002/slct.201801622
  • Jiang Q, Chen J, Yang C, et al. Quorum sensing: A prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019;2019:2015978. doi: 10.1155/2019/2015978
  • Ozer EA, Pezzulo A, Shih DM, et al. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett. 2005;253(1):29–37. doi: 10.1016/j.femsle.2005.09.023
  • Yang F, Wang L-H, Wang J, et al. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 2005;579(17):3713–3717. doi: 10.1016/j.febslet.2005.05.060
  • Cady NC, McKean KA, Behnke J, et al. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. Plos One. 2012;7(6):e38492. doi: 10.1371/journal.pone.0038492
  • Bortolotti D, Trapella C, Bragonzi A, et al. Conjugation of LasR quorum-sensing inhibitors with ciprofloxacin decreases the antibiotic tolerance of P. aeruginosa clinical strains. J Chem. 2019;2019:1–13. DOI:10.1155/2019/8143739
  • Abbas H, Shaldam M, Eldamasi D. Curtailing quorum sensing in Pseudomonas aeruginosa by sitagliptin. Curr Microbiol. 2020;77(6):1051–1060. doi: 10.1007/s00284-020-01909-4
  • Hançer Aydemir D, Çifci G, Aviyente V, et al. Quorum-sensing inhibitor potential of trans-anethole against Pseudomonas aeruginosa. J Appl Microbiol. 2018;125(3):731–739. doi: 10.1111/jam.13892
  • Aldewachi H, Al-Zidan RN, Conner MT, et al. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases. Bioeng (Basel). 2021;8(2):30. doi: 10.3390/bioengineering8020030
  • Waring MJ, Arrowsmith J, Leach AR, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475–486. doi: 10.1038/nrd4609
  • OpenEye Scientific Software. OMEGA 4.1.2. 2021. Available from: https://docs.eyesopen.com/applications/omega/releasenotes/version4_1_2.html
  • Reymond J-L. The chemical space project. Acc Chem Res. 2015;48(3):722–730. doi: 10.1021/ar500432k
  • Yeung AWK, Atanasov AG, Sheridan H, et al. Open innovation in medical and pharmaceutical research: A literature landscape analysis. Front Pharmacol. 2021;11. doi: 10.3389/fphar.2020.587526
  • Erlanson DA, Fesik SW, Hubbard RE, et al. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov. 2016;15(9):605–619. doi: 10.1038/nrd.2016.109
  • Doak BC, Norton RS, Scanlon MJ. The ways and means of fragment-based drug design. Pharmacol Ther. 2016;167:28–37. doi:10.1016/j.pharmthera.2016.07.003
  • Rees S. The promise of open innovation in drug discovery: an industry perspective. Future Med Chem. 2015;7(14):1835–1838. doi: 10.4155/fmc.15.125
  • Keserű GM, Erlanson DA, Ferenczy GG, et al. Design principles for fragment libraries: maximizing the value of learnings from pharma Fragment-Based Drug Discovery (FBDD) programs for use inacademia. J Med Chem. 2016;59(18):8189–8206. doi: 10.1021/acs.jmedchem.6b00197
  • Vivona R, Demircioglu MA, Audretsch DB. The costs of collaborative innovation. J Technol Transf. 2022;48(3):873–899. doi: 10.1007/s10961-022-09933-1
  • Drăgulescu B, Bucos M. Hyperparameter Tuning Using Automated Methods to Improve Models for Predicting Student Success. In: Lopata A, Butkienė R, Gudonienė D, and Sukackė V, editors. Information and software technologies. Vol. 1283.; Springer Nature Switzerland AG: Springer International Publishing; 2020. p. 309–320.
  • Wu Z, Zhu M, Kang Y, et al. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Brief Bioinform. 2020;22(4): doi: 10.1093/bib/bbaa321
  • Zhao Y, Yin X, Fu Y, et al. A comparative mapping of plant species diversity using ensemble learning algorithms combined with high accuracy surface modelling. Environ Sci Pollut Res. 2022;29(12):17878–17891. doi: 10.1007/s11356-021-16973-x
  • Gerdt JP, Blackwell HE. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol. 2014;9(10):2291–2299. doi: 10.1021/cb5004288
  • Mellbye B, Schuster M. The sociomicrobiology of antivirulence drug resistance: a proof of concept. MBio. 2011;2(5):e00131–00111. doi: 10.1128/mBio.00131-11
  • Allen RC, Popat R, Diggle SP, et al. Targeting virulence: can we make evolution-proof drugs? Nature Rev Microbiol. 2014;12(4):300–308. doi: 10.1038/nrmicro3232
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3(9):541–548. doi: 10.1038/nchembio.2007.24
  • Hall M, Frank E, Holmes G, et al. The WEKA data mining software. ACM SIGKDD Explor Newsl. 2009;11(1):10–18. doi: 10.1145/1656274.1656278
  • Chauhan H, Kumar V, Pundir S, et al. Comparative analysis and research Issues in classification techniques for intrusion detection. Intelligent Computing, Networking, and Informatics. Springer. 2014;675–685. doi: 10.1007/978-81-322-1665-0_68
  • Enamine. Advanced Collection. 2021. Available from: https://enamine.net/compound-collections/screening-collection/advanced-collection
  • OpenEye Scientific Software. ROCS 3.4.3. 2021. Available from: https://docs.eyesopen.com/applications/rocs/releasenotes/version3_4_3.html
  • OpenEye Scientific Software. EON 2.3.6. 2021. Available from: https://docs.eyesopen.com/applications/eon/releasenotes/version2_3_6.html
  • The Brinkman Lab. Pseudomonas aeruginosa PA7, PSPA7_3898 (lasR). 2022. Available from: https://www.pseudomonas.com/feature/show/?id=1670586&view=sequence
  • The Brinkman Lab. Pseudomonas aeruginosa PAO1, PA1430 (lasR). 2022. Available from: https://www.pseudomonas.com/feature/show/?id=105628&view=sequence
  • The Brinkman Lab. Pseudomonas aeruginosa UCBPP-PA14, PA14_45960 (lasR). 2022. Available from: https://www.pseudomonas.com/feature/show/?id=1658248&view=sequence
  • The Brinkman Lab. Pseudomonas aeruginosa PAK, PAKAF_RS18560 (lasR). 2022. Available from: https://www.pseudomonas.com/feature/show/?id=237052075&view=sequence
  • Winsor GL, Griffiths EJ, Lo R, et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44(D1):D646–653. doi: 10.1093/nar/gkv1227
  • González-Medina M, Medina-Franco JL. Platform for Unified Molecular Analysis: PUMA. J Chem Inf Model. 2017;57(8):1735–1740. doi: 10.1021/acs.jcim.7b00253
  • Hughes J, Rees S, Kalindjian S, et al. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239–1249. doi: 10.1111/j.1476-5381.2010.01127.x
  • Hernando-Amado S, Alcalde-Rico M, Gil-Gil T, et al. Naringenin inhibition of the Pseudomonas aeruginosa quorum sensing response is based on its time-dependent competition with N-(3-Oxo-dodecanoyl)-L-homoserine lactone for LasR binding. Front Mol Biosci. 2020;7:25. DOI:10.3389/fmolb.2020.00025
  • Pearlman DA, Case DA, Caldwell JW, et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun. 1995;91(1–3):1–41. doi: 10.1016/0010-4655(95)00041-D
  • Miller BR, McGee TD, Swails JM, et al. Mmpbsa.Py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314–3321. doi: 10.1021/ct300418h
  • Kumari A, Mittal L, Srivastava M, et al. Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. J Biomol Struct Dynamics. 2021;40(19):1–19. doi: 10.1080/07391102.2021.1927844
  • Mittal L, Srivastava M, Kumari A, et al. Interplay among structural stability, plasticity, and energetics determined by conformational attuning of flexible loops in PD-1. J Chem Inf Model. 2021;61(1):358–384. doi: 10.1021/acs.jcim.0c01080
  • Singh M, Srivastava M, Wakode SR, et al. Elucidation of structural determinants delineates the residues playing key roles in differential dynamics and selective inhibition of Sirt1–3. J Chem Inf Model. 2021;61(3):1105–1124. doi: 10.1021/acs.jcim.0c01193
  • Jeni LA, Cohn JF, De La Torre F Facing imbalanced data recommendations for the use of performance metrics. International Conference on Computational Intell Interact Workshops 2013, 245–251, doi:10.1109/acii.2013.47.
  • Thabtah F, Hammoud S, Kamalov F, et al. Data imbalance in classification: experimental evaluation. Inf Sci. 2019;513:429–441. doi: 10.1016/j.ins.2019.11.004
  • Hakim Abdul Hamid M, Yusoff M, Mohamed A. Survey on highly imbalanced multi-class data. Int JAdv Comput Sci Appl (IJACSA). 2022;13(6). doi: 10.14569/IJACSA.2022.0130627
  • Qiao Z, Li L, Li S, et al. Molecular fingerprint and machine learning to accelerate design of high‐performance homochiral metal–organic frameworks. AIChE J. 2021;67(10):e17352. doi: 10.1002/aic.17352
  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36. doi: 10.1148/radiology.143.1.7063747
  • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA) - Protein Struct. 1975;405:442–451. doi: 10.1016/0005-2795(75)90109-9
  • Fourches D, Muratov E, Tropsha A. Curation of chemogenomics data. Nat Chem Biol. 2015;11(8):535–535. doi: 10.1038/nchembio.1881
  • Wong T, Yeh P. Reliable accuracy estimates from k-fold cross validation. IEEE Trans Knowledge Data Eng. 2020;32(8):1586–1594. doi: 10.1109/TKDE.2019.2912815
  • Afolabi LT, Saeed F, Hashim H, et al. Ensemble learning method for the prediction of new bioactive molecules. Plos One. 2018;13(1):e0189538. doi: 10.1371/journal.pone.0189538
  • Yu T-H, Su B-H, Battalora LC, et al. Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power. Brief Bioinform. 2021;23(1). doi: 10.1093/bib/bbab377
  • Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. doi: 10.3390/ijms24032026
  • Geroldinger A, Lusa L, Nold M, et al. Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study. Diagn Progn Res. 2023;7(1):9. doi: 10.1186/s41512-023-00146-0
  • Sadiq S, Rana NF, Zahid MA, et al. Virtual screening of FDA-approved drugs against LasR of Pseudomonas aeruginosa for antibiofilm potential. Molecules. 2020;25(16):3723. doi: 10.3390/molecules25163723
  • Vetrivel A, Ramasamy J, Natchimuthu S, et al. Combined machine learning and pharmacophore based virtual screening approaches to screen for antibiofilm inhibitors targeting LasR of Pseudomonas aeruginosa. J Biomol Struct Dynamics. 2022;41(9):1–19. doi: 10.1080/07391102.2022.2064331
  • Kalia M, Singh PK, Yadav VK, et al. Structure based virtual screening for identification of potential quorum sensing inhibitors against LasR master regulator in Pseudomonas aeruginosa. Microb Pathog. 2017;107:136–143. DOI:10.1016/j.micpath.2017.03.026
  • Yang L, Rybtke MT, Jakobsen TH, et al. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother. 2009;53(6):2432–2443. doi: 10.1128/AAC.01283-08
  • Zhong L, Ravichandran V, Zhang N, et al. Attenuation of Pseudomonas aeruginosa quorum sensing by natural products: Virtual screening, evaluation and biomolecular interactions. Int J Mol Sci. 2020;21(6):2190. doi: 10.3390/ijms21062190
  • Shukla A, Shukla G, Parmar P, et al. Exemplifying the next generation of antibiotic susceptibility intensifiers of phytochemicals by LasR-mediated quorum sensing inhibition. Sci Rep. 2021;11(1):22421. doi: 10.1038/s41598-021-01845-8
  • Vadakkan K, Hemapriya J, Anbarasu A, et al. Quorum quenching by 2-Hydroxyanisole extracted from Solanum torvum on Pseudomonas aeruginosa and its inhibitory action upon LasR protein. Gene Rep. 2020;21:100802. doi: 10.1016/j.genrep.2020.100802
  • Luo J, Dong B, Wang K, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. Plos One. 2017;12(4):e0176883. doi: 10.1371/journal.pone.0176883
  • Almalki AJ, Ibrahim TS, Elhady SS, et al. Computational and biological evaluation of β-adrenoreceptor blockers as promising bacterial anti-virulence agents. Pharmaceuticals (Basel). 2022;15(2):110. doi: 10.3390/ph15020110
  • Elfaky MA, Elbaramawi SS, Eissa AG, et al. Drug repositioning: doxazosin attenuates the virulence factors and biofilm formation in Gram-negative bacteria. Appl Microbiol Biotechnol. 2023;107(11):3763–3778. doi: 10.1007/s00253-023-12522-3
  • Kaur H, Pannu HS, Malhi AK. A systematic review on imbalanced data challenges in machine learning: Applications and solutions. ACM Comput Surveys. 2019;52(4):1–36. doi: 10.1145/3343440
  • Ganganwar V. An overview of classification algorithms for imbalanced datasets. Int J Emerging Technol Adv Eng. 2012;2:42–47.
  • Sapundzhi F, Prodanova K, Lazarova M Survey of the scoring functions for protein-ligand docking. AIP Conference Proceedings 2172, 100008, doi:10.1063/1.5133601 (2019).
  • Pascolutti M, Quinn RJ. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discovery Today. 2014;19:215–221. doi: 10.1016/j.drudis.2013.10.013
  • Teague SJ, Davis AM, Leeson PD, et al. The design of lead-like combinatorial libraries. Angew Chem Int Ed Engl. 1999;38:3743–3748. doi: 10.1002/(sici)1521-3773(19991216)38:24<3743:Aid-anie3743>3.0.Co;2-u
  • Magalhães RP, Vieira TF, Melo A, et al. Identification of novel candidates for inhibition of LasR, a quorum-sensing receptor of multidrug resistant Pseudomonas aeruginosa, through a specialized multi-level in silico approach. Mol Syst Des Eng. 2022;7(5):434–446. doi: 10.1039/D2ME00009A
  • Pereira LC, Fátima MAD, Santos VV, et al. Pharmacokinetic/Pharmacodynamic modeling and application in antibacterial and antifungal pharmacotherapy: A narrative review. Antibiotics. 2022;11(8):986. doi: 10.3390/antibiotics11080986
  • Grzegorzewski J, Brandhorst J, Green K, et al. PK-DB: pharmacokinetics database for individualized and stratified computational modeling. Nucleic Acids Res. 2021;49(D1):D1358–d1364. doi: 10.1093/nar/gkaa990