2,051
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae

, , , , & ORCID Icon
Article: 2244232 | Received 24 Apr 2023, Accepted 31 Jul 2023, Published online: 14 Aug 2023

References

  • Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Marine Drugs query. 2011;9(4):625–386. doi: 10.3390/md9040625
  • Mohamadnia S, Tavakoli O, Faramarzi MA, et al. Production of fucoxanthin by the microalga tisochrysis lutea: A review of recent developments. Aquaculture. 2020;516. doi: 10.1016/j.aquaculture.2019.734637
  • Chong JWR, Yew GY, Khoo KS, et al. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates. J Environ Manage. 2021;293:112782. doi: 10.1016/j.jenvman.2021.112782
  • Roy CJW, Tan X, Khoo KS, et al. Microalgae-based bioplastics: future solution towards mitigation of plastic wastes. Environ Res. 2021;206:112620. doi: 10.1016/j.envres.2021.112620
  • Suganya T, Varman M, Masjuki HH, et al. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable Sustainable Energy Rev. 2016;55:909–941. doi: 10.1016/j.rser.2015.11.026
  • Foo SC, Khoo KS, Ooi CW, et al. Meeting sustainable development goals: alternative extraction processes for fucoxanthin in algae. Front Bioeng Biotechnol. 2020;8:546067. doi: 10.3389/fbioe.2020.546067
  • Miyashita K, Hosokawa M. Carotenoids as a nutraceutical therapy for visceral obesity. in: nutrition in the prevention and treatment of abdominal obesity. 2014. pp. 329–340. 10.1016/B978-0-12-407869-7.00030-1
  • Andersen RA. Biology and systematics of heterokont and haptophyte algae. Am J Bot. 2004;91(10):1508–22. doi: 10.3732/ajb.91.10.1508
  • Beppu F, Niwano Y, Tsukui T, et al. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci query. 2009;34(5):501. doi: 10.2131/jts.34.501
  • Yan X, Chuda Y, Suzuki M, et al. Fucoxanthin as the major antioxidant in hijikia fusiformis, a common edible seaweed. Bioscience, Biotechnology, And Biochemistry query. 1999;63(3):605–607. doi: 10.1271/bbb.63.605
  • Ming JX, Wang ZC, Huang Y, et al. Fucoxanthin extracted from laminaria japonica inhibits metastasis and enhances the sensitivity of lung cancer to gefitinib. J Ethnopharmacol. 2021;265:113302. doi: 10.1016/j.jep.2020.113302
  • Heo S-J, Yoon W-J, Kim K-N, et al. Anti-inflammatory effect of fucoxanthin derivatives isolated from sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Chem Toxicol. 2012;50(9):3336–3342. doi: 10.1016/j.fct.2012.06.025
  • Raguraman V, L SA, DM, et al. Unraveling rapid extraction of fucoxanthin from padina tetrastromatica: purification, characterization and biomedical application. Process Biochem. 2018;73:211–219. doi: 10.1016/j.procbio.2018.08.006
  • Maeda H, Hosokawa M, Sashima T, et al. Fucoxanthin from edible seaweed, undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical And Biophysical Research Communications query. 2005;332(2):392–397. doi: 10.1016/j.bbrc.2005.05.002
  • Foo SC, Yusoff FM, Imam MU, et al. Increased fucoxanthin in chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. Biotechnol Report (Amst). 2019;21:e00296. doi: 10.1016/j.btre.2018.e00296
  • Siahaan EA, Chun BS. Innovative alternative technology for fucoxanthin recovery. In: Encyclopedia of Marine Biotechnology. 2020. pp. 3213–3227. 10.1002/9781119143802.ch143
  • Mena-García A, Ruiz-Matute AI, Soria AC, et al. Green techniques for extraction of bioactive carbohydrates. TrAC - Trends Anal Chem. 2019;119:115612. DOI:10.1016/j.trac.2019.07.023
  • Usman AG, S IS, Abba SI, et al. Artificial intelligence-based models for the qualitative and quantitative prediction of a phytochemical compound using HPLC method. Turk J Chem. 2020;44(5):1339–1351. doi: 10.3906/kim-2003-6
  • Tüzen M, Özdemir M. Chromatographic determination of phenolic acids in the snowdrop by HPLC. Turk J Chem. 2003;27:49–54.
  • Pocha CKR, Chia WY, Chew KW, et al. Current advances in recovery and biorefinery of fucoxanthin from phaeodactylum tricornutum. Algal Res. 2022;65:102735. doi: 10.1016/j.algal.2022.102735
  • Ibrahim AF. Prediction of coal wettability using machine learning for the application of CO2 sequestration. Int J Greenhouse Gas Control. 2022;118:103670. doi: 10.1016/j.ijggc.2022.103670
  • Ibrahim AF, Alarifi SA, Elkatatny S. Application of machine learning to predict estimated ultimate recovery for multistage hydraulically fractured wells in niobrara shale formation. Computer Intellgent Neuroscience. 2022; 2022. doi: 10.1155/2022/7084514.
  • Ibrahim AF, Gowida A, Ali A, et al. Machine learning application to predict in-situ stresses from logging data. Sci Rep. 2021;11(1):23445. doi: 10.1038/s41598-021-02959-9
  • Miyashita K, Nishikawa S, Beppu F, et al. The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. J Sci Food Agric query. 2011;91(7):1166–74. doi: 10.1002/jsfa.4353
  • Leong YK, Chen C-Y, Varjani S, et al. Producing fucoxanthin from algae–recent advances in cultivation strategies and downstream processing. Bioresour Technol. 2022;344:126170. DOI:10.1016/j.biortech.2021.126170
  • Tachihana S, Nagao N, Katayama T, et al. High productivity of eicosapentaenoic acid and fucoxanthin by a marine diatom chaetoceros gracilis in a semi-continuous culture. Front Bioeng Biotechnol. 2020;8(1435): doi: 10.3389/fbioe.2020.602721
  • Kim SM, Kang S-W, Kwon ON, et al. Fucoxanthin as a major carotenoid in isochrysis aff. galbana: characterization of extraction for commercial application. J Korean Society Applied Biology Chemical. 2012b;55(4):477–483. doi: 10.1007/s13765-012-2108-3
  • Bhattacharjya R, Kiran Marella T, Tiwari A, et al. Bioprospecting of marine diatoms thalassiosira, skeletonema and chaetoceros for lipids and other value-added products. Bioresour Technol. 2020;318:124073. doi: 10.1016/j.biortech.2020.124073
  • Foo SC, Yusoff FM, Ismail M, et al. Production of fucoxanthin-rich fraction (FxRF) from a diatom, chaetoceros calcitrans (paulsen) takano 1968. Algal Res. 2015a;12:26–32. doi: 10.1016/j.algal.2015.08.004
  • Xia S, Gao B, Fu J, et al. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by odontella aurita under different nitrogen supply regimes. J Biosci Bioeng. 2018;126(6):723–729. doi: 10.1016/j.jbiosc.2018.06.002
  • McClure DD, Luiz A, Gerber B, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae phaeodactylum tricornutum. Algal Res. 2018;29:41–48. doi: 10.1016/j.algal.2017.11.015
  • Li J, Liu Y, Liu Y, et al. Effects of temperature and salinity on the growth and biochemical composition of the brown alga sargassum fusiforme (fucales, phaeophyceae). J Appl Phycol. 2019;31(5):3061–3068. doi: 10.1007/s10811-019-01795-9
  • Wang Z-P, Wang P-K, Ma Y, et al. Laminaria japonica hydrolysate promotes fucoxanthin accumulation inphaeodactylum tricornutum. Bioresour Technol. 2022b;344:126117. doi: 10.1016/j.biortech.2021.126117
  • Seth K, Kumar A, Rastogi RP, et al. Bioprospecting of fucoxanthin from diatoms—challenges and perspectives. Algal Res. 2021;60:102475. DOI:10.1016/j.algal.2021.102475
  • Khaw YS, Yusoff FM, Tan HT, et al. The critical studies of fucoxanthin research trends from 1928 to june 2021: A bibliometric review. Mar Drugs. 2021;19(11):606. doi: 10.3390/md19110606
  • Maleki F, Muthukrishnan N, Ovens K, et al. Machine learning algorithm validation: from essentials to advanced applications and implications for regulatory certification and deployment. Neuroimaging Clinical N Am. 2020;30(4):433–445. doi: 10.1016/j.nic.2020.08.004
  • Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology. 2020;295(1):4–15. doi: 10.1148/radiol.2020192224
  • Jha K, Doshi A, Patel P, et al. A comprehensive review on automation in agriculture using artificial intelligence. Artifical Intellgent Agriculture. 2019;2:1–12. doi: 10.1016/j.aiia.2019.05.004
  • Sarkar S, Manna MS, Bhowmick TK, et al. Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated chlorella thermophila: optimization of process parameters and modelling by artificial neural network. Process Biochem. 2020;96:58–72. DOI:10.1016/j.procbio.2020.05.025
  • Pyo J, Hong SM, Jang J, et al. Drone-borne sensing of major and accessory pigments in algae using deep learning modeling. GIScience & Remote Sensing. 2022;59(1):310–332. doi: 10.1080/15481603.2022.2027120
  • Ramírez-Gallego S, Krawczyk B, García S, et al. A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing. 2017;239:39–57. DOI:10.1016/j.neucom.2017.01.078
  • Dwivedi SK, Rawat B 2015. A review paper on data preprocessing: A critical phase in web usage mining process. 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 8-10 Oct. 8-10. pp. 506–510.
  • Chong JWR, Khoo KS, Chew KW, et al. Trends in digital image processing of isolated microalgae by incorporating classification algorithm. Biotechnol Adv. 2023a;63:108095.
  • Douglass MJJ. Book review: hands-on machine learning with scikit-learn, keras, and tensorflow, 2nd edition by aurélien géron. Physics Engineering Science Medical. 2020;43(3):1135–1136. doi: 10.1007/s13246-020-00913-z
  • Chong JWR, Khoo KS, Chew KW, et al. Microalgae identification: future of image processing and digital algorithm. Bioresour Technol. 2023b;369:128418. doi: 10.1016/j.biortech.2022.128418
  • Pham BT, Nguyen MD, Dao DV, et al. Development of artificial intelligence models for the prediction of compression coefficient of soil: an application of monte carlo sensitivity analysis. Sci Total Environ. 2019;679:172–184. doi: 10.1016/j.scitotenv.2019.05.061
  • Haghbakhsh R, Hayer H, Saidi M, et al. Density estimation of pure carbon dioxide at supercritical region and estimation solubility of solid compounds in supercritical carbon dioxide: correlation approach based on sensitivity analysis. Fluid Ph Equilibria. 2013;342:31–41. doi: 10.1016/j.fluid.2012.12.029
  • Puy A, Lo Piano S, Saltelli A. A sensitivity analysis of the PAWN sensitivity index. Environ Model Softw. 2020;127:104679. doi: 10.1016/j.envsoft.2020.104679
  • Tang DYY, Chew KW, Ting H-Y, et al. Application of regression and artificial neural network analysis of Red-Green-Blue image components in prediction of chlorophyll content in microalgae. Application Of Regression And Artificial Neural Network Analysis Of Red-Green-Blue Image Components In Prediction Of Chlorophyll Content In Microalgae Bioresour Technologies. 2022;370:128503. doi: 10.1016/j.biortech.2022.128503
  • Teng SY, Yew GY, Sukačová K, et al. Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol Adv. 2020;44:107631. doi: 10.1016/j.biotechadv.2020.107631
  • Thakur A, Konde A. Fundamentals of neural networks. International Journal Research Applied Science Engineering Technologies. 2021;9(VIII):407–426. doi: 10.22214/ijraset.2021.37362
  • Sewsynker-Sukai Y, Faloye F, Kana EBG. Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnology & Biotechnological Equipment query. 2017;31(2):221–235. doi: 10.1080/13102818.2016.1269616
  • Elkiran G, Nourani V, Abba SI. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol. 2019;577:123962. doi: 10.1016/j.jhydrol.2019.123962
  • Otchere DA, Arbi Ganat TO, Gholami R, et al. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models. J Pet Sci Eng. 2021;200:108182. doi: 10.1016/j.petrol.2020.108182
  • Wang Z, Peng X, Xia A, et al. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresour Technol. 2022c;343:126099. doi: 10.1016/j.biortech.2021.126099
  • Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics. 1993;23:665–685.
  • Kushwaha OS, Uthayakumar H, Kumaresan K. Modeling of carbon dioxide fixation by microalgae using hybrid artificial intelligence (AI) and fuzzy logic (FL) methods and optimization by genetic algorithm (GA). Environ Sci Pollut Res. 2023;30(10):24927–24948. doi: 10.1007/s11356-022-19683-0
  • Kunjuraman S, Velusamy B. Performance evaluation of shell and tube heat exchanger through ANN and ANFIS model for dye recovery from textile effluents. Energy Sources A. 2021;43(13):1600–1619. doi: 10.1080/15567036.2020.1832627
  • Hertel L, Collado J, Sadowski P, et al. Sherpa:robust hyperparameter optimization for machine learning. SoftwareX. 2020;12. doi: 10.1016/j.softx.2020.100591
  • Lopes BT, Eliasy A, Ambrosio R. Artificial intelligence in corneal diagnosis: where are we? Current Ophthalmol Reports. 2019;7(3):204–211. doi: 10.1007/s40135-019-00218-9
  • Shouval R, Fein JA, Savani B, et al. Machine learning and artificial intelligence in haematology. Br J Haematol. 2021;192(2):239–250. doi: 10.1111/bjh.16915
  • Chu G, Liang R, Wan C, et al. Ultrasonic-assisted extraction of flavonoids from juglans mandshurica maxim.: artificial intelligence-based optimization, kinetics estimation, and antioxidant potential. Molecules. 2022;27(15):4837. doi: 10.3390/molecules27154837
  • Samli R, Aydin ZBG, Şahin S. Computer modelling of the enrichment process of sunflower and corn oils with olive leaves through ultrasound treatment. Biomass Convers Biorefin. 2022;12(12):5571–5581. doi: 10.1007/s13399-020-00974-w
  • Rakshit M, Srivastav P. Optimization of pulsed ultrasonic‐assisted extraction of punicalagin from pomegranate (punica granatum) peel: A comparison between response surface methodology and artificial neural network‐multiobjective genetic algorithm. J Food Process Preserv. 2021;45(1):e15078. doi: 10.1111/jfpp.15078
  • Patra A, Abdullah S, Pradhan RC. Optimization of ultrasound-assisted extraction of ascorbic acid, protein and total antioxidants from cashew apple bagasse using artificial neural network-genetic algorithm and response surface methodology. J Food Process Preserv. 2022;46(3):e16317. doi: 10.1111/jfpp.16317
  • Yıkmış S, Altıner DD, Ozer H, et al. Modeling and optimization of bioactive compounds from jujube (ziziphus jujuba mill.) vinegar using response surface methodology and artificial neural network: comparison of ultrasound processing and thermal pasteurization. J Food Process Preserv. 2022;46(11):e17102. doi: 10.1111/jfpp.17102
  • Victor P, Camarena-Bernard C. Lutein, violaxanthin, and zeaxanthin spectrophotometric quantification: A machine learning approach. J Appl Phycol. 2023;35(1):73–84. doi: 10.1007/s10811-022-02855-3
  • de Carvalho TCL, Nunes CA. Smartphone-based method for the determination of chlorophyll and carotenoid contents in olive and avocado oils: an approach with calibration transfer. J Food Compos Anal. 2021;104:104164. doi: 10.1016/j.jfca.2021.104164
  • Wang X, Zhang X, Hong H, et al. Non-destructive quantitative analysis of carotene content in carrots using raman spectroscopy. European Food Res And Tech. 2021b;247(9):2299–2307. doi: 10.1007/s00217-021-03788-w
  • Asnake Metekia W, Garba Usman A, Hatice Ulusoy B, et al. Artificial intelligence-based approaches for modeling the effects of spirulina growth mediums on total phenolic compounds. Saudi J Biol Sci. 2022;29(2):1111–1117. doi: 10.1016/j.sjbs.2021.09.055
  • Witek-Krowiak A, Chojnacka K, Podstawczyk D, et al. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol. 2014;160:150–160. doi: 10.1016/j.biortech.2014.01.021
  • Tao Y, Wu D, Zhang Q-A, et al. Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage. Ultrason Sonochem. 2014;21(2):706–715. doi: 10.1016/j.ultsonch.2013.09.005
  • Shishodia A, Kumar K, Manna MS. Modeling for the efficient separation of bio-active catechins from green tea leaves. sep. Sci Technol. 2017;52(4):671–678. doi: 10.1080/01496395.2016.1252777
  • Priyadarshani I, Rath B. Commercial and industrial applications of micro algae–A review. Journal Of Algal Biomass Utilization. 2012;3(4):89–100.
  • Wang S, Wu S, Yang G, et al. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol Adv. 2021a;53:107865. doi: 10.1016/j.biotechadv.2021.107865
  • Weremfo A, Abassah‐Oppong S, Adulley F, et al. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. J Sci Food Agric. 2023;103(1):26–36. doi: 10.1002/jsfa.12121
  • Shannon E, Abu-Ghannam N. Optimisation of fucoxanthin extraction from irish seaweeds by response surface methodology. J Appl Phycol. 2017;29(2):1027–1036. doi: 10.1007/s10811-016-0983-4
  • Shannon E, Abu-Ghannam N. Enzymatic extraction of fucoxanthin from brown seaweeds. International Journal Food Science Technologies. 2018;53(9):2195–2204. doi: 10.1111/ijfs.13808
  • Carreira-Casais A, Cassani L, Soria-López A, et al. Green extraction of fucoxanthin with promising nutraceutical applications. Biology And Life Sciences Forum. 2022;12(1):34.
  • Nie J, Chen D, Ye J, et al. Optimization and kinetic modeling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae sargassum fusiforme using green solvents. Ultrason Sonochem. 2021;77:105671. doi: 10.1016/j.ultsonch.2021.105671
  • Cikoš A-M, Aladić K, Velić D, et al. Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. Chem Papers. 2023;77(3):1545–1559. doi: 10.1007/s11696-022-02524-2
  • Okwu MO, Samuel OD, Ewim DRE, et al. Estimation of biogas yields produced from combination of waste by implementing response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). IntJ Energy Environ Eng. 2021;12(2):353–363. doi: 10.1007/s40095-021-00381-5
  • Boateng ID, Kuehnel L, Daubert CR, et al. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct. 2023;14(2):569–601. doi: 10.1039/D2FO02520E
  • Ousaadi MI, Merouane F, Berkani M, et al. Valorization and optimization of agro-industrial orange waste for the production of enzyme by halophilic streptomyces sp. Environ Res. 2021;201:111494. doi: 10.1016/j.envres.2021.111494
  • Alshammari F, Badrul Alam M, Naznin M, et al. Optimization of Portulaca oleracea L. extract using response surface methodology and artificial neural network and characterization of bioactive compound by high-resolution mass spectroscopy. Arab J Chem. 2023;16(2):104425. doi: 10.1016/j.arabjc.2022.104425
  • Hamdia KM, Zhuang X, Rabczuk T. An efficient optimization approach for designing machine learning models based on genetic algorithm. Neural Comput Appl. 2021;33(6):1923–1933. doi: 10.1007/s00521-020-05035-x
  • Shekhar S, Prakash P, Singha P, et al. Modeling And Optimization Of Ultrasound-Assisted Extraction Of Bioactive Compounds From Allium Sativum Leaves Using Response Surface Methodology And Artificial Neural Network Coupled With Genetic Algorithm Foods. 2023;12(9):1925. doi: 10.3390/foods12091925
  • Zhang Q, Wang C 2008. Using genetic algorithm to optimize artificial neural network: a case study on earthquake prediction. 2008 Second International Conference on Genetic and Evolutionary Computing, Jinzhou, China, 25-26 Sept. 2008. pp. 128–131.
  • Loganathan C, Girija K. Hybrid learning for adaptive neuro fuzzy inference system. Int J Eng Sci. 2013;2(11):6–13.
  • Baskararaj S, Theivendren P, Palanisamy P, et al. Optimization of bioactive compounds extraction assisted by microwave parameters from kappaphycus alvarezii using RSM and ANFIS modeling. J Food Meas Charact. 2019;13(4):2773–2789. doi: 10.1007/s11694-019-00198-1
  • Joshi C, Singhal RS. Modelling and optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques. Biocatal Agric Biotechnol. 2016;8:228–235. doi: 10.1016/j.bcab.2016.10.004
  • Aung T, Kim S-J, Eun J-B. A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (porphyra dentata) extract. Food Chem. 2022;366:130689. doi: 10.1016/j.foodchem.2021.130689
  • Kumar V, Sharma HK. Process optimization for extraction of bioactive compounds from taro (colocasia esculenta), using RSM and ANFIS modeling. J Food Meas Charact. 2017;11(2):704–718. doi: 10.1007/s11694-016-9440-y
  • Ho Thanh Lam L, Le NH, Van Tuan L, et al. Machine learning model for identifying antioxidant proteins using features calculated from primary sequences. Biology (Basel). 2020;9(10):325. doi: 10.3390/biology9100325
  • Solovchenko A. Seeing good and bad: optical sensing of microalgal culture condition. Algal Res. 2023;71:103071. doi: 10.1016/j.algal.2023.103071
  • Yew GY, Puah BK, Chew KW, et al. Chlorella vulgaris FSP-E cultivation in waste molasses: photo-to-property estimation by artificial intelligence. Chem Eng J. 2020;402:126230. doi: 10.1016/j.cej.2020.126230
  • Yang Y, Tong H, Yang L, et al. Application of near-infrared spectroscopy and chemometrics for the rapid quality assessment of sargassum fusiforme. Postharvest Biol Technol. 2021;173:111431. doi: 10.1016/j.postharvbio.2020.111431
  • Moresco R, Afonso T, Uarrota VG, et al. Classification Tools for carotenoid content estimation in manihot esculenta via metabolomics and machine learning. Cham: Springer International Publishing; 2017. pp. 280–288. doi: 10.1007/978-3-319-60816-7_34
  • Ranade NV, Nagarajan S, Sarvothaman V, et al. ANN based modelling of hydrodynamic cavitation processes: biomass pre-treatment and wastewater treatment. Ultrason Sonochem. 2021;72:105428. doi: 10.1016/j.ultsonch.2020.105428
  • Amini G, Salehi F, Rasouli M. Drying kinetics of basil seed mucilage in an infrared dryer: application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. J Food Process Preserv. 2021;45(3):e15258. doi: 10.1111/jfpp.15258
  • Rácz A, Bajusz D, Héberger K. Chemometrics in analytical chemistry. In: Applied Chemoinformatics. 2018. pp. 471–499. 10.1002/9783527806539.ch9
  • de Carvalho RRB, Marmolejo Cortes DF, Bandeira e Sousa M, et al. Image-based phenotyping of cassava roots for diversity studies and carotenoids prediction. Plos One. 2022;17(1):e0263326. doi: 10.1371/journal.pone.0263326
  • Taghadomi-Saberi S, Masoumi AA, Sadeghi M, et al. Integration of wavelet network and image processing for determination of total pigments in bitter orange (Citrus aurantium L.) peel during ripening. J Food Proc Eng. 2019;42(5):e13120. doi: 10.1111/jfpe.13120
  • Lamberti MJ, Wilkinson M, Donzanti BA, et al. A study on the application and use of artificial intelligence to support drug development. Clin Ther. 2019;41(8):1414–1426. doi: 10.1016/j.clinthera.2019.05.018
  • Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. doi: 10.1016/j.drudis.2020.10.010
  • Simm J, Klambauer G, Arany A, et al. Repurposing high-throughput image assays enables biological activity prediction for drug discovery. Cell Chem Biol. 2018;25(5):611–618.e3. doi: 10.1016/j.chembiol.2018.01.015
  • Guan J. Artificial intelligence in healthcare and medicine: promises, ethical challenges and governance. Chin Med J. 2019;34(2):76–83. doi: 10.24920/003611
  • Kalyane D, Sanap G, Paul D, et al. Artificial intelligence in the pharmaceutical sector: current scene and future prospect. In: The future of pharmaceutical product development and research. 2020. pp. 73–107. 10.1016/B978-0-12-814455-8.00003-7
  • Narayanan H, Dingfelder F, Butté A, et al. Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol Sci. 2021;42(3):151–165. doi: 10.1016/j.tips.2020.12.004
  • Holzinger A, Keiblinger K, Holub P, et al. AI for life: trends in artificial intelligence for biotechnology. N Biotechnol. 2023;74:16–24. doi: 10.1016/j.nbt.2023.02.001
  • Goswami RK, Agrawal K, Upadhyaya HM, et al. Microalgae conversion to alternative energy, operating environment and economic footprint: an influential approach towards energy conversion, and management. Energy Convers Manag. 2022;269:116118. doi: 10.1016/j.enconman.2022.116118
  • Wang K, Khoo KS, Leong HY, et al. How does the internet of things (IoT) help in microalgae biorefinery? Biotechnol Adv. 2022a;54:107819. doi: 10.1016/j.biotechadv.2021.107819
  • Oruganti RK, Biji AP, Lanuyanger T, et al. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Sci Total Environ. 2023;876:162797. doi: 10.1016/j.scitotenv.2023.162797
  • Zhang W, Li J, Liu T, et al. Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Bioresour Technol. 2021;342:126011. DOI:10.1016/j.biortech.2021.126011
  • Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J. 2021;174:108129. doi: 10.1016/j.bej.2021.108129
  • Horng S-C, Lin S-S. Improved beluga whale optimization for solving the simulation optimization problems with stochastic constraints. Mathematics. 2023;11(8):1854. doi: 10.3390/math11081854
  • Nayak J, Vakula K, Dinesh P, et al. Intelligent food processing: journey from artificial neural network to deep learning. Comput Sci Rev. 2020;38:100297. doi: 10.1016/j.cosrev.2020.100297
  • Kirillov A, Mintun E, Ravi N, et al. 2023. Segment anything. arXiv preprint arXiv:2304.02643