1,388
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design, optimization, production and activity testing of recombinant immunotoxins expressed in plants and plant cells for the treatment of monocytic leukemia

ORCID Icon, , & ORCID Icon
Article: 2244235 | Received 29 Nov 2022, Accepted 16 Jun 2023, Published online: 20 Aug 2023

References

  • Itzykson R, Fenaux P, Bowen D, et al. Diagnosis and treatment of chronic myelomonocytic leukemias in adults: recommendations from the European hematology association and the European LeukemiaNet. Hemasphere. 2018;2(6):e150–432. doi: 10.1097/HS9.0000000000000150
  • Bennett JM. Chronic myelomonocytic leukemia. Curr Treat Options Oncol. 2002;3(3):221–223. doi: 10.1007/s11864-002-0011-6
  • Liapis K, Kotsianidis I. Approaching first-line treatment in patients with advanced CMML: hypomethylating agents or cytotoxic treatment? Front Oncol. 2021;11:11. doi: 10.3389/fonc.2021.801524
  • Allahyari H, Heidari S, Ghamgosha M, et al. Immunotoxin: A new tool for cancer therapy. Tumour Biol. 2017;39(2):392. doi: 10.1177/1010428317692226
  • Yong SB, Chung JY, Kim SS, et al. CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells. Biomaterials. 2020;230:119651. doi: 10.1016/j.biomaterials.2019.119651
  • Anderson CL. Isolation of the receptor for IgG from a human monocyte cell line (U937) and from human peripheral blood monocytes. J Exp Med. 1982;156(6):1794–1806. doi: 10.1084/jem.156.6.1794
  • Liu M, Weng X, Gong S, et al. Flow cytometric analysis of CD64 expression pattern and density in the diagnosis of acute promyelocytic leukemia: a multi-center study in Shanghai, China. Oncotarget. 2017;8(46):80625–80637. doi: 10.18632/oncotarget.20814
  • Tur MK, Huhn M, Jost E, et al. In vivo efficacy of the recombinant anti-CD64 immunotoxin H22(scFv)-ETA′ in a human acute myeloid leukemia xenograft tumor model. Int J Cancer. 2011;129(5):1277–1282. doi: 10.1002/ijc.25766
  • Izumi Y, Kanayama M, Shen Z, et al. An antibody-drug conjugate that selectively targets human monocyte progenitors for anti-cancer therapy. Front Immunol. 2021;12:618081–618081. doi: 10.3389/fimmu.2021.618081
  • Gresch G, Schenke L, Mladenov R, et al. Elimination of different leukaemia subtypes using novel CD89-specific human cytolytic fusion proteins. Br J Haematol. 2018;183(2):313–317. doi: 10.1111/bjh.14971
  • Mladenov R, Hristodorov D, Cremer C, et al. The Fc-alpha receptor is a new target antigen for immunotherapy of myeloid leukemia. Int J Cancer. 2015;137(11):2729–2738. doi: 10.1002/ijc.29628
  • Kaplon H, Chenoweth A, Crescioli S, et al. Antibodies to watch in 2022. MAbs. 2022;14(1):2014296. doi: 10.1080/19420862.2021.2014296
  • Walsh G. Biopharmaceutical benchmarks 2018. Nature Biotechnol. 2018;36(12):1136. doi: 10.1038/nbt.4305
  • Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv. 2021;47:107683. doi: 10.1016/j.biotechadv.2020.107683
  • Salehinia J, Sadeghi HM, Abedi D, et al. Improvement of solubility and refolding of an anti-human epidermal growth factor receptor 2 single-chain antibody fragment inclusion bodies. Res Pharma Sci. 2018;13(6):566–574. doi: 10.4103/1735-5362.245968
  • Tran M, Van C, Barrera DJ, et al. Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci, USA. 2013;110(1):E15–22. doi: 10.1073/pnas.1214638110
  • Francisco JA, Gawlak SL, Miller M, et al. Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjugate Chem. 1997;8(5):708–713. doi: 10.1021/bc970107k
  • Castilho A, Windwarder M, Gattinger P, et al. Proteolytic and N-glycan processing of human α1-antitrypsin expressed in Nicotiana benthamiana. Plant Physiol. 2014;166(4):1839–1851. doi: 10.1104/pp.114.250720
  • Ma JK-C, Drossard J, Lewis D, et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J. 2015;13(8):1106–1120. doi: 10.1111/pbi.12416
  • Rup B, Alon S, Amit-Cohen B-C, et al. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems—The taliglucerase alfa story. Public Libr Sci One. 2017;12(10):e0186211–e0186211. doi: 10.1371/journal.pone.0186211
  • Jansing J, Sack M, Augustine SM, et al. Crispr/cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol J. 2019;17(2):350–361. doi: 10.1111/pbi.12981
  • Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv. 2018;36(2):506–520. doi: 10.1016/j.biotechadv.2018.02.002
  • Shoji Y, Farrance CE, Yusibov V. A plant‐based system for rapid production of influenza vaccine antigens. Influenza Other Resp Viruses. 2012;6(3):204–210. doi: 10.1111/j.1750-2659.2011.00295.x
  • Buyel JF, Twyman R, Fischer R. Very-large-scale production of antibodies in plants: The biologization of manufacturing. Biotechnol Adv. 2017;35(4):458–465. doi: 10.1016/j.biotechadv.2017.03.011
  • Commandeur U, Twyman RM. Biosafety aspects of molecular farming in plants. Mol Farming. 2004;251–266. doi: 10.1002/3527603638.ch16
  • Buyel JF. Plant molecular farming - integration and exploitation of side streams to achieve sustainable biomanufacturing. Front Plant Sci. 2019;9:1893–1893. doi: 10.3389/fpls.2018.01893
  • Charland N, Gobeil P, Pillet S, et al. Safety and immunogenicity of an AS03-adjuvanted plant-based SARS-CoV-2 vaccine in adults with and without comorbidities. npj vaccines. NPJ Vaccines. 2022;7(1):142. doi: 10.1038/s41541-022-00561-2
  • Gengenbach BB, Opdensteinen P, Buyel JF. Robot cookies – plant cell packs as an automated high-throughput screening platform based on transient expression. Front Bioeng Biotechnol. 2020;8:8(393. doi: 10.3389/fbioe.2020.00393
  • Premsukh A, Lavoie JM, Cizeau J, et al. Development of a GMP Phase III purification process for VB4-845, an immunotoxin expressed in E. coli using high cell density fermentation. Protein Expr Purif. 2011;78(1):27–37. doi: 10.1016/j.pep.2011.03.009
  • Knödler M. Development and plant-based expression of recombinant immunotoxins for the targeted treatment of myelomonocytic leukemia. Aachen, Germany: RWTH Aachen University: Veröffentlicht auf dem Publikationsserver der RWTH Aachen University; 2023. p. 155.
  • Knödler M, Reunious PW, Buyel JF. Risk assessment and bioburden evaluation of Agrobacterium tumefaciens-mediated transient protein expression in plants using the CaMV35S promoter. BMC Biotechnol. 2023;23(1):14. doi: 10.1186/s12896-023-00782-w
  • Buyel FJ, Kaever T, Buyel J, et al. Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5′UTR combination. Biotechnol Bioeng. 2013;110(2):471–483. doi: 10.1002/bit.24715
  • Knödler M, Opdensteinen P, Sankaranarayanan RA, et al. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng. 2023;120(4):1038–1054. doi: 10.1002/bit.28312
  • Knödler M, Rühl C, Emonts J, et al. Seasonal weather changes affect the yield and quality of recombinant proteins produced in transgenic tobacco plants in a greenhouse setting. Front Plant Sci. 2019;10(1245). doi: 10.3389/fpls.2019.01245
  • Knödler M, Rühl C, Opdensteinen P, et al. Activated cross-linked agarose for the rapid development of affinity chromatography resins - antibody capture as a case study. J Visualized Exp. 2019;(150):e59933. doi: 10.3791/59933-v
  • Leuzinger K, Dent M, Hurtado J, et al. Efficient Agroinfiltration of plants for high-level transient expression of recombinant proteins. J Visualized Exp. 2013;2013(77):e50521. doi: 10.3791/50521-v
  • Buyel JF, Gruchow M, Fischer R. Depth filters containing diatomite achieve more efficient particle retention than filters solely containing cellulose fibers. Front Plant Sci. 2015;6(1134). doi: 10.3389/fpls.2015.01134
  • Opdensteinen P, Meyer S, Buyel JF. Nicotiana spp. for the expression and purification of functional IgG3 antibodies directed against the Staphylococcus aureus alpha toxin. Front Chem Eng. 2021;3(50). doi: 10.3389/fceng.2021.737010
  • Buyel JF, Fischer R. Characterization of complex systems using the design of experiments approach: transient protein expression in tobacco as a case study. J Visualized Exp. 2014;2014(83):51216. doi: 10.3791/51216
  • Gengenbach BB, Keil LL, Opdensteinen P, et al. Comparison of microbial and transient expression (tobacco plants and plant-cell packs) for the production and purification of the anticancer mistletoe lectin viscumin. Biotechnol Bioeng. 2019;116(9):2236–2249. doi: 10.1002/bit.27076
  • Marshall RS, D’Avila F, Di Cola A, et al. Signal peptide-regulated toxicity of a plant ribosome-inactivating protein during cell stress. Plant J. 2011;65(2):218–229. doi: 10.1111/j.1365-313X.2010.04413.x
  • Brunelle JL, Green R. Chapter thirteen - coomassie blue staining. In: Lorsch J, editor. Methods in enzymology. Academic Press; 2014. pp. 161–167. doi: 10.1016/B978-0-12-420119-4.00013-6
  • Song J, Tan H, Perry AJ, et al. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One. 2012;7(11):e50300. doi: 10.1371/journal.pone.0050300
  • Niemer M, Mehofer U, Verdianz M, et al. Nicotiana benthamiana cathepsin B displays distinct enzymatic features which differ from its human relative and aleurain-like protease. Biochimie. 2016;122:119–125. doi: 10.1016/j.biochi.2015.06.017
  • Mohammed AF, Abdul-Wahid A, Huang EH-B, et al. The Pseudomonas aeruginosa exotoxin a translocation domain facilitates the routing of CPP–protein cargos to the cytosol of eukaryotic cells. JControlled Release. 2012;164(1):58–64. doi: 10.1016/j.jconrel.2012.10.006
  • Opdensteinen P, Dietz SJ, Gengenbach BB, et al. Expression of biofilm-degrading enzymes in plants and automated high-throughput activity screening using experimental Bacillus subtilis biofilms. Front Bioeng Biotechnol. 2021;9(714). doi: 10.3389/fbioe.2021.708150
  • Jiemy WF, Hiew LF, Sha HX, et al. Evaluation of Hydra HALT-1 as a toxin moiety for recombinant immunotoxin. Biomed Central Biotechnol. 2020;20(1):31–31. doi: 10.1186/s12896-020-00628-9
  • Antignani A, Fitzgerald D. Immunotoxins: the role of the toxin. Toxins (Basel). 2013;5(8):1486–1502. doi: 10.3390/toxins5081486
  • Foran JM. Targeted therapy of acute myeloid leukemia in 2012: towards individualized therapy. Hematology. 2012;17 Suppl 1(sup1):S137–40. doi: 10.1179/102453312X13336169156456
  • Rademacher T, Sack M, Blessing D, et al. Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnol J. 2019;17:1–7.
  • Stirpe F, Barbieri L, Battelli MG, et al. Ribosome–inactivating proteins from plants: Present status and future prospects. Bio/Technology. 1992;10(4):405–412. doi: 10.1038/nbt0492-405
  • Glockshuber R, Schmidt T, Plückthun A. The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry. 1992;31(5):1270–1279. doi: 10.1021/bi00120a002
  • Gąciarz A, Ruddock LW, Riggs PD. Complementarity determining regions and frameworks contribute to the disulfide bond independent folding of intrinsically stable scFv. PLoS One. 2017;12(12):e0189964. doi: 10.1371/journal.pone.0189964
  • Wörn A, Plückthun A. An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. Fed Eur Biochem Soc Lett. 1998;427(3):357–361. doi: 10.1016/S0014-5793(98)00463-3
  • Jackson MA, Nutt KA, Hassall R, et al. Comparative efficiency of subcellular targeting signals for expression of a toxic protein in sugarcane. Funct Plant Biol. 2010;37(8):785–793. doi: 10.1071/FP09243
  • De Muynck B, Navarre C, Boutry M. Production of antibodies in plants: status after twenty years. Plant Biotechnol J. 2010;8(5):529–563. doi: 10.1111/j.1467-7652.2009.00494.x
  • Vanyushin BF, Bakeeva LE, Zamyatnina VA, et al. Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. Int Rev Cytol. 2004;233:135–179. doi: 10.1016/S0074-7696(04)33004-4
  • Dunphy CH, Tang W. The value of CD64 expression in distinguishing acute myeloid leukemia with monocytic differentiation from other subtypes of acute myeloid leukemia: a flow cytometric analysis of 64 cases. Arch Pathol Lab Med. 2007;131(5):748–754. doi: 10.5858/2007-131-748-TVOCEI
  • Buyel JF, Twyman RM, Fischer R. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv. 2015;33(6):902–913. doi: 10.1016/j.biotechadv.2015.04.010
  • Buyel JF. Strategies for efficient and sustainable protein extraction and purification from plant tissues. Methods Mol Biol. 2022;2480:127–145.
  • Buyel JF, Fischer R. Scale-down models to optimize a filter train for the downstream purification of recombinant pharmaceutical proteins produced in tobacco leaves. Biotechnol J. 2014;9(3):415–425. doi: 10.1002/biot.201300369
  • Rühl C, Knödler M, Opdensteinen P, et al. A linear epitope coupled to DsRed provides an affinity ligand for the capture of monoclonal antibodies. J Chromatogr A. 2018;1571:55–64. doi: 10.1016/j.chroma.2018.08.014
  • Khanal O, Singh N, Traylor SJ, et al. Contributions of depth filter components to protein adsorption in bioprocessing. Biotechnol Bioeng. 2018;115(8):1938–1948. doi: 10.1002/bit.26707
  • Wang Y, Wang Y, Wang Y. Apoplastic proteases: Powerful weapons against pathogen infection in plants. Plant Commun. 2020;1(4):100085. doi: 10.1016/j.xplc.2020.100085
  • Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, et al. Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol. 2016;39(3):329–338. doi: 10.1590/1678-4685-GMB-2016-0015
  • Menzel S, Holland T, Boes A, et al. Optimized blanching reduces the host cell protein content and substantially enhances the recovery and stability of two plant-derived malaria vaccine candidates. Front Plant Sci. 2016;7(159):1–7. doi: 10.3389/fpls.2016.00159
  • Hehle VK, Paul MJ, Drake PM, et al. Antibody degradation in tobacco plants: a predominantly apoplastic process. BioMed Central Biotechnol. 2011;11(1):128. doi: 10.1186/1472-6750-11-128
  • Donini M, DiMicco P, Lonoce C. Antibody proteolysis: a common picture emerging from plants. Bioengineered. 2015;6(5):299–302. doi: 10.1080/21655979.2015.1067740
  • Kar M, Mishra D. Protease activity during rice leaf senescence. Biol Plant. 1977;19(5):365–369. doi: 10.1007/BF02922733
  • Banik S, Biswas S, Karmakar S. Extraction, purification, and activity of protease from the leaves of Moringa oleifera [version 1; peer review: 2 approved, 1 approved with reservations]. F1000Res. 2018;7(1151). doi: 10.12688/f1000research.15642.1
  • Privalov PL. Cold denaturation of protein. Crit Rev Biochem Mol Biol. 1990;25(4):281–306. doi: 10.3109/10409239009090612
  • O’Fágáin C. Storage and lyophilisation of pure proteins. Methods Mol Biol. 2011;681:179–202.
  • Committee for Medicinal Products for Human Use (CHMP); Assessment report, BLENREP, International non-proprietary name: belantamab mafodotin, Procedure No. EMEA/H/C/004935/0000. European Medicines Agency, 23 July 2020.
  • Capen R, Christopher D, Forenzo P, et al. Evaluating current practices in shelf life estimation. J Am Assoc Pharm Sci. 2018;19(2):668–680. doi: 10.1208/s12249-017-0880-4
  • Hristodorov D, Mladenov R, Pardo A, et al. Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br J Cancer. 2013;109(6):1570–1578. doi: 10.1038/bjc.2013.457
  • Mladenov R, Hristodorov D, Cremer C, et al. CD64-directed microtubule associated protein tau kills leukemic blasts ex vivo. Oncotarget. 2016;7(41):67166–67174. DOI:10.18632/oncotarget.11568
  • Chiang Z-C, Chiu Y-K, Lee C-C, et al. Preparation and characterization of antibody-drug conjugates acting on HER2-positive cancer cells. PLoS One. 2020;15(9):e0239813. doi: 10.1371/journal.pone.0239813
  • Kim HY, Stojadinovic A, Izadjoo MJ. Affinity maturation of monoclonal antibodies by multi-site-directed mutagenesis. Methods Mol Biol. 2014;1131:407–420.
  • Hu D, Hu S, Wan W, et al. Effective optimization of antibody affinity by phage display integrated with high-throughput DNA synthesis and sequencing technologies. PLoS One. 2015;10(6):e0129125–e0129125. doi: 10.1371/journal.pone.0129125
  • Chevailler A, Monteiro RC, Kubagawa H, et al. Immunofluorescence analysis of IgA binding by human mononuclear cells in blood and lymphoid tissue. J Immunol. 1989;142(7):2244–2249. DOI:10.4049/jimmunol.142.7.2244
  • Chen X, Zaro JL, Shen W-C. Fusion protein linkers: Property, design and functionality. Adv Drug Delivery Rev. 2013;65(10):1357–1369. doi: 10.1016/j.addr.2012.09.039
  • Jonker CTH, Deo C, Zager PJ, et al. Accurate measurement of fast endocytic recycling kinetics in real time. J Cell Sci. 2020;133(2.
  • Ravel S, Colombatti M, Casellas P. Internalization and intracellular fate of anti-CD5 monoclonal antibody and anti-CD5 ricin A-chain immunotoxin in human leukemic T cells. Blood. 1992;79(6):1511–1517. doi: 10.1182/blood.V79.6.1511.1511
  • Akinrinmade OA, Chetty S, Daramola AK, et al. CD64: An attractive immunotherapeutic target for M1-type macrophage mediated chronic inflammatory diseases. Biomedicines. 2017;5(4):56. doi: 10.3390/biomedicines5030056
  • Harrison PT, Davis W, Norman JC, et al. Binding of monomeric immunoglobulin G triggers Fc gamma RI-mediated endocytosis. J Biol Chem. 1994;269(39):24396–24402. doi: 10.1016/S0021-9258(19)51097-3
  • Borriello M, Laccetti P, Terrazzano G, et al. A novel fully human antitumour immunoRnase targeting ErbB2-positive tumours. Br J Cancer. 2011;104(11):1716–1723. doi: 10.1038/bjc.2011.146
  • Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res. 2009;15(24):7479–7491. doi: 10.1158/1078-0432.CCR-09-0636
  • Collins DM, Bossenmaier B, Kollmorgen G, et al. Acquired resistance to antibody-drug conjugates. Cancers. 2019;11(3):394. doi: 10.3390/cancers11030394
  • Marcucci F, Caserta CA, Romeo E, et al. Antibody-drug conjugates (ADC) against cancer stem-like cells (CSC)—Is there still room for optimism? Front Oncol. 2019;9:9. doi: 10.3389/fonc.2019.00167