561
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A perspective on methodologies and system boundaries to develop abatement cost for on-farm anaerobic digestion

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2245991 | Received 06 Mar 2023, Accepted 04 Aug 2023, Published online: 15 Sep 2023

References

  • EC. 2050 long-term strategy. Climate Action - European Commission 2016. [cited September 1, 2021]. https://ec.europa.eu/clima/policies/strategies/2050_en
  • Pilzecker A, Fernandez R, Mandl N, et al. Annual European Union greenhouse gas inventory 1990–2019 and inventory report 2021 —European Environment Agency. European Environment Agency; 2021.
  • Aertsens J, De Nocker L, Gobin A. Valuing the carbon sequestration potential for European agriculture. Land Use Policy. 2013;31:584–21. doi: 10.1016/j.landusepol.2012.09.003
  • McEldowney J. EU agricultural policy and climate change. European Parliamentary Research Service, European Parliament; 2020.
  • Liebetrau J, O’Shea R, Wellisch M. Potential and utilization of manure to generate biogas in seven countries. IEA Bioenergy Task 37; 2021.
  • Smyth BM, Murphy JD, O’Brien CM. What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew Sust Energ Rev. 2009;13(9):2349–2360. doi: 10.1016/j.rser.2009.04.003
  • Auer A, Vande Burgt NH, Abram F, et al. Agricultural anaerobic digestion power plants in Ireland and Germany: policy and practice. J Sci Food Agric. 2017;97(3):719–723. doi: 10.1002/jsfa.8005
  • Wall DM, O’Kiely P, Murphy JD. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Biores Technol. 2013;149:425–431. doi: 10.1016/j.biortech.2013.09.094
  • Manyi-Loh CE, Mamphweli SN, Meyer EL, et al. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int J Environ Res Public Health. 2013;10(9):4390–4417. doi: 10.3390/ijerph10094390
  • Kvist T, Aryal N. Methane loss from commercially operating biogas upgrading plants. Waste Manage. 2019;87:295–300. doi: 10.1016/j.wasman.2019.02.023
  • Liebetrau J, Clemens J, Cuhls C, et al. Methane emissions from biogas-producing facilities within the agricultural sector. Eng Life Sci. 2010;10(6):595–599. doi: 10.1002/elsc.201000070
  • Scarlat N, Dallemand J-F, Fahl F. Biogas: developments and perspectives in Europe. Renewable Energy. 2018;129:457–472. doi: 10.1016/j.renene.2018.03.006
  • Farghali M, Osman AI, Umetsu K, et al. Integration of biogas systems into a carbon zero and hydrogen economy: a review. Environ Chem Lett. 2022;20(5):2853–2927. doi: 10.1007/s10311-022-01468-z
  • Lauer M. Methodology guideline on techno economic assessment (TEA). Generated in the framework of thermal Net WP3B economics, Graz. 2008.
  • Krey V, Masera O, Blanford G, et al. Annex II: metrics & methodology. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., editors. Climate change 2014: mitigation of climate change. contribution of working groups iii to the fifth assessment report of the intergovernmental panel on climate change. United Kingdom and NY, USA:Cambridge University Press; 2014
  • Murthy GS. Techno-Economic Assessment. Bioenergy: principles and applications. Hoboken, NJ, USA: John Wiley & Sons, Incorporated, 2016; 2016. pp. 507–520.
  • O’Brien D, Shalloo L, Crosson P, et al. An evaluation of the effect of greenhouse gas accounting methods on a marginal abatement cost curve for Irish agricultural greenhouse gas emissions. Environ Sci Policy. 2014;39:107–118. doi: 10.1016/j.envsci.2013.09.001
  • MacLeod M, Moran D, Eory V, et al. Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agric Syst. 2010;103(4):198–209. doi: 10.1016/j.agsy.2010.01.002
  • Climate Action Plan 2019 n.d. [cited October 15, 2020]. https://www.gov.ie/en/publication/ccb2e0-the-climate-action-plan-2019/
  • Lanigan GJ, Donnellan T. An analysis of abatement potential of greenhouse gas emissions in Irish agriculture 2021-2030 - teagasc | agriculture and food development authority. Oak Park, Carlow, Ireland: Teagasc; 2019.
  • McKinsey & Company. Pathways to a low-carbon economy. version 2 of the global greenhouse gas abatement cost curve. 2009.
  • McKinsey & Company. Impact of the financial crisis on carbon economics. version 2.1 of the global greenhouse gas abatement cost curve. 2010.
  • Rajendran K, Murthy GS. Techno-economic and life cycle assessments of anaerobic digestion – a review. Biocatal Agric Biotechnol. 2019;20:101207. doi: 10.1016/j.bcab.2019.101207
  • Khan EU, Mainali B, Martin A, et al. Techno-economic analysis of small scale biogas based polygeneration systems: Bangladesh case study. Sustainable Energy Technol Assess. 2014;7:68–78. doi: 10.1016/j.seta.2014.03.004
  • Wresta A, Andriani D, Saepudin A, et al. Economic analysis of cow manure biogas as energy source for electricity power generation in small scale ranch. Energy Procedia. 2015;68:122–131. doi: 10.1016/j.egypro.2015.03.240
  • Imeni SM, Puy N, Ovejero J, et al. Techno-economic assessment of anaerobic co-digestion of cattle manure and wheat straw (raw and pre-treated) at small to medium dairy cattle farms. Waste Biomass Valor. 2020;11(8):4035–4051. doi: 10.1007/s12649-019-00728-4
  • Mostafa Imeni S, Pelaz L, Corchado-Lopo C, et al. Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Biores Technol. 2019;291:121872. doi: 10.1016/j.biortech.2019.121872
  • di Perta ES, Cervelli E, di Campagna MP, et al. From biogas to biomethane: techno-economic analysis of an anaerobic digestion power plant in a cattle/buffalo farm in central Italy. J Agricult Engineer. 2019;50(3):127–133. doi: 10.4081/jae.2019.939
  • Villarroel-Schneider J, Mainali B, Martí-Herrero J, et al. Biogas based polygeneration plant options utilizing dairy farms waste: A Bolivian case. Sustainable Energy Technol Assess. 2020;37:100571. doi: 10.1016/j.seta.2019.100571
  • O’Connor S, Ehimen E, Pillai SC, et al. Economic and environmental analysis of small-scale anaerobic digestion plants on Irish dairy farms. Energies. 2020;13(3):637. doi: 10.3390/en13030637
  • Aui A, Li W, Wright MM. Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Waste Manage. 2019;89:154–164. doi: 10.1016/j.wasman.2019.04.013
  • Croxatto Vega G, Voogt J, Sohn J, et al. Assessing new biotechnologies by combining TEA and TM-LCA for an efficient use of biomass resources. Sustainability. 2020;12(9):3676. doi: 10.3390/su12093676
  • Nayal FS, Mammadov A, Ciliz N. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. J Environ Manage. 2016;184:389–399. doi: 10.1016/j.jenvman.2016.09.058
  • Pardo G, Moral R, Del Prado A. SIMSWASTE-AD - a modelling framework for the environmental assessment of agricultural waste management strategies: Anaerobic digestion. Sci Total Environ. 2017;574:806–817. doi: 10.1016/j.scitotenv.2016.09.096
  • Adams PWR, McManus MC. Characterisation and variability of greenhouse gas emissions from biomethane production via anaerobic digestion of maize. J Clean Prod. 2019;218:529–542. doi: 10.1016/j.jclepro.2018.12.232
  • Jones P, Salter A. Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context. Energy Policy. 2013;62:215–225. doi: 10.1016/j.enpol.2013.06.109
  • Noun project: free icons & stock photos for everything n.d. [cited September 24, 2021]. https://thenounproject.com/
  • Browne J, Nizami A-S, Thamsiriroj T, et al. Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland. Renew Sust Energ Rev. 2011;15(9):4537–4547. doi: 10.1016/j.rser.2011.07.098
  • AgSTAR. Project development handbook. A handbook for developing anaerobic digestion/biogas systems on farms in the United states. EPA; 2014.
  • Gebrezgabher SA, Meuwissen MPM, Oude Lansink AGJM, et al. Costs of producing biogas at dairy farms in the Netherlands. 2010. doi: 10.22004/AG.ECON.91139.
  • Tolessa A, Louw TM, Goosen NJ. Probabilistic techno-economic assessment of anaerobic digestion predicts economic benefits to smallholder farmers with quantifiable certainty. Waste Manage. 2022;138:8–18. doi: 10.1016/j.wasman.2021.11.004
  • Tan WE, Liew PY, Tan LS, et al. Life cycle assessment and techno-economic analysis for anaerobic digestion as cow manure management system. Energies. 2022;15(24):9586. doi: 10.3390/en15249586
  • RES Legal. Legal sources on renewable energy. Renewable energy policy database and support n.d. [cited August 30, 2021]. http://www.res-legal.eu/search-by-country/germany/single/s/res-e/t/promotion/aid/feed-in-tariff-eeg-feed-in-tariff/lastp/135/
  • Pablo-Romero MDP, Sánchez-Braza A, Salvador-Ponce J, et al. An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28. Renew Sust Energ Rev. 2017;73:1366–1379. doi: 10.1016/j.rser.2017.01.132
  • Non-domestic RHI tariff table. Ofgem n.d. [cited October 14, 2021]. https://www.ofgem.gov.uk/publications/non-domestic-rhi-tariff-table
  • Sustainable energy authority of Ireland. Support scheme for renewable heat n.d. [cited May 29, 2021]. https://www.seai.ie/business-and-public-sector/business-grants-and-supports/support-scheme-renewable-heat/
  • Herbes C, Rilling B, Ringel M. Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies? Energy Policy. 2021;153:112292. doi: 10.1016/j.enpol.2021.112292
  • Chavas J-P, Kim K. Economies of diversification: A generalization and decomposition of economies of scope. Int J Prod Econ. 2010;126(2):229–235. doi: 10.1016/j.ijpe.2010.03.010
  • Zacharof M-P, Mandale SJ, Williams PM, et al. Nanofiltration of treated digested agricultural wastewater for recovery of carboxylic acids. J Clean Prod. 2016;112:4749–4761. doi: 10.1016/j.jclepro.2015.07.004
  • Vasco-Correa J, Khanal S, Manandhar A, et al. Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Biores Technol. 2018;247:1015–1026. doi: 10.1016/j.biortech.2017.09.004
  • Rajendran K, O’Gallachoir B, Murphy JD. The combined role of policy and incentives in promoting cost efficient decarbonisation of energy: A case study for biomethane. J Clean Prod. 2019;219:278–290. doi: 10.1016/j.jclepro.2019.01.298
  • Saltelli A, Aleksankina K, Becker W, et al. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environ Modell Software. 2019;114:29–39. doi: 10.1016/j.envsoft.2019.01.012
  • Jovanović P. Application of sensitivity analysis in investment project evaluation under uncertainty and risk. Int J Project Manage. 1999;17(4):217–222. doi: 10.1016/S0263-7863(98)00035-0
  • Fuess LT, Zaiat M. Economics of anaerobic digestion for processing sugarcane vinasse: applying sensitivity analysis to increase process profitability in diversified biogas applications. Process SafEnviron Prot. 2018;115:27–37. doi: 10.1016/j.psep.2017.08.007
  • Teymoori Hamzehkolaei F, Amjady N. A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units. Renewable Energy. 2018;118:602–614. doi: 10.1016/j.renene.2017.11.054
  • Short W, Packey D, Holt T. A manual for the economic evaluation of energy efficiency and renewable energy technologies. NASA STI/Recon Technical Report N; 1995p. 95. doi: 10.2172/35391
  • Directive EU. 2001 of the European parliament and of the council of 11 December 2018 on the promotion of the use of energy from renewable sources. European Parliament, Council of the European Union: Brussels, Belgium 2018. https://eur-lex.europa.eu/eli/dir/2018/2001/oj.
  • Czyrnek-Delêtre MM, Smyth BM, Murphy JD. Beyond carbon and energy: the challenge in setting guidelines for life cycle assessment of biofuel systems. Renewable Energy. 2017;105:436–448. doi: 10.1016/j.renene.2016.11.043
  • Sathaye JA, Meyers S. Greenhouse gas mitigation assessment: a guidebook. Springer Netherlands; 1995. doi: 10.1007/978-94-015-8466-1.
  • Eory V, Topp CFE, Moran D. Multiple-pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture. Environ Sci Policy. 2013;27:55–67. doi: 10.1016/j.envsci.2012.11.003
  • World Bank. Low-carbon development for mexico. ESMAP. 2010.
  • Eory V, MacLeod M, Topp CFE. Review and update of the UK agriculture marginal abatement cost curves (SRUC, Ricardo Energy). Climate Change Committee; n.d.
  • European Union. S.I. No. 605/2017 - European Union (Good agricultural practice for protection of waters) regulations 2017. Dublin, Ireland: Stationery Office; 2017.
  • USDA. Beef feedlot industry manual. the United States department of agriculture. Animal And Plant Health Inspection Service, Veterinary Services. 2011.
  • Public Spending Code. Supplementary guidance - measuring & valuing changes in greenhouse gas emissions in economic appraisal. Department Of Public Expenditure And Reform. 2019.
  • Kesicki F, Ekins P. Marginal abatement cost curves: a call for caution. Clim Policy. 2012;12(2):219–236. doi: 10.1080/14693062.2011.582347
  • Peng B-B, Xu J-H, Fan Y. Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China. Energy Policy. 2018;113:306–319. doi: 10.1016/j.enpol.2017.11.010
  • Sjöstrand K, Lindhe A, Söderqvist T, et al. Marginal abatement cost curves for water scarcity mitigation under uncertainty. Water Resour Manage. 2019;33(12):4335–4349. doi: 10.1007/s11269-019-02376-8
  • Dunant CF, Skelton ACH, Drewniok MP, et al. A marginal abatement cost curve for material efficiency accounting for uncertainty. ResouConserv Recycl. 2019;144:39–47. doi: 10.1016/j.resconrec.2019.01.020
  • González-Arias J, Baena-Moreno FM, Gonzalez-Castaño M, et al. Unprofitability of small biogas plants without subsidies in the Brandenburg region. Environ Chem Lett. 2021;19(2):1823–1829. doi: 10.1007/s10311-020-01175-7
  • Lopes TF, Carvalheiro F, Duarte LC, et al. Techno-economic and life-cycle assessments of small-scale biorefineries for isobutene and xylo-oligosaccharides production: a comparative study in Portugal and Chile. Biofuel Bioprod Biorefin. 2019;13(5):1321–1332. doi: 10.1002/bbb.2036
  • Oreggioni GD, Luberti M, Tassou SA. Agricultural greenhouse CO2 utilization in anaerobic-digestion-based biomethane production plants: A techno-economic and environmental assessment and comparison with CO2 geological storage. Appl Energy. 2019;242:1753–1766. doi: 10.1016/j.apenergy.2019.03.045
  • Al-Wahaibi A, Osman AI, Al-Muhtaseb AH, et al. Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci Rep. 2020;10(1):15719. doi: 10.1038/s41598-020-72897-5
  • Regional waste management planning offices.The national waste management plan for a circular economy is Ireland’s framework for the prevention and management of waste. Mywaste n.d. [accessed September 5, 2023]. https://www.mywaste.ie/wp-content/uploads/2023/05/SRWMO-National-Waste-Management-Plan-for-a-Circular-Economy-Volume-IV-Supporting-Documentation-AW-Onscreen.pdf
  • Government of Ireland. Conditions for animal by product processing operations 2019. [accessed May 16, 2023]. https://www.gov.ie/en/publication/8c7cd-conditions-for-abp-processing-operations/
  • GMI Agriculture Subcommittee. SuccessfuL applications of anaerobic digestion from across the world. GMI. 2017.
  • Fawzy S, Osman AI, Mehta N, et al. Atmospheric carbon removal via industrial biochar systems: A techno-economic-environmental study. J Clean Prod. 2022;371:133660. doi: 10.1016/j.jclepro.2022.133660