1,879
Views
2
CrossRef citations to date
0
Altmetric
Review Article

β-catenin inhibitors in cancer therapeutics: intricacies and way forward

, & ORCID Icon
Article: 2251696 | Received 21 Sep 2022, Accepted 21 Aug 2023, Published online: 01 Sep 2023

References

  • Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent beta-catenin signaling. Pigment Cell Melanoma Res. 2016;29(5):524–24. doi: 10.1111/pcmr.12501
  • Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. doi: 10.1242/dev.146589
  • Bastakoty D, Young PP. Wnt/beta-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J. 2016;30(10):3271–3284. doi: 10.1096/fj.201600502R
  • Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989;8(6):1711–1717. doi: 10.1002/j.1460-2075.1989.tb03563.x
  • Wieschaus E, Nusslein-Volhard C, Jurgens G. Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster: III. Zygotic loci on the X-chromosome and fourth chromosome. Wilhelm Roux Arch Dev Biol. 1984;193(5):296–307. doi: 10.1007/BF00848158
  • Riggleman B, Schedl P, Wieschaus E. Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by wingless. Cell. 1990;63(3):549–560. doi: 10.1016/0092-8674(90)90451-j
  • Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 2012;31(12):2670–2684. doi: 10.1038/emboj.2012.146
  • Grigoryan T, Wend P, Klaus A, et al. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008;22(17):2308–2341. doi: 10.1101/gad.1686208
  • Min KW, Lee SH, Baek SJ. Moonlighting proteins in cancer. Cancer Lett. 2016;370(1):108–116. doi: 10.1016/j.canlet.2015.09.022
  • Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997;90(5):871–882. doi: 10.1016/s0092-8674(00)80352-9
  • Xu W, Kimelman D. Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci. 2007;120(Pt 19):3337–3344. doi: 10.1242/jcs.013771
  • Xing Y, Takemaru K, Liu J, et al. Crystal structure of a full-length beta-catenin. Structure. 2008;16(3):478–487. doi: 10.1016/j.str.2007.12.021
  • Cui C, Zhou X, Zhang W, et al. Is beta-catenin a druggable target for cancer therapy? Trends Biochem Sci. 2018;43(8):623–634. doi: 10.1016/j.tibs.2018.06.003
  • Zhao B, Xue B. Self-regulation of functional pathways by motifs inside the disordered tails of beta-catenin. BMC Genomics. 2016;17(Suppl 5):484. doi: 10.1186/s12864-016-2825-9
  • Kim S, Jeong S. Mutation hotspots in the beta-catenin gene: Lessons from the human cancer genome databases. Mol Cells. 2019;42(1):8–16. doi: 10.14348/molcells.2018.0436
  • Bienz M. Beta-catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol. 2005;15(2):R64–7. doi: 10.1016/j.cub.2004.12.058
  • van der Wal T, van Amerongen R. Walking the tight wire between cell adhesion and WNT signalling: a balancing act for beta-catenin. Open Biol. 2020;10(12):200267. doi: 10.1098/rsob.200267
  • Kimelman D, Xu W. Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25(57):7482–7491. doi: 10.1038/sj.onc.1210055
  • Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5(1):a007898. doi: 10.1101/cshperspect.a007898
  • Hay-Koren A, Caspi M, Zilberberg A, et al. The EDD E3 ubiquitin ligase ubiquitinates and up-regulates beta-catenin. Mol Biol Cell. 2011;22(3):399–411. doi: 10.1091/mbc.E10-05-0440
  • Sato A, Shimizu M, Goto T, et al. WNK regulates Wnt signalling and beta-catenin levels by interfering with the interaction between beta-catenin and GID. Commun Biol. 2020;3(1):666. doi: 10.1038/s42003-020-01386-2
  • Shafique S, Rashid S. Structural basis for renal cancer by the dynamics of pVHL-dependent JADE1 stabilization and beta-catenin regulation. Prog Biophys Mol Biol. 2019;145:65–77. doi: 10.1016/j.pbiomolbio.2018.12.005
  • Dominguez-Brauer C, Khatun R, Elia AJ, et al. E3 ubiquitin ligase Mule targets beta-catenin under conditions of hyperactive Wnt signaling. Proc Natl Acad Sci U S A. 2017;114(7):E1148–E1157. doi: 10.1073/pnas.1621355114
  • Qu Y, Gharbi N, Yuan X, et al. Axitinib blocks Wnt/beta-catenin signaling and directs asymmetric cell division in cancer. Proc Natl Acad Sci U S A. 2016;113(33):9339–9344. doi: 10.1073/pnas.1604520113
  • Dimitrova YN, Li J, Lee YT, et al. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem. 2010;285(18):13507–13516. doi: 10.1074/jbc.M109.049411
  • Kitazawa M, Hatta T, Ogawa K, et al. Determination of rate-limiting factor for formation of beta-catenin destruction complexes using Absolute protein quantification. J Proteome Res. 2017;16(10):3576–3584. doi: 10.1021/acs.jproteome.7b00305
  • Lybrand DB, Naiman M, Laumann JM, et al. Destruction complex dynamics: Wnt/beta-catenin signaling alters Axin-GSK3beta interactions in vivo. Development. 2019;146(13). doi: 10.1242/dev.164145
  • Ghosh N, Hossain U, Mandal A, et al. The Wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci. 2019;1443(1):54–74. doi: 10.1111/nyas.14027
  • Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972–33989. doi: 10.18632/oncotarget.15687
  • Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. doi: 10.4161/org.4.2.5851
  • Mukherjee A, Dhar N, Stathos M, et al. Understanding how Wnt Influences destruction complex activity and beta-catenin dynamics. iScience. 2018;6:13–21. doi: 10.1016/j.isci.2018.07.007
  • Anthony CC, Robbins DJ, Ahmed Y, et al. Nuclear regulation of Wnt/β-catenin signaling: It’s a complex situation. Genes (Basel). 2020;11(8):886. doi: 10.3390/genes11080886
  • Li Y, Shao Y, Tong Y, et al. Nucleo-cytoplasmic shuttling of PAK4 modulates beta-catenin intracellular translocation and signaling. Biochim Biophys Acta. 2012;1823(2):465–475. doi: 10.1016/j.bbamcr.2011.11.013
  • Jamieson C, Sharma M, Henderson BR. Targeting the beta-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 2014;27:20–29. doi: 10.1016/j.semcancer.2014.04.012
  • Koelman EMR, Yeste-Vazquez A, Grossmann TN. Targeting the interaction of beta-catenin and TCF/LEF transcription factors to inhibit oncogenic Wnt signaling. Bioorg Med Chem. 2022;70:116920. doi: 10.1016/j.bmc.2022.116920
  • Cinnamon E, Paroush Z. Context-dependent regulation of Groucho/TLE-mediated repression. Curr Opin Genet Dev. 2008;18(5):435–440. doi: 10.1016/j.gde.2008.07.010
  • van Tienen LM, Mieszczanek J, Fiedler M, et al. Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9. Elife. 2017;6:e20882. doi: 10.7554/eLife.20882
  • Swoboda J, Mittelsdorf P, Chen Y, et al. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol. 2022;13(3):168–185. doi: 10.5306/wjco.v13.i3.168
  • Perugorria MJ, Olaizola P, Labiano I, et al. Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16(2):121–136. doi: 10.1038/s41575-018-0075-9
  • Chae WJ, Bothwell ALM. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 2018;39(10):830–847. doi: 10.1016/j.it.2018.08.006
  • Pinzon-Daza ML, Salaroglio IC, Kopecka J, et al. The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood-brain barrier cells. J Cereb Blood Flow Metab. 2014;34(8):1258–1269. doi: 10.1038/jcbfm.2014.100
  • Lai KKY, Nguyen C, Lee KS, et al. Convergence of canonical and non-canonical Wnt signal: Differential Kat3 coactivator usage. Curr Mol Pharmacol. 2019;12(3):167–183. doi: 10.2174/1874467212666190304121131
  • Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Bio. 1994;127(5):1375–1380. doi: 10.1083/jcb.127.5.1375
  • Piedra J, Miravet S, Castano J, et al. p120 catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction. Mol Cell Biol. 2003;23(7):2287–2297. doi: 10.1128/MCB.23.7.2287-2297.2003
  • Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31(12):2714–2736. doi: 10.1038/emboj.2012.150
  • Shah K, Kazi JU. Phosphorylation-dependent regulation of WNT/Beta-catenin signaling. Front Oncol. 2022;12:858782. doi: 10.3389/fonc.2022.858782
  • Fang D, Hawke D, Zheng Y, et al. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282(15):11221–11229. doi: 10.1074/jbc.M611871200
  • Yang W, Xia Y, Ji H, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011;480(7375):118–122. doi: 10.1038/nature10598
  • Li Y, Zhang X, Polakiewicz RD, et al. HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization. J Biol Chem. 2008;283(19):12686–12690. doi: 10.1074/jbc.C700185200
  • Jean C, Blanc A, Prade-Houdellier N, et al. Epidermal growth factor receptor/beta-catenin/T-cell factor 4/matrix metalloproteinase 1: a new pathway for regulating keratinocyte invasiveness after UVA irradiation. Cancer Res. 2009;69(8):3291–3299. doi: 10.1158/0008-5472.CAN-08-1909
  • Morali OG, Delmas V, Moore R, et al. IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene. 2001;20(36):4942–4950. doi: 10.1038/sj.onc.1204660
  • Playford MP, Bicknell D, Bodmer WF, et al. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci U S A. 2000;97(22):12103–12108. doi: 10.1073/pnas.210394297
  • Greenblatt MB, Shin DY, Oh H, et al. MEKK2 mediates an alternative beta-catenin pathway that promotes bone formation. Proc Natl Acad Sci U S A. 2016;113(9):E1226–35. doi: 10.1073/pnas.1600813113
  • Tahir SA, Yang G, Goltsov A, et al. Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Res. 2013;73(6):1900–1911. doi: 10.1158/0008-5472.CAN-12-3040
  • Conde-Perez A, Gros G, Longvert C, et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nat Commun. 2015;6(1):8093. doi: 10.1038/ncomms9093
  • Kolligs FT, Kolligs B, Hajra KM, et al. Gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev. 2000;14(11):1319–1331. doi: 10.1101/gad.14.11.1319
  • Salomon D, Sacco PA, Roy SG, et al. Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J Cell Bio. 1997;139(5):1325–1335. doi: 10.1083/jcb.139.5.1325
  • Morin PJ, Sparks AB, Korinek V, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275(5307):1787–1790. doi: 10.1126/science.275.5307.1787
  • Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–1851. doi: 10.1101/gad.14.15.1837
  • Nakayama M, Sakai E, Echizen K, et al. Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation. Oncogene. 2017;36(42):5885–5896. doi: 10.1038/onc.2017.194
  • Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–758. doi: 10.1038/nrc2723
  • Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26(2):199–212. doi: 10.1038/s41418-018-0246-9
  • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–339. doi: 10.1038/nature12634
  • Sadot E, Geiger B, Oren M, et al. Down-regulation of beta-catenin by activated p53. Mol Cell Biol. 2001;21(20):6768–6781. doi: 10.1128/MCB.21.20.6768-6781.2001
  • Levina E, Oren M, Ben-Ze’ev A. Downregulation of beta-catenin by p53 involves changes in the rate of beta-catenin phosphorylation and Axin dynamics. Oncogene. 2004;23(25):4444–4453. doi: 10.1038/sj.onc.1207587
  • Borges KS, Pignatti E, Leng S, et al. Wnt/beta-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene. 2020;39(30):5282–5291. doi: 10.1038/s41388-020-1358-5
  • Liu Z, Guo H, Zhu Y, et al. TP53 alterations of hormone-naive prostate cancer in the Chinese population. Prostate Cancer Prostatic Dis. 2021;24(2):482–491. doi: 10.1038/s41391-020-00302-3
  • Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–698. doi: 10.1038/ng.2256
  • Xiao Q, Werner J, Venkatachalam N, et al. Cross-Talk between p53 and Wnt signaling in cancer. Biomolecules. 2022;12(3). doi: 10.3390/biom12030453
  • Patturajan M, Nomoto S, Sommer M, et al. DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell. 2002;1(4):369–379. doi: 10.1016/s1535-6108(02)00057-0
  • Ueda Y, Hijikata M, Takagi S, et al. p73beta, a variant of p73, enhances Wnt/beta-catenin signaling in Saos-2 cells. Biochem Biophys Res Commun. 2001;283(2):327–333. doi: 10.1006/bbrc.2001.4788
  • Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703–713. doi: 10.1038/nm.4333
  • Yaeger R, Chatila WK, Lipsyc MD, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33(1):125–136.e3. doi: 10.1016/j.ccell.2017.12.004
  • Wong SC, Lo ES, Lee KC, et al. Prognostic and diagnostic significance of beta-catenin nuclear immunostaining in colorectal cancer. Clin Cancer Res. 2004;10(4):1401–1408. doi: 10.1158/1078-0432.ccr-0157-03
  • Bhattacharya I, Barman N, Maiti M, et al. Assessment of beta-catenin expression by immunohistochemistry in colorectal neoplasms and its role as an additional prognostic marker in colorectal adenocarcinoma. Med Pharm Rep. 2019;92(3):246–252. doi: 10.15386/mpr-1218
  • Liu Y, Patel L, Mills GB, et al. Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma. J Natl Cancer Inst. 2014;106(9). doi: 10.1093/jnci/dju245
  • Jeong JW, Lee HS, Franco HL, et al. Beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009;28(1):31–40. doi: 10.1038/onc.2008.363
  • Kandoth C, Schultz N, Cherniack AD, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi: 10.1038/nature12113
  • Scholten AN, Creutzberg CL, van den Broek LJ, et al. Nuclear beta-catenin is a molecular feature of type I endometrial carcinoma. J Pathol. 2003;201(3):460–465. doi: 10.1002/path.1402
  • Kurnit KC, Kim GN, Fellman BM, et al. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod Pathol. 2017;30(7):1032–1041. doi: 10.1038/modpathol.2017.15
  • Kim G, Kurnit KC, Djordjevic B, et al. Nuclear beta-catenin localization and mutation of the CTNNB1 gene: a context-dependent association. Mod Pathol. 2018;31(10):1553–1559. doi: 10.1038/s41379-018-0080-0
  • Travaglino A, Raffone A, Saccone G, et al. Immunohistochemical nuclear expression of beta-catenin as a surrogate of CTNNB1 exon 3 mutation in endometrial cancer. Am J Clin Pathol. 2019;151(5):529–538. doi: 10.1093/ajcp/aqy178
  • Prasad CP, Gupta SD, Rath G, et al. Wnt signaling pathway in invasive ductal carcinoma of the breast: relationship between beta-catenin, dishevelled and cyclin D1 expression. Oncology. 2007;73(1–2):112–117. doi: 10.1159/000120999
  • He Y, Liu Z, Qiao C, et al. Expression and significance of Wnt signaling components and their target genes in breast carcinoma. Mol Med Rep. 2014;9(1):137–143. doi: 10.3892/mmr.2013.1774
  • Candidus S, Bischoff P, Becker KF, et al. No evidence for mutations in the alpha- and beta-catenin genes in human gastric and breast carcinomas. Cancer Res. 1996;56(1):49–52.
  • Prasad CP, Mirza S, Sharma G, et al. Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast. Life Sci. 2008;83(9–10):318–325. doi: 10.1016/j.lfs.2008.06.019
  • Sharma A, Mir R, Galande S. Epigenetic regulation of the Wnt/beta-catenin signaling pathway in cancer. Front Genet. 2021;12:681053. doi: 10.3389/fgene.2021.681053
  • Prasad CP, Chaurasiya SK, Axelsson L, et al. WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells. Mol Oncol. 2013;7(5):870–883. doi: 10.1016/j.molonc.2013.04.005
  • Prasad CP, Chaurasiya SK, Guilmain W, et al. WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. J Exp Clin Cancer Res. 2016;35(1):144. doi: 10.1186/s13046-016-0421-0
  • Prasad CP, Manchanda M, Mohapatra P, et al. WNT5A as a therapeutic target in breast cancer. Cancer Metastasis Rev. 2018;37(4):767–778. doi: 10.1007/s10555-018-9760-y
  • Lin SY, Xia W, Wang JC, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A. 2000;97(8):4262–4266. doi: 10.1073/pnas.060025397
  • Furuuchi K, Tada M, Yamada H, et al. Somatic mutations of the APC gene in primary breast cancers. Am J Pathol. 2000;156(6):1997–2005. doi: 10.1016/s0002-9440(10)65072-9
  • Prosperi JR, Goss KH. A Wnt-ow of opportunity: targeting the Wnt/beta-catenin pathway in breast cancer. Curr Drug Targets. 2010;11(9):1074–1088. doi: 10.2174/138945010792006780
  • Mukherjee N, Bhattacharya N, Alam N, et al. Subtype-specific alterations of the Wnt signaling pathway in breast cancer: clinical and prognostic significance. Cancer Sci. 2012;103(2):210–220. doi: 10.1111/j.1349-7006.2011.02131.x
  • Wang Z, Zhang H, Hou J, et al. Clinical implications of beta-catenin protein expression in breast cancer. Int J Clin Exp Pathol. 2015;8(11):14989–14994.
  • Stefanski CD, Prosperi JR. Wnt-independent and Wnt-dependent effects of APC loss on the chemotherapeutic response. Int J Mol Sci. 2020;21(21):7844. doi: 10.3390/ijms21217844
  • Gaspar C, Franken P, Molenaar L, et al. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet. 2009;5(7):e1000547. doi: 10.1371/journal.pgen.1000547
  • Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–1473. doi: 10.1038/onc.2016.304
  • Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. doi: 10.1186/s13045-020-00990-3
  • Baharudin R, Tieng FYF, Lee LH, et al. Epigenetics of SFRP1: The dual roles in human cancers. Cancers (Basel). 2020;12(2):445. doi: 10.3390/cancers12020445
  • Neiheisel A, Kaur M, Ma N, et al. Wnt pathway modulators in cancer therapeutics: An update on completed and ongoing clinical trials. Int J Cancer. 2022;150(5):727–740. doi: 10.1002/ijc.33811
  • Zhang X, Wang L, Qu Y. Targeting the beta-catenin signaling for cancer therapy. Pharmacol Res. 2020;160:104794. doi: 10.1016/j.phrs.2020.104794
  • Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 2013;5(3):a015081. doi: 10.1101/cshperspect.a015081
  • van Kappel EC, Maurice MM. Molecular regulation and pharmacological targeting of the beta-catenin destruction complex. Br J Pharmacol. 2017;174(24):4575–4588. doi: 10.1111/bph.13922
  • Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–532. doi: 10.1038/nrd4233
  • Madan B, McDonald MJ, Foxa GE, et al. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 2018;6:17. doi: 10.1038/s41413-018-0017-8
  • Catrow JL, Zhang Y, Zhang M, et al. Discovery of Selective small-molecule inhibitors for the beta-Catenin/T-Cell factor protein-protein interaction through the optimization of the acyl hydrazone moiety. J Med Chem. 2015;58(11):4678–4692. doi: 10.1021/acs.jmedchem.5b00223
  • Poy F, Lepourcelet M, Shivdasani RA, et al. Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol. 2001;8(12):1053–1057. doi: 10.1038/nsb720
  • Lepourcelet M, Chen YN, France DS, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91–102. doi: 10.1016/s1535-6108(03)00334-9
  • McCoy MA, Spicer D, Wells N, et al. Biophysical Survey of small-molecule beta-catenin inhibitors: A cautionary tale. J Med Chem. 2022;65(10):7246–7261. doi: 10.1021/acs.jmedchem.2c00228
  • Guo W, Wisniewski JA, Ji H. Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Bioorg Med Chem Lett. 2014;24(11):2546–2554. doi: 10.1016/j.bmcl.2014.03.095
  • Trosset JY, Dalvit C, Knapp S, et al. Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins. 2006;64(1):60–67. doi: 10.1002/prot.20955
  • Gonsalves FC, Klein K, Carson BB, et al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci U S A. 2011;108(15):5954–5963. doi: 10.1073/pnas.1017496108
  • Grossmann TN, Yeh JT, Bowman BR, et al. Inhibition of oncogenic Wnt signaling through direct targeting of beta-catenin. Proc Natl Acad Sci U S A. 2012;109(44):17942–17947. doi: 10.1073/pnas.1208396109
  • Dietrich L, Rathmer B, Ewan K, et al. Cell permeable stapled peptide inhibitor of Wnt signaling that targets β-catenin protein-protein interactions. Cell Chem Biol. 2017;24(8):958–968.e5. doi: 10.1016/j.chembiol.2017.06.013
  • Hwang SY, Deng X, Byun S, et al. Direct targeting of beta-catenin by a small molecule Stimulates proteasomal degradation and suppresses oncogenic Wnt/beta-catenin signaling. Cell Rep. 2016;16(1):28–36. doi: 10.1016/j.celrep.2016.05.071
  • Takada K, Zhu D, Bird GH, et al. Targeted disruption of the BCL9/beta-catenin complex inhibits oncogenic Wnt signaling. Sci Transl Med. 2012;4(148):148ra117. doi: 10.1126/scitranslmed.3003808
  • Guo F, Parker Kerrigan BC, Yang D, et al. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol. 2014;7(1):19. doi: 10.1186/1756-8722-7-19
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRnas: are the answers in sight? Nat Rev Genet. 2008;9(2):102–114. doi: 10.1038/nrg2290
  • Menon A, Abd-Aziz N, Khalid K, et al. miRNA: A promising therapeutic target in cancer. Int J Mol Sci. 2022;23(19):11502. doi: 10.3390/ijms231911502
  • Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther. 2010;10(3):219–222. doi: 10.4161/cbt.10.3.12548
  • Saydam O, Shen Y, Wurdinger T, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 2009;29(21):5923–5940. doi: 10.1128/MCB.00332-09
  • Cong N, Du P, Zhang A, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep. 2013;29(4):1579–1587. doi: 10.3892/or.2013.2267
  • Su J, Zhang A, Shi Z, et al. MicroRNA-200a suppresses the Wnt/beta-catenin signaling pathway by interacting with beta-catenin. Int J Oncol. 2012;40(4):1162–1170. doi: 10.3892/ijo.2011.1322
  • Liu J, Ruan B, You N, et al. Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the beta-catenin pathway in hepatic oval cells. PLoS One. 2013;8(11):e79409. doi: 10.1371/journal.pone.0079409
  • Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907. doi: 10.1101/gad.1640608
  • Howe EN, Cochrane DR, Richer JK. Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res. 2011;13(2):R45. doi: 10.1186/bcr2867
  • Qu J, Li M, An J, et al. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/beta-catenin/ZEB1 signaling. Int J Oncol. 2015;47(6):2141–2152. doi: 10.3892/ijo.2015.3187
  • Liang C, Wang Z, Li YY, et al. miR-33a suppresses the nuclear translocation of beta-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells. Tumour Biol. 2015;36(12):9395–9403. doi: 10.1007/s13277-015-3679-5
  • Liu H, Yin J, Wang H, et al. FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 2015;27(3):510–518. doi: 10.1016/j.cellsig.2015.01.001
  • Zhang Q, Miao S, Han X, et al. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting beta-catenin and CDK2 and activating p21. Cell Death Dis. 2018;9(10):960. doi: 10.1038/s41419-018-0986-y
  • Tian X, Tao F, Zhang B, et al. The miR-203/SNAI2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating GSK-3beta/beta-CATENIN signal pathway. IUBMB Life. 2018;70(3):224–236. doi: 10.1002/iub.1720
  • Zou Y, Lin X, Bu J, et al. Timeless-stimulated miR-5188-FOXO1/beta-catenin-c-jun feedback loop promotes stemness via ubiquitination of beta-catenin in breast cancer. Mol Ther. 2020;28(1):313–327. doi: 10.1016/j.ymthe.2019.08.015
  • Lei Y, Chen L, Zhang G, et al. MicroRNAs target the Wnt/beta catenin signaling pathway to regulate epithelial mesenchymal transition in cancer (review). Oncol Rep. 2020;44(4):1299–1313. doi: 10.3892/or.2020.7703
  • Soderholm S, Cantu C. The WNT/beta-catenin dependent transcription: A tissue-specific business. WIREs Mech Dis. 2021;13(3):e1511. doi: 10.1002/wsbm.1511
  • Sferrazza G, Corti M, Brusotti G, et al. Nature-derived compounds modulating Wnt/beta -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B. 2020;10(10):1814–1834. doi: 10.1016/j.apsb.2019.12.019
  • Prasad CP, Rath G, Mathur S, et al. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/beta-catenin signaling. Chem Biol Interact. 2009;181(2):263–271. doi: 10.1016/j.cbi.2009.06.012
  • Park CH, Hahm ER, Park S, et al. The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett. 2005;579(13):2965–2971. doi: 10.1016/j.febslet.2005.04.013
  • Leow PC, Tian Q, Ong ZY, et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells. Invest New Drugs. 2010;28(6):766–782. doi: 10.1007/s10637-009-9311-z
  • Chen HJ, Hsu LS, Shia YT, et al. The beta-catenin/TCF complex as a novel target of resveratrol in the Wnt/beta-catenin signaling pathway. Biochem Pharmacol. 2012;84(9):1143–1153. doi: 10.1016/j.bcp.2012.08.011
  • Jeong JB, Lee J, Lee SH. TCF4 is a molecular target of resveratrol in the prevention of colorectal cancer. Int J Mol Sci. 2015;16(5):10411–10425. doi: 10.3390/ijms160510411
  • Hope C, Planutis K, Planutiene M, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res. 2008;52(Suppl 1):S52–61. doi: 10.1002/mnfr.200700448
  • Predes D, Oliveira LFS, Ferreira LSS, et al. The chalcone lonchocarpin Inhibits Wnt/β-catenin signaling and suppresses colorectal cancer proliferation. Cancers (Basel). 2019;11(12):1968. doi: 10.3390/cancers11121968
  • Kaur M, Velmurugan B, Tyagi A, et al. Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia. 2010;12(5):415–424. doi: 10.1593/neo.10188
  • Fan Y, Hou T, Dan W, et al. Silibinin inhibits epithelial mesenchymal transition of renal cell carcinoma through autophagy dependent Wnt/beta catenin signaling. Int J Mol Med. 2020;45(5):1341–1350. doi: 10.3892/ijmm.2020.4521
  • Lee SY, Lim TG, Chen H, et al. Esculetin suppresses proliferation of human colon cancer cells by directly targeting beta-catenin. Cancer Prev Res (Phila). 2013;6(12):1356–1364. doi: 10.1158/1940-6207.CAPR-13-0241
  • de la Roche M, Rutherford TJ, Gupta D, et al. An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid. Nat Commun. 2012;3(1):680. doi: 10.1038/ncomms1680
  • Shukla S, MacLennan GT, Flask CA, et al. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res. 2007;67(14):6925–6935. doi: 10.1158/0008-5472.CAN-07-0717
  • Kang YJ, Park HJ, Chung HJ, et al. Wnt/β-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol Pharmacol. 2012;82(2):168–177. doi: 10.1124/mol.112.078535
  • Lee MA, Park HJ, Chung HJ, et al. Antitumor activity of 2-hydroxy cinnamaldehyde for human colon cancer cells through suppression of beta-catenin signaling. J Nat Prod. 2013;76(7):1278–1284. doi: 10.1021/np400216m
  • Shin SH, Lim DY, Reddy K, et al. A small molecule inhibitor of the beta-catenin-TCF4 interaction suppresses colorectal cancer growth in vitro and in vivo. EBioMedicine. 2017;25:22–31. doi: 10.1016/j.ebiom.2017.09.029
  • Ahmed K, Shaw HV, Koval A, et al. A second WNT for old drugs: Drug repositioning against WNT-Dependent cancers. Cancers (Basel). 2016;8(7). doi: 10.3390/cancers8070066
  • Zhang M, Wang Z, Zhang Y, et al. Structure-based optimization of small-molecule inhibitors for the beta-Catenin/B-Cell lymphoma 9 protein-protein interaction. J Med Chem. 2018;61(7):2989–3007. doi: 10.1021/acs.jmedchem.8b00068
  • Yu B, Huang Z, Zhang M, et al. Rational design of small-molecule inhibitors for beta-catenin/T-cell factor protein-protein interactions by bioisostere replacement. ACS Chem Biol. 2013;8(3):524–529. doi: 10.1021/cb300564v
  • Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 2013;19(4):634–664. doi: 10.2174/138161213804581837