1,240
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances, trends and challenges in the use of biochar as an improvement strategy in the anaerobic digestion of organic waste: a systematic analysis

, , , & ORCID Icon
Article: 2252191 | Received 27 Mar 2023, Accepted 19 Jun 2023, Published online: 15 Sep 2023

References

  • Suhartini S, Rohma NA, Elviliana S, et al. Food waste to bioenergy: current status and role in future circular economies in Indonesia. Energy, Ecology And Environment. 2022;7(4):297–23. doi: 10.1007/s40974-022-00248-3
  • Margallo M, Ziegler-Rodriguez K, Vázquez-Rowe I, et al. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: a review for policy support. Science Of The Total Environment. 2019;689:1255–1275. doi: 10.1016/j.scitotenv.2019.06.393
  • Rojas GAF, Flórez MC. Fruit waste valorization for combustion and pyrolysis. Revista Politécnica. 2019;15(28):42–53. doi: 10.33571/rpolitec.v15n28a4
  • Ritchie H, Roser M, Rosado P. CO₂ and greenhouse gas emissions. 2020 [Accessed July 2022].
  • Ampese LC, Sganzerla WG, Di Domenico Ziero H, et al. Research progress, trends, and updates on anaerobic digestion technology: a bibliometric analysis. J Clean Prod. 2022;331:130004. doi: 10.1016/j.jclepro.2021.130004
  • Ajibade S, Nnadozie EC, Iwai CB, et al. Biochar-based compost: a bibliometric and visualization analysis. Bioengineered. 2022;13(7–12):15013–15032. doi: 10.1080/21655979.2023.2177369
  • De Medina-Salas L, Castillo-González E, Giraldi-Díaz MR, et al. Valorisation of the organic fraction of municipal solid waste. Waste Manage Res. 2018;37(1):59–73. doi: 10.1177/0734242X18812651
  • Chhandama MVL, Chetia AC, Satyan KB, et al. Valorisation of food waste to sustainable energy and other value-added products: a review. Bioresour Technol Rep. 2022;17:100945. doi: 10.1016/j.biteb.2022.100945
  • O’Connor J, Mickan BS, Rinklebe J, et al. Environmental implications, potential value, and future of food-waste anaerobic digestate management: areview. J Environ Manage. 2022;318:115519. doi: 10.1016/j.jenvman.2022.115519
  • Pan J, Sun J, Ao N, et al. Factors Influencing biochar-Strengthened anaerobic digestion of Cow manure. BioEnergy Res. 2022. doi:10.1007/s12155-022-10396-3.
  • Deng C, Lin R, Kang X, et al. What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: a case study of digestion of whiskey by-products. Fuel. 2021;306:121736. doi: 10.1016/j.fuel.2021.121736
  • Zhang C, Su H, Baeyens J, et al. Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev. 2014;38:383–392. doi: 10.1016/j.rser.2014.05.038
  • Thi NBD, Kumar G, Lin C-Y. An overview of food waste management in developing countries: current status and future perspective. J Environ Manage. 2015;157:220–229. doi: 10.1016/j.jenvman.2015.04.022
  • Parra-Orobio BA, Donoso-Bravo A, Ruiz-Sánchez JC, et al. Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manage. 2018;71:342–349. doi: 10.1016/j.wasman.2017.09.040
  • Casallas-Ojeda MR, Marmolejo-Rebellón LF, Torres-Lozada P. Identification of factors and variables that Influence the anaerobic digestion of municipal biowaste and food waste. Waste Biomass Valorization. 2021;12(6):2889–2904. doi: 10.1007/s12649-020-01150-x
  • Assis TI, Gonçalves RF. Valorization of food waste by anaerobic digestion: a bibliometric and systematic review focusing on optimization. J Environ Manage. 2022;320:115763. doi: 10.1016/j.jenvman.2022.115763
  • Lukitawesa PR, Millati R, Sárvári-Horváth I, et al. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered. 2020;11(1):39–52. doi: 10.1080/21655979.2019.1703544
  • Saif I, Thakur N, Zhang P, et al. Biochar assisted anaerobic digestion for biomethane production: microbial symbiosis and electron transfer. J Environ Chem Eng. 2022;10(3):107960. doi: 10.1016/j.jece.2022.107960
  • Shin D-C, Kim IT, Jung J, et al. Increasing anaerobic digestion efficiency using food-waste-based biochar. Fermentation. 2022. doi: 10.3390/fermentation8060282
  • Jin H-Y, He Z-W, Ren Y-X, et al. Role and significance of co-additive of biochar and nano-magnetite on methane production from waste activated sludge: non-synergistic rather than synergistic effects. Chem Eng J. 2022;439:135746. doi: 10.1016/j.cej.2022.135746
  • Kizito S, Jjagwe J, Mdondo SW, et al. Synergetic effects of biochar addition on mesophilic and high total solids anaerobic digestion of chicken manure. J Environ Manage. 2022;315:115192. doi: 10.1016/j.jenvman.2022.115192
  • Leithaeuser A, Gerber M, Span R, et al. Comparison of pyrochar, hydrochar and lignite as additive in anaerobic digestion and NH4+ adsorbent. Biores Technol. 2022;361:127674. doi: 10.1016/j.biortech.2022.127674
  • de Quadros TCF, Mangerino Sicchieri I, Fernandes F, et al. Selection of additive materials for anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. Biores Technol. 2022;361:127659. doi: 10.1016/j.biortech.2022.127659
  • Chen L, Fang W, Liang J, et al. Biochar application in anaerobic digestion: performances, mechanisms, environmental assessment and circular economy. ResouConserv Recycl. 2023;188:106720. doi: 10.1016/j.resconrec.2022.106720
  • Ngo T, Khudur LS, Hakeem IG, et al. Wood biochar enhances the Valorisation of the anaerobic digestion of chicken manure. Clean Technologies. 2022. doi: 10.3390/cleantechnol4020026
  • Cavali M, Libardi Junior N, Mohedano R, et al. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: an overview. Sci Total Environ. 2022;822:153614. doi: 10.1016/j.scitotenv.2022.153614
  • Jeswani HK, Saharudin DM, Azapagic A. Environmental sustainability of negative emissions technologies: a review. Sustainable Prod Consumption. 2022;33:608–635. doi: 10.1016/j.spc.2022.06.028
  • Gahane D, Biswal D, Mandavgane SA. Life cycle assessment of biomass pyrolysis. BioEnergy Res. 2022;15(3):1387–1406. doi: 10.1007/s12155-022-10390-9
  • Das SK, Ghosh GK, Avasthe R. Valorizing biomass to engineered biochar and its impact on soil, plant, water, and microbial dynamics: a review. Biomass Convers Biorefin. 2022;12(9):4183–4199. doi: 10.1007/s13399-020-00836-5
  • Liu H, Kumar V, Yadav V, et al. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered. 2021;12(2):10269–10301. doi: 10.1080/21655979.2021.1993536
  • Khoei S, Stokes A, Kieft B, et al. Biochar amendment rapidly shifts microbial community structure with enhanced thermophilic digestion activity. Biores Technol. 2021;341:125864. doi: 10.1016/j.biortech.2021.125864
  • Lu Y, Liu Q, Fu L, et al. The effect of modified biochar on methane emission and succession of methanogenic archaeal community in paddy soil. Chemosphere. 2022;304:135288. doi: 10.1016/j.chemosphere.2022.135288
  • Qi C, Wang R, Jia S, et al. Biochar amendment to advance contaminant removal in anaerobic digestion of organic solid wastes: a review. Biores Technol. 2021;341:125827. doi: 10.1016/j.biortech.2021.125827
  • Saif I, Salama E-S, Usman M, et al. Improved digestibility and biogas production from lignocellulosic biomass: biochar addition and microbial response. Ind Crops Prod. 2021;171:113851. doi: 10.1016/j.indcrop.2021.113851
  • Ferrari G, Andrea P, Abdul-Sattar N, et al. Bibliometric analysis of trends in biomass for bioenergy research. Energies. 2020;13(14):3714. doi: 10.3390/en13143714
  • Obileke K, Onyeaka H, Omoregbe O, et al. Bioenergy from bio-waste: a bibliometric analysis of the trend in scientific research from 1998–2018. Biomass Convers Biorefin. 2022;12(4):1077–1092. doi: 10.1007/s13399-020-00832-9
  • Zhang Y, Yu Q, Li J. Bioenergy research under climate change: a bibliometric analysis from a country perspective. Environ Sci Pollut Res. 2021;28(21):26427–26440. doi: 10.1007/s11356-021-12448-1
  • He P, Zhang H, Duan H, et al. Continuity of biochar-associated biofilm in anaerobic digestion. Chemical Engineering Journal. 2020;390:124605. doi: 10.1016/j.cej.2020.124605
  • Altamirano-Corona MF, Anaya-Reza O, Durán-Moreno A. Biostimulation of food waste anaerobic digestion supplemented with granular activated carbon, biochar and magnetite: a comparative analysis. Biomass Bioenergy. 2021;149:106105. doi: 10.1016/j.biombioe.2021.106105
  • Leininger A, Ren ZJ. Circular utilization of food waste to biochar enhances thermophilic co-digestion performance. Biores Technol. 2021;332:125130. doi: 10.1016/j.biortech.2021.125130
  • Sun Z, Feng L, Li Y, et al. The role of electrochemical properties of biochar to promote methane production in anaerobic digestion. J Clean Prod. 2022;362:132296. doi: 10.1016/j.jclepro.2022.132296
  • Wang Z, Zhang C, Watson J, et al. Adsorption or direct interspecies electron transfer? A comprehensive investigation of the role of biochar in anaerobic digestion of hydrothermal liquefaction aqueous phase. Chem Eng J. 2022;435:135078. doi: 10.1016/j.cej.2022.135078
  • Khashaba NH, Ettouney RS, Abdelaal MM, et al. Artificial neural network modeling of biochar enhanced anaerobic sewage sludge digestion. J Environ Chem Eng. 2022;10(4):107988. doi: 10.1016/j.jece.2022.107988
  • Lü F, Liu Y, Shao L, et al. Powdered biochar doubled microbial growth in anaerobic digestion of oil. Appl Energy. 2019;247:605–614. doi: 10.1016/j.apenergy.2019.04.052
  • York L, Heffernan C, Rymer C. A systematic review of policy approaches to dairy sector greenhouse gas (GHG) emission reduction. Green Open Access. 2018;172:2216–2224. doi: 10.1016/j.jclepro.2017.11.190
  • Boloy RAM, da Cunha Reis A, Rios EM, et al. Waste-to-Energy technologies towards circular economy: a systematic literature review and bibliometric analysis. Water Air Soil Pollut. 2021;232(7):306. doi: 10.1007/s11270-021-05224-x
  • Casallas-Ojeda M, Torres-Guevara LE, Caicedo-Concha DM, et al. Opportunities for waste to Energy in the milk production Industry: perspectives for the circular economy. Sustainability. 2021. doi: 10.3390/su132212892
  • Oviedo-Ocaña ER, Soto-Paz J, Domínguez I, et al. A systematic review on the application of bacterial inoculants and microbial consortia during green waste composting. Waste Biomass Valorization. 2022;13(8):3423–3444. doi: 10.1007/s12649-022-01687-z
  • Chadegani A, Salehi H, Yunus M, et al. A Comparison between two main academic literature collections: web of Science and Scopus databases. Asian Social Sci. 2013;9(5):18–26. doi: 10.5539/ass.v9n5p18
  • Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959–975. doi: 10.1016/j.joi.2017.08.007
  • Nigussie A, Dume B, Ahmed M, et al. Effect of microbial inoculation on nutrient turnover and lignocellulose degradation during composting: a meta-analysis. Waste Manage. 2021;125:220–234. doi: 10.1016/j.wasman.2021.02.043
  • Yu Y, Shen Y, Zhu N, et al. Effect of electrochemical properties of biochar and graphite on methane production in anaerobic digestion of excess activated sludge. Chin J Environ Eng. 2020;14(3):807–820.
  • Dalke R, Demro D, Khalid Y, et al. Current status of anaerobic digestion of food waste in the United States. Renew Sust Energ Rev. 2021;151:111554. doi: 10.1016/j.rser.2021.111554
  • Singh B, Macdonald LM, Kookana RS, et al. Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Res. 2014;52(8):739–750. doi: 10.1071/SR14112
  • Mohammadi A, Sandberg M, Venkatesh G, et al. Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: using digestate as a source of energy or for biochar production. Energy. 2019;182:594–605. doi: 10.1016/j.energy.2019.06.065
  • van der Velden R, da Fonseca-Zang W, Zang J, et al. Closed-loop organic waste management systems for family farmers in Brazil. Environ Technol. 2022;43(15):2252–2269. doi: 10.1080/09593330.2021.1871660
  • Anand A, Kumar V, Kaushal P. Biochar and its twin benefits: crop residue management and climate change mitigation in India. Renew Sust Energ Rev. 2022;156:111959. doi: 10.1016/j.rser.2021.111959
  • López-Robles J-R, Guallar J, Otegi-Olaso J-R, et al. El Profesional de la Información (EPI): análisis bibliométrico y temático (2006-2017). Profesional de la información. 2019;28(4). doi: 10.3145/epi.2019.jul.17
  • Dutta S, He M, Xiong X, et al. Sustainable management and recycling of food waste anaerobic digestate: a review. Biores Technol. 2021;341:125915. doi: 10.1016/j.biortech.2021.125915
  • Wang W, Lee D-J. Valorization of anaerobic digestion digestate: a prospect review. Biores Technol. 2021;323:124626. doi: 10.1016/j.biortech.2020.124626
  • Shao Z, Chen H, Zhao Z, et al. Combined effects of liquid digestate recirculation and biochar on methane yield, enzyme activity, and microbial community during semi-continuous anaerobic digestion. Biores Technol. 2022;364:128042. doi: 10.1016/j.biortech.2022.128042
  • Li X, Chu S, Wang P, et al. Potential of biogas residue biochar modified by ferric chloride for the enhancement of anaerobic digestion of food waste. Biores Technol. 2022;360:127530. doi: 10.1016/j.biortech.2022.127530
  • Wang S, Shi F, Li P, et al. Effects of rice straw biochar on methanogenic bacteria and metabolic function in anaerobic digestion. Sci Rep. 2022;12(1):6971. doi: 10.1038/s41598-022-10682-2
  • Quintana-Najera J, Blacker AJ, Fletcher LA, et al. Influence of augmentation of biochar during anaerobic co-digestion of chlorella vulgaris and cellulose. Biores Technol. 2022;343:126086. doi: 10.1016/j.biortech.2021.126086
  • Xu S, Duan Y, Zou S, et al. Evaluations of biochar amendment on anaerobic co-digestion of pig manure and sewage sludge: waste-to-methane conversion, microbial community, and antibiotic resistance genes. Biores Technol. 2022;346. doi: 10.1016/j.biortech.2021.126400
  • Basinas P, Rusín J, Chamrádová K. Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environ Res. 2021;192. doi: 10.1016/j.envres.2020.110202
  • Parra-Orobio BA, Cruz-Bournazou MN, Torres-Lozada P. Single-stage and two-stage anaerobic digestion of food waste: effect of the organic loading rate on the methane production and volatile fatty acids. Water Air Soil Pollut. 2021;232(3):105. doi: 10.1007/s11270-021-05064-9
  • Scrinzi D, Bona D, Denaro A, et al. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. J Environ Manage. 2022;309. doi: 10.1016/j.jenvman.2022.114688
  • Singh R, Paritosh K, Pareek N, et al. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: review. Biores Technol. 2022;360. doi: 10.1016/j.biortech.2022.127596
  • Deena SR, Vickram AS, Manikandan S, et al. Enhanced biogas production from food waste and activated sludge using advanced techniques – a review. Biores Technol. 2022;355. doi: 10.1016/j.biortech.2022.127234.
  • Liu J, Zhang W, Mei M, et al. A Ca-rich biochar derived from food waste digestate with exceptional adsorption capacity for arsenic (III) removal via a cooperative mechanism. Sep Purif Technol. 2022;295. doi: 10.1016/j.seppur.2022.121359
  • Jiang B, Tian J, Chen H, et al. Heavy metals migration and antibiotics removal in anaerobic digestion of swine manure with biochar addition. Environ Technol Innov. 2022;27. doi: 10.1016/j.eti.2022.102735
  • Rodríguez AD, Tyler AC, Trabold TA. Phosphate adsorption using biochar derived from solid digestate. Bioresour Technol Rep. 2021;16. doi: 10.1016/j.biteb.2021.100864
  • Lorick D, Macura B, Ahlström M, et al. Effectiveness of struvite precipitation and ammonia stripping for recovery of phosphorus and nitrogen from anaerobic digestate: a systematic review. Environmental Evidence. 2020;9(1): doi: 10.1186/s13750-020-00211-x
  • Yang S, Wen Q, Chen Z. Biochar induced inhibitory effects on intracellular and extracellular antibiotic resistance genes in anaerobic digestion of swine manure. Environ Res. 2022;212. doi: 10.1016/j.envres.2022.113530
  • Zhu Y, Jin Z, Yu Q, et al. Alleviating acid inhibition in anaerobic digestion of food waste: Coupling ethanol-type fermentation with biochar addition. Environ Res. 2022;212. doi: 10.1016/j.envres.2022.113355
  • Wang X, Wang P, Meng X, et al. Performance and metagenomics analysis of anaerobic digestion of food waste with adding biochar supported nano zero-valent iron under mesophilic and thermophilic condition. Sci Total Environ. 2022;820. doi: 10.1016/j.scitotenv.2022.153244
  • Mickan BS, Ren AT, Buhlmann CH, et al. Closing the circle for urban food waste anaerobic digestion: the use of digestate and biochar on plant growth in potting soil. J Clean Prod. 2022;347. doi: 10.1016/j.jclepro.2022.131071.
  • Gao M, Du P, Zhi B, et al. Magnetic biochar affects the metabolic pathway in methanogenesis of anaerobic digestion of food waste. GCB Bioenergy. 2022;14(5):572–584. doi: 10.1111/gcbb.12931
  • Ovi D, Chang SW, Wong JWC, et al. Effect of rice husk and palm tree-based biochar addition on the anaerobic digestion of food waste/sludge. Fuel. 2022;315. doi: 10.1016/j.fuel.2022.123188.
  • Jiang Q, Wu P, Zhang X, et al. Deciphering the effects of engineered biochar on methane production and the mechanisms during anaerobic digestion: Surface functional groups and electron exchange capacity. Energy Convers Manag. 2022;258. doi: 10.1016/j.enconman.2022.115417.
  • Wang Y, Li Y, Zhang Y, et al. Hydrothermal carbonization of garden waste by pretreatment with anaerobic digestion to improve hydrohcar performance and energy recovery. Sci Total Environ. 2022;807. doi: 10.1016/j.scitotenv.2021.151014.
  • Zhao L, Su C, Wang A, et al. Evaluation of biochar addition and circulation control strengthening measures on efficiency and microecology of food waste treatment in anaerobic reactor. J Environ Manage. 2021;297. doi: 10.1016/j.jenvman.2021.113215.
  • Jiang B, Lin Y, Lun Y, et al. Optimization of methane production in a swine manure–rice straw anaerobic co-digestion process with sycamore sawdust biochar application. Int J Environ Sci Technol. 2021;18(8):2197–2208. doi: 10.1007/s13762-020-02950-3
  • Zhang J, Cui Y, Zhang T, et al. Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: enhanced bioenergy generation and porous biochar production. Biores Technol. 2021;331. doi: 10.1016/j.biortech.2021.125051
  • Leininger A, Ren ZJ. Circular utilization of food waste to biochar enhances thermophilic co-digestion performance. Biores Technol. 2021;332. doi: 10.1016/j.biortech.2021.125130
  • Cui Y, Mao F, Zhang J, et al. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. Chemosphere. 2021;272. doi: 10.1016/j.chemosphere.2021.129863
  • Sánchez E, Herrmann C, Maja W, et al. Effect of organic loading rate on the anaerobic digestion of swine waste with biochar addition. Environ Sci Pollut Res. 2021;28(29):38455–38465. doi: 10.1007/s11356-021-13428-1
  • Chen M, Liu S, Yuan X, et al. Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar. Renewable Energy. 2021;163:357–367. doi: 10.1016/j.renene.2020.09.006
  • Lim EY, Tian H, Chen Y, et al. Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Biores Technol. 2020;314. doi: 10.1016/j.biortech.2020.123751
  • Li C, Li J, Pan L, et al. Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification. J Clean Prod. 2020;265:121852. doi: 10.1016/j.jclepro.2020.121852
  • Xu Q, Liao Y, Cho E, et al. Effects of biochar addition on the anaerobic digestion of carbohydrate-rich, protein-rich, and lipid-rich substrates. Journal Of The Air And Waste Management Association. 2020;70(4):455–467. doi: 10.1080/10962247.2020.1733133
  • Zhang L, Lim EY, Loh KC, et al. Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Convers Manag. 2020;209. doi: 10.1016/j.enconman.2020.112654
  • Zhang L, Li F, Kuroki A, et al. Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. Biores Technol. 2020;302. doi: 10.1016/j.biortech.2020.122892.
  • Ambaye TG, Rene ER, Dupont C, et al. Anaerobic digestion of Fruit waste mixed with sewage sludge digestate biochar: Influence on biomethane production. Front Energy Res. 2020;8. doi: 10.3389/fenrg.2020.00031.
  • Indren M, Birzer CH, Kidd SP, et al. Effects of biochar parent material and microbial pre-loading in biochar-amended high-solids anaerobic digestion. Biores Technol. 2020;298. doi: 10.1016/j.biortech.2019.122457
  • Indren M, Birzer CH, Kidd SP, et al. Effect of total solids content on anaerobic digestion of poultry litter with biochar. J Environ Manage. 2020;255. doi: 10.1016/j.jenvman.2019.109744
  • Rasapoor M, Young B, Asadov A, et al. Effects of biochar and activated carbon on biogas generation: A thermogravimetric and chemical analysis approach. Energy Convers Manag. 2020;203. doi: 10.1016/j.enconman.2019.112221
  • Mota-Panizio R, Hermoso-Orzáez MJ, Carmo-Calado L, et al. Co-carbonization of a mixture of waste insulation electric cables (WIEC) and lignocellulosic waste, for the removal of chlorine: Biochar properties and their behaviors. Fuel. 2022;320. doi: 10.1016/j.fuel.2022.123932
  • Omoriyekomwan JE, Tahmasebi A, Dou J, et al. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process Technol. 2021;214. doi: 10.1016/j.fuproc.2020.106686
  • Soffian MS, Abdul Halim FZ, Aziz F A, et al. Carbon-based material derived from biomass waste for wastewater treatment. Environ Adv. 2022;9:100259. doi: 10.1016/j.envadv.2022.100259
  • Battista F, Strazzera G, Valentino F, et al. New insights in food waste, sewage sludge and green waste anaerobic fermentation for short-chain volatile fatty acids production: A review. J Environ Chem Eng. 2022;10(5). doi: 10.1016/j.jece.2022.108319
  • Parra-Orobio BA, Angulo-Mosquera LS, Loaiza-Gualtero JS, et al. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J Environ Chem Eng. 2018;6(1):1529–1535. doi: 10.1016/j.jece.2018.01.048
  • Tsigkou K, Zagklis D, Parasoglou M, et al. Proposed protocol for rate-limiting step determination during anaerobic digestion of complex substrates. Biores Technol. 2022;361:127660. doi: 10.1016/j.biortech.2022.127660
  • Holliger C, Alves M, Andrade D, et al. Towards a standardization of biomethane potential tests. Water Sci Technol. 2016;74(11):2515–2522. doi: 10.2166/wst.2016.336
  • Castro-Molano L, Parrales-Ramírez YA, Escalante-Hernández H. Co-digestión anaerobia de estiércoles bovino, porcino y equino como alternativa para mejorar el potencial energético en digestores domésticos. Revista ION. 2019;32(2):29–39. doi: 10.18273/revion.v32n2-2019003
  • Zhang J, Loh K-C, Lee J, et al. Three-stage anaerobic co-digestion of food waste and horse manure. Sci Rep. 2017;7(1):1269. doi: 10.1038/s41598-017-01408-w
  • Ding L, Cheng J, Qiao D, et al. Continuous co-generation of biohydrogen and biomethane through two-stage anaerobic digestion of hydrothermally pretreated food waste. Energy Convers Manag. 2022;268. doi: 10.1016/j.enconman.2022.116000
  • Xiao B, Qin Y, Wu J, et al. Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: Performance, energy balance and reaction process. Energy Convers Manag. 2018;156:215–223. doi: 10.1016/j.enconman.2017.10.092
  • Kutlar FE, Tunca B, Yilmazel YD. Carbon-based conductive materials enhance biomethane recovery from organic wastes: A review of the impacts on anaerobic treatment. Chemosphere. 2022;290. doi: 10.1016/j.chemosphere.2021.133247
  • Jo Y, Kim J, Hwang K, et al. A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Manage. 2018;78:509–520. doi: 10.1016/j.wasman.2018.06.017
  • Zhao W, Yang H, He S, et al. A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments. Biores Technol. 2021;341. doi: 10.1016/j.biortech.2021.125797
  • Shi Y, Liu M, Li J, et al. The dosage-effect of biochar on anaerobic digestion under the suppression of oily sludge: Performance variation, microbial community succession and potential detoxification mechanisms. J Hazard Mater. 2022;421. doi: 10.1016/j.jhazmat.2021.126819
  • Pytlak A, Kasprzycka A, Szafranek-Nakonieczna A, et al. Biochar addition reinforces microbial interspecies cooperation in methanation of sugar beet waste (pulp). Sci Total Environ. 2020;730. doi: 10.1016/j.scitotenv.2020.138921.
  • Tufaner F, Demirci Y. Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Technol Envir. 2020;22(3):713–724. doi: 10.1007/s10098-020-01816-z
  • Batstone DJ, Puyol D, Flores-Alsina X, et al. Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews In Environmental Science And Biotechnology. 2015;14(4):595–613. doi: 10.1007/s11157-015-9376-4
  • Etuwe CN, Momoh YOL, Iyagba ET. Development of mathematical models and application of the modified Gompertz model for Designing Batch biogas reactors. Waste Biomass Valorization. 2016;7(3):543–550. doi: 10.1007/s12649-016-9482-8
  • Angelidaki I, Ellegaard L, Ahring BK. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnol Bioeng. 1993;42(2):159–166. doi: 10.1002/bit.260420203
  • Lovato G, Alvarado-Morales M, Kovalovszki A, et al. In-situ biogas upgrading process: Modeling and simulations aspects. Biores Technol. 2017;245:332–341. doi: 10.1016/j.biortech.2017.08.181
  • Donoso-Bravo A, Mailier J, Martin C, et al. Model selection, identification and validation in anaerobic digestion: A review. Water Res. 2011;45(17):5347–5364. doi: 10.1016/j.watres.2011.08.059
  • Zhang Y, Li L, Ren Z, et al. Plant-scale biogas production prediction based on multiple hybrid machine learning technique. Biores Technol. 2022;363. doi: 10.1016/j.biortech.2022.127899.
  • Kazemi P, Bengoa C, Steyer JP, et al. Data-driven techniques for fault detection in anaerobic digestion process. Process SafEnviron Prot. 2021;146:905–915. doi: 10.1016/j.psep.2020.12.016
  • Sahni N, Simon G, Arora R. Development and Validation of machine learning models for Prediction of 1-year Mortality Utilizing Electronic Medical Record data available at the End of Hospitalization in Multicondition Patients: a Proof-of-Concept study. J Gen Intern Med. 2018;33(6):921–928. doi: 10.1007/s11606-018-4316-y
  • Alzubi J, Nayyar A, Kumar A. Machine learning from Theory to algorithms: An overview. J Phys Conf Ser. 2018;1142:012012. doi: 10.1088/1742-6596/1142/1/012012 1 ed.
  • Andrade CI, Chuenchart W, Long F, et al. Application of machine learning in anaerobic digestion: Perspectives and challenges. Biores Technol. 2022;345. doi: 10.1016/j.biortech.2021.126433.
  • Zhang L, Li F, Tsui TH, et al. Microbial succession analysis reveals the significance of restoring functional microorganisms during rescue of failed anaerobic digesters by bioaugmentation of nano-biochar-amended digestate. Biores Technol. 2022;352. doi: 10.1016/j.biortech.2022.127102.
  • Ma J, Pan J, Qiu L, et al. Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion. Biores Technol. 2019;293:122026. doi: 10.1016/j.biortech.2019.122026
  • Duan X, Chen Y, Yan Y, et al. New method for algae comprehensive utilization: Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production. Biores Technol. 2019;289:121637. doi: 10.1016/j.biortech.2019.121637
  • Kaur G, Johnravindar D, Wong JWC. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: A step towards increased organic loading efficiency in co-digestion. Biores Technol. 2020;308. doi: 10.1016/j.biortech.2020.123250
  • Zheng X, Yang Z, Xu X, et al. Distillers’ grains anaerobic digestion residue biochar used for ammonium sorption and its effect on ammonium leaching from an Ultisol. Environ Sci Pollut Res. 2018;25(15):14563–14574. doi: 10.1007/s11356-018-1681-3
  • Shen Y, Linville JL, Urgun-Demirtas M, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl Energy. 2015;158:300–309. doi: 10.1016/j.apenergy.2015.08.016
  • Jiao Y, Xue H, He C, et al. Effect of combined addition amount of nano zero-valent iron and biochar on methane production by anaerobic digestion of corn straw. Environ Dev Sustain. 2022;24(4):4709–4726. doi: 10.1007/s10668-021-01629-0
  • Casallas-Ojeda MR, Marmolejo-Rebellón LF, Torres-Lozada P, et al. Evaluation of simultaneous incidence of head space and temperature on biochemical methane potential in food waste. Cogent Eng. 2020;7(1):1729514. doi: 10.1080/23311916.2020.1729514
  • Liang J, Luo L, Li D, et al. Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials: Performance, stability, and underlying mechanism. Biores Technol. 2021;337:125384. doi: 10.1016/j.biortech.2021.125384
  • Johnravindar D, Kaur G, Liang J, et al. Impact of total solids content on biochar amended co-digestion of food waste and sludge: Microbial community dynamics, methane production and digestate quality assessment. Biores Technol. 2022;361. doi: 10.1016/j.biortech.2022.127682.
  • Lee JY, Lee SH, Park HD. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Biores Technol. 2016;205:205–212. doi: 10.1016/j.biortech.2016.01.054
  • Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013;48(5–6):901–911. doi: 10.1016/j.procbio.2013.04.012
  • Jiang Y, McAdam E, Zhang Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Water Proc Eng. 2019;32:100899. doi: 10.1016/j.jwpe.2019.100899
  • Chen M, Wang F, Zhang DL, et al. Effects of acid modification on the structure and adsorption NH4±N properties of biochar. Renewable Energy. 2021;169:1343–1350. doi: 10.1016/j.renene.2021.01.098
  • Yin C, Shen Y, Yuan R, et al. Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production. Biores Technol. 2019;284:315–324. doi: 10.1016/j.biortech.2019.03.146
  • Saveyn H, Eder P. End-of-waste criteria for Biodegradable waste Subjected to biological treatment (compost & digestate): technical Proposals. European Union. 2014. [cited July 2023]. Available from: https://publications.jrc.ec.europa.eu/repository/handle/JRC87124.
  • Biala J, Wilkinson K. International Comparison of the Australian Standard for compost, soil Conditioners and Mulches (AS4454 - 20120). 2020 [cited 20st July 2022]. Available from: https://www.aora.org.au/sites/default/files/uploaded-content/website-content/International_Comparison_AS4454_Final.pdf.
  • Cai Y, Zhu M, Meng X, et al. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review. Biores Technol. 2022;351:126924. doi: 10.1016/j.biortech.2022.126924
  • Jaimes-Estévez J, Mercado EV, Jaramillo JG, et al. From laboratory to farm-scale psychrophilic anaerobic co-digestion of cheese whey and cattle manure. Bioresour Technol Rep. 2022;19:101168. doi: 10.1016/j.biteb.2022.101168
  • Martí-Herrero J, Alvarez R, Cespedes R, et al. Cow, sheep and llama manure at psychrophilic anaerobic co-digestion with low cost tubular digesters in cold climate and high altitude. Biores Technol. 2015;181:238–246. doi: 10.1016/j.biortech.2015.01.063
  • Dev S, Saha S, Kurade MB, et al. Perspective on anaerobic digestion for biomethanation in cold environments. Renew Sust Energ Rev. 2019;103:85–95. doi: 10.1016/j.rser.2018.12.034
  • Garfí M, Martí-Herrero J, Garwood A, et al. Household anaerobic digesters for biogas production in Latin America: A review. Renew Sust Energ Rev. 2016;60:599–614. doi: 10.1016/j.rser.2016.01.071
  • Li J, Li L, Suvarna M, et al. Wet wastes to bioenergy and biochar: A critical review with future perspectives. Sci Total Environ. 2022;817:152921. doi: 10.1016/j.scitotenv.2022.152921