916
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improved remediation of amoxicillin-contaminated water by floating treatment wetlands intensified with biochar, nutrients, aeration, and antibiotic-degrading bacteria

, , , , , , , , & ORCID Icon show all
Article: 2252207 | Received 22 Mar 2023, Accepted 13 Jun 2023, Published online: 15 Sep 2023

References

  • Tara N, Iqbal M, Mahmood Khan Q, et al. Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water Environ J. 2019;33(1):124–17. doi: 10.1111/wej.12383
  • Panda S, Kar R, Panda C. Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment. Int J Environ Sci. 2013;3(5):1314.
  • Afzal M, Arslan M, Müller JA, et al. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat Sustainability. 2019;2(9):863–871. doi: 10.1038/s41893-019-0350-y
  • Kovalakova P, Cizmas L, McDonald TJ, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere. 2020;251:126351. doi: 10.1016/j.chemosphere.2020.126351
  • Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci, USA. 2018;115(15):E3463–E3470. doi: 10.1073/pnas.1717295115
  • Lv M, Zhang D, Niu X, et al. Insights into the fate of antibiotics in constructed wetland systems: Removal performance and mechanisms. J Environ Manage. 2022;321:116028. doi: 10.1016/j.jenvman.2022.116028
  • Bhatt E, Gauba P. A sustainable approach for phytoremediation of amoxicillin using Ocimum basilicum. Current Trends Biotechnol Pharm. 2021;15(4):426–435.
  • Sodhi KK, Kumar M, Singh DK. Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. Water Proc Eng. 2021;39:101858. doi: 10.1016/j.jwpe.2020.101858
  • Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, et al. Amoxicillin in the aquatic environment, its fate and environmental risk. Environ Health Risk-Hazard Factors Living Species. 2016;1:247–267.
  • Singh V, Pandey B, Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere. 2018;201:492–502. doi: 10.1016/j.chemosphere.2018.03.010
  • Githinji LJ, Musey MK, Ankumah RO. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 2011;219(1):191–201. doi: 10.1007/s11270-010-0697-1
  • Li M, Cha DJ, Lai Y, et al. The antimicrobial peptide‐sensing system aps of Staphylococcus aureus. Mol Microbiol. 2007;66(5):1136–1147. doi: 10.1111/j.1365-2958.2007.05986.x
  • Sodhi KK, Kumar M, Balan B, et al. Isolation and characterization of amoxicillin-resistant bacteria and amoxicillin-induced alteration in its protein profiling and RNA yield. Arch Microbiol. 2020;202(2):225–232. doi: 10.1007/s00203-019-01737-6
  • Yin Z. Distribution and ecological risk assessment of typical antibiotics in the surface waters of seven major rivers, China. Environ Sci Processes Impacts. 2021;23(8):1088–1100. doi: 10.1039/D1EM00079A
  • Zhou Q, Liu G, Arif M, et al. Occurrence and risk assessment of antibiotics in the surface water of Chaohu Lake and its tributaries in China. Sci Total Environ. 2022;807:151040. doi: 10.1016/j.scitotenv.2021.151040
  • Rice EW, Baird RB, Eaton AD, et al. Standard methods for the examination of water and wastewater. Vol. 10. Washington, DC: American public health association; 2012.
  • Urtiaga A. Electrochemical technologies combined with membrane filtration. Curr Opin Electrochem. 2021;27:100691. doi: 10.1016/j.coelec.2021.100691
  • Scaria J, Gopinath A, Nidheesh P. A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. J Clean Prod. 2021;278:124014. doi: 10.1016/j.jclepro.2020.124014
  • Rathi BS, Kumar PS. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut. 2021;280:116995. doi: 10.1016/j.envpol.2021.116995
  • Ahmed S, Mofijur M, Nuzhat S, et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater. 2021;416:125912. doi: 10.1016/j.jhazmat.2021.125912
  • Zhao L, Deng J, Sun P, et al. Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Sci Total Environ. 2018;627:1253–1263. doi: 10.1016/j.scitotenv.2018.02.006
  • Shah SWA, Rehman M, Hayat A, et al. Enhanced degradation of ciprofloxacin in floating treatment wetlands augmented with bacterial cells Immobilized on Iron oxide Nanoparticles. Sustainability. 2022;14(22):14997. doi: 10.3390/su142214997
  • Ávila C, García-Galán MJ, Borrego CM, et al. New insights on the combined removal of antibiotics and ARGs in urban wastewater through the use of two configurations of vertical subsurface flow constructed wetlands. Sci Total Environ. 2021;755:142554. doi: 10.1016/j.scitotenv.2020.142554
  • Kumar M, Sridharan S, Sawarkar AD, et al. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci Total Environ. 2023;859:160031. doi: 10.1016/j.scitotenv.2022.160031
  • Dutta A, Banerjee P, Sarkar D, et al. Degradation of Trypan Blue in wastewater by sunlight-assisted modified photo-Fenton reaction. Desalin Water Treat. 2015;56(6):1498–1506. doi: 10.1080/19443994.2014.950341
  • Benvenuti T, Hamerski F, Giacobbo A, et al. Constructed floating wetland for the treatment of domestic sewage: a real-scale study. J Environ Chem Eng. 2018;6(5):5706–5711. doi: 10.1016/j.jece.2018.08.067
  • Cerbaro KA, da Rocha RDC. Tolerance and phytoremediation capacity of the Lemna minor in an aqueous medium contaminated by the amoxicillin. Res, Soc Dev. 2022;11(7):e45711730251–e45711730251. doi: 10.33448/rsd-v11i7.30251
  • Fahid M, Arslan M, Shabir G, et al. Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere. 2020;240:124890. doi: 10.1016/j.chemosphere.2019.124890
  • Nakai S, Zou G, Okuda T, et al. Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands. Allelopathy J. 2010;26(1):113–121.
  • Srivastava JK, Chandra H, Kalra SJ, et al. Plant–microbe interaction in aquatic system and their role in the management of water quality: a review. Appl Water Sci. 2017;7(3):1079–1090. doi: 10.1007/s13201-016-0415-2
  • Hashmat AJ, Afzal M, Arias CA, et al. Enhanced degradation of hydrocarbons in constructed wetlands aided with nutrients, surfactant, and aeration. Int J Phytoremediation. 2022;24(11):1163–1172. doi: 10.1080/15226514.2021.2021140
  • Li X, Li Y, Xu D, et al. Effects of solar aeration on purification capacity of floating constructed wetlands with biochar. Environ Sci Technol (China). 2018;41(7):54–59.
  • Li G, Tao L, Li X-L, et al. Design and performance of a novel rice hydroponic biofilter in a pond-scale aquaponic recirculating system. Ecol Eng. 2018;125:1–10. doi: 10.1016/j.ecoleng.2018.10.001
  • Park JB, Sukias JP, Tanner CC. Floating treatment wetlands supplemented with aeration and biofilm attachment surfaces for efficient domestic wastewater treatment. Ecol Eng. 2019;139:105582. doi: 10.1016/j.ecoleng.2019.105582
  • Yang X, Zhang S, Ju M, et al. Preparation and modification of biochar materials and their application in soil remediation. Appl Sci. 2019;9(7):1365. doi: 10.3390/app9071365
  • Xiang W, Zhang X, Chen J, et al. Biochar technology in wastewater treatment: A critical review. Chemosphere. 2020;252:126539. doi: 10.1016/j.chemosphere.2020.126539
  • Syafruddin S, Wieshammer G, Puschenreiter M, et al. Effect of N and P fertilisation and aeration on biodegradation of crude oil in aged hydrocarbon contaminated soils. Plant Soil Environ. 2010;56(4):149–155. doi: 10.17221/146/2009-PSE
  • Ghosh K, Sarkar A. Evaluating urban wastewater remediation efficiency of the hydroponic vetiver System through predictive modelling using artificial neural network. Environ Technol Innov. 2021;24:102007. doi: 10.1016/j.eti.2021.102007
  • Afzal M, Yousaf S, Reichenauer TG, et al. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater. 2011;186(2–3):1568–1575. doi: 10.1016/j.jhazmat.2010.12.040
  • Afzal M, Yousaf S, Reichenauer TG, et al. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation. 2012;14(1):35–47. doi: 10.1080/15226514.2011.552928
  • Yasin M, Tauseef M, Zafar Z, et al. Plant-microbe synergism in floating treatment wetlands for the enhanced removal of sodium dodecyl sulphate from water. Sustainability. 2021;13(5):2883. doi: 10.3390/su13052883
  • Ijaz A, Shabir G, Khan QM, et al. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng. 2015;84:58–66. doi: 10.1016/j.ecoleng.2015.07.025
  • Fernandes JP. Response of microorganisms from natural and constructed wetlands to veterinary drugs. 2014. doi: 10.1016/j.jsps.2013.12.005
  • Aljeboree AM, Alshirifi AN, editors. Colorimetric determination of amoxicillin using 4-aminoantipyrine and the effects of different parameters. Journal of Physics: Conference Series; College of Science, University of Al-Qadisiyah, Iraq; IOP Publishing; 2019.
  • Rehman K, Imran A, Amin I, et al. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater. 2018;349:242–251. doi: 10.1016/j.jhazmat.2018.02.013
  • Dhanve R, Jadhav J, Govindwar S. A study of textile effluent ecotoxicity and its biodegradation by an Exiguobacterium sp. RD3. Int J Curr Biotechnol. 2014;2(4):45–50.
  • Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manage. 2012;112:429–448. doi: 10.1016/j.jenvman.2012.08.011
  • Bali A. Bioremediation of pharmaceutical wastes. In: Handbook of research on inventive bioremediation techniques. IGI Global; 2017. pp. 364–393.
  • Singh T, Awasthi G, Tiwari Y. Recruiting endophytic bacteria of wetland plants to phytoremediate organic pollutants. Int J Environ Sci Technol. 2021;19(9):1–12. doi: 10.1007/s13762-021-03476-y
  • Mahmoudpour M, Gholami S, Ehteshami M, et al. Evaluation of phytoremediation potential of vetiver grass (chrysopogon zizanioides (L.) roberty) for wastewater treatment. Adv Mater Sci Eng. 2021;2021:1–12. doi: 10.1155/2021/3059983
  • Datta R, Das P, Smith S, et al. Phytoremediation potential of vetiver grass [Chrysopogon zizanioides (L.)] for tetracycline. Int J Phytoremediation. 2013;15(4):343–351. doi: 10.1080/15226514.2012.702803
  • Davamani V, Parameshwari CI, Arulmani S, et al. Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). J Environ Chem Eng. 2021;9(4):105528. doi: 10.1016/j.jece.2021.105528
  • Shaofeng Q, Hanxin T, Yingxue L, et al. Effect of combination biochar and magnesium oxide on nitrogen and phosphorus transformation in floating wetland. Environ Chem. 2022;41(7):2425–2434.
  • Panja S, Sarkar D, Zhang Z, et al. Removal of antibiotics and nutrients by vetiver grass (Chrysopogon zizanioides) from a plug flow reactor based constructed wetland model. Toxics. 2021;9(4):84. doi: 10.3390/toxics9040084
  • Chand N, Suthar S, Kumar K, et al. Removal of pharmaceuticals by vertical flow constructed wetland with different configurations: Effect of inlet load and biochar addition in the substrate. Chemosphere. 2022;307:135975. doi: 10.1016/j.chemosphere.2022.135975
  • Demirezen DA, Yıldız YŞ, Yılmaz DD. Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis. Environ Nanotechnol, Monit Manage. 2019;11:100219. doi: 10.1016/j.enmm.2019.100219
  • Liu N, Han H, Yin H, et al. Variations in the fate and risk analysis of amoxicillin and its degradation products during pig manure aerobic composting. J Hazard Mater. 2018;346:234–241. doi: 10.1016/j.jhazmat.2017.11.050
  • Wang Y, Villamil MB, Davidson PC, et al. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci Total Environ. 2019;685:741–752. doi: 10.1016/j.scitotenv.2019.06.244
  • Zhuang L-L, Li M, Li Y, et al. The performance and mechanism of biochar-enhanced constructed wetland for wastewater treatment. Water Proc Eng. 2022;45:102522. doi: 10.1016/j.jwpe.2021.102522
  • Sun P, Li Y, Meng T, et al. Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine. Water Res. 2018;147:91–100. doi: 10.1016/j.watres.2018.09.051
  • Zhang P, Peng Y, Lu J, et al. Microbial communities and functional genes of nitrogen cycling in an electrolysis augmented constructed wetland treating wastewater treatment plant effluent. Chemosphere. 2018;211:25–33. doi: 10.1016/j.chemosphere.2018.07.067
  • Ming L, Ming L, Li Z-P, et al. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. J Integr Agric. 2016;15(1):209–219. doi: 10.1016/S2095-3119(15)61136-4