753
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of deep eutectic solvent pretreatment on biohydrogen production from corncob: pretreatment temperature and duration

, , , , , , , & show all
Article: 2252218 | Received 16 Feb 2023, Accepted 07 Aug 2023, Published online: 30 Aug 2023

References

  • Xing XK, Yan YM, Zhang HR, et al. Optimal design of distributed energy systems for industrial parks under gas shortage based on augmented epsilon-constraint method. J Clean Prod. 2019;218:782–481. doi: 10.1016/j.jclepro.2019.02.052
  • Zhang T, Jiang DP, Li YM, et al. Study of the interrelationship between nano-TiO2 addition and photo-fermentative bio-hydrogen production of corn straw. Biores Technol. 2021;338:338. doi: 10.1016/j.biortech.2021.125549
  • Androga DD, Ozgur E, Eroglu I, et al. Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int J Hydrogen Energy. 2011;36(24):15583–15594. doi: 10.1016/j.ijhydene.2011.09.043
  • Lu CY, Li WZ, Zhang QG, et al. Enhancing photo-fermentation biohydrogen production by strengthening the beneficial metabolic products with catalysts. J Clean Prod. 2021;317:317. doi: 10.1016/j.jclepro.2021.128437
  • Zhang T, Jiang DP, Zhang H, et al. Effects of different pretreatment methods on the structural characteristics, enzymatic saccharification and photo-fermentative bio-hydrogen production performance of corn straw. Biores Technol. 2020;304:304. doi: 10.1016/j.biortech.2020.122999
  • Soccol CR, Vandenberghe LPD, Medeiros ABP, et al. Bioethanol from lignocelluloses: Status and perspectives in Brazil. Biores Technol. 2010;101(13):4820–4825. doi: 10.1016/j.biortech.2009.11.067
  • Sun D, Lv ZW, Rao J, et al. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr Polym. 2022;281:281. doi: 10.1016/j.carbpol.2021.119050
  • El-Hallag I, Elsharkawy S, Hammad S. Electrodeposition of Ni nanoparticles from deep eutectic solvent and aqueous solution as electrocatalyst for methanol oxidation in acidic media. Int J Hydrogen Energy. 2021;46(29):15442–15453. doi: 10.1016/j.ijhydene.2021.02.049
  • Protsenko VS, Bogdanov DA, Korniy SA, et al. Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. Int J Hydrogen Energy. 2019;44(45):24604–24616. doi: 10.1016/j.ijhydene.2019.07.188
  • Procentese A, Johnson E, Orr V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Biores Technol. 2015;192:31–36. doi: 10.1016/j.biortech.2015.05.053
  • Vijayakumar J, Mohan S, Kumar SA, et al. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int J Hydrogen Energy. 2013;38:10208–10214. doi: 10.1016/j.ijhydene.2013.06.068
  • Hong S, Yuan Y, Liu CZ, et al. A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. J Mater Chem C. 2020;8(2):550–560. doi: 10.1039/c9tc05913j
  • Mjalli FS, Murshid G, Al-Zakwani S, et al. Monoethanolamine-based deep eutectic solvents, their synthesis and characterization. Fluid Phase Equilibria. 2017;448:30–40. doi: 10.1016/j.fluid.2017.03.008
  • Sarmad S, Xie YJ, Mikkola JP, et al. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem. 2017;41(1):290–301. doi: 10.1039/c6nj03140d
  • Francisco M, van den Bruinhorst A, Kroon MC. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 2012;14(8):2153–2157. doi: 10.1039/c2gc35660k
  • Chen Z, Reznicek WD, Wan CX. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Biores Technol. 2018;263:40–48. doi: 10.1016/j.biortech.2018.04.058
  • Kumar AK, Parikh BS, Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res. 2016;23(10):9265–9275. doi: 10.1007/s11356-015-4780-4
  • Wang ZK, Li HY, Lin XC, et al. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Biores Technol. 2020;307:307. doi: 10.1016/j.biortech.2020.123237
  • Tan YT, Ngoh GC, Chua ASM. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind Crop Prod. 2018;123:271–277. doi: 10.1016/j.indcrop.2018.06.091
  • Shen XJ, Wen JL, Mei QQ, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem. 2019;21(2):275–283. doi: 10.1039/c8gc03064b
  • Chourasia VR, Pandey A, Pant KK, et al. Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment. Biores Technol. 2021;337:337. doi: 10.1016/j.biortech.2021.125480
  • Guo ZW, Zhang QL, You TT, et al. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem. 2019;21(11):3099–3108. doi: 10.1039/c9gc00704k
  • Yang JY, Zhang WJ, Wang Y, et al. Novel, recyclable Bronsted acidic deep eutectic solvent for mild fractionation of hemicelluloses. Carbohydr Polym. 2022;278. doi: 10.1016/j.carbpol.2021.118992
  • Alvarez-Vasco C, Ma RS, Quintero M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 2016;18(19):5133–5141. doi: 10.1039/c6gc01007e
  • Medina-Morales MA, De la Cruz-Andrade LE, Paredes-Peña LA, et al. Biohydrogen production from thermochemically pretreated corncob using a mixed culture bioaugmented with Clostridium acetobutylicum. Int J Hydrogen Energy. 2021;46(51):25974–25984. doi: 10.1016/j.ijhydene.2021.04.046
  • Cai X, Hu CH, Wang J, et al. Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode. Biores Technol. 2021;326:326. doi: 10.1016/j.biortech.2021.124768
  • Zhang ZP, Fan XN, Li YM, et al. Photo-fermentative biohydrogen production from corncob treated by microwave irradiation. Biores Technol. 2021;340:340. doi: 10.1016/j.biortech.2021.125460
  • Jing Y, Li F, Li Y, et al. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: Effect of liquid-solid ratio. Bioresour Technol. 2022;349:126867. doi: 10.1016/j.biortech.2022.126867
  • Hou XD, Li AL, Lin KP, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Biores Technol. 2018;249:261–267. doi: 10.1016/j.biortech.2017.10.019
  • Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced. 2008;1617:1–16.
  • Zhu SN, Zhang ZP, Zhang H, et al. Rheological properties of corn stover hydrolysate and photo-fermentation bio-hydrogen producing capacity under intermittent stirring. Int J Hydrogen Energy. 2020;45(6):3721–3728. doi: 10.1016/j.ijhydene.2019.08.069
  • Zhang XT, Jiang DP, Zhang H, et al. Enhancement of the biohydrogen production performance from mixed substrate by photo-fermentation: Effects of initial pH and inoculation volume ratio. Biores Technol. 2021;319:319. doi: 10.1016/j.biortech.2020.124153
  • Jiang DP, Ge XM, Zhang T, et al. Effect of alkaline pretreatment on photo-fermentative hydrogen production from giant reed: Comparison of NaOH and Ca(OH)(2). Biores Technol. 2020;33:304.
  • Jiang DP, Ge XM, Zhang T, et al. Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. Int J Hydrogen Energy. 2016;41(38):16778–16785. doi: 10.1016/j.ijhydene.2016.07.129
  • Lu CY, Zhang ZP, Ge XM, et al. Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. Int J Hydrogen Energy. 2016;41(31):13399–13407. doi: 10.1016/j.ijhydene.2016.06.101
  • Jiang DP, Zhang XT, Jing YY, et al. Towards high light conversion efficiency from photo-fermentative hydrogen production of Arundo donax L. by light–dark duration alternation strategy. Biores Technol. 2022;344:344. doi: 10.1016/j.biortech.2021.126302
  • Cheng J, Su HB, Zhou JH, et al. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. Int J Hydrogen Energy. 2011;36(3):2093–2101. doi: 10.1016/j.ijhydene.2010.11.021
  • Hou XD, Li N, Zong MH. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. Biores Technol. 2013;136:469–474. doi: 10.1016/j.biortech.2013.02.118
  • Chen Z, Jiang DP, Zhang T, et al. Comparison of three ionic liquids pretreatment of Arundo donax L. for enhanced photo-fermentative hydrogen production. Biores Technol. 2022;343:343. doi: 10.1016/j.biortech.2021.126088
  • Li AL, Hou XD, Lin KP, et al. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J Biosci Bioeng. 2018;126(3):346–354. doi: 10.1016/j.jbiosc.2018.03.011
  • Zhang Y, Zhang H, Lee DJ, et al. Effect of enzymolysis time on biohydrogen production from photo-fermentation by using various energy grasses as substrates. Biores Technol. 2020;305:305. doi: 10.1016/j.biortech.2020.123062
  • Li YM, Zhang ZP, Jing YY, et al. Forecasting of reducing sugar yield from corncob after ultrafine grinding pretreatment based on GM(1,N) method and evaluation of biohydrogen production potential. Biores Technol. 2022;348:348. doi: 10.1016/j.biortech.2022.126836
  • Zhang H, Wu JH. Statistical optimization of aqueous ammonia pretreatment and enzymatic hydrolysis of corn cob powder for enhancing sugars production. Biochem Eng J. 2021;174:174. doi: 10.1016/j.bej.2021.108106
  • XX T, NQ R, JF X. Evaluation of hydrogen production from corn cob with the mesophilic bacterium clostridium hydrogeniproducens HR-1. Int J Hydrogen Energy. 2013;38(22):9104–9110. doi: 10.1016/j.ijhydene.2013.05.066
  • Wang JL, Yin YA. Fermentative hydrogen production using various biomass-based materials as feedstock. Renew Sust Energ Rev. 2018;92:284–306. doi: 10.1016/j.rser.2018.04.033
  • Li YM, Fan XN, Zhang HR, et al. Pretreatment of corn stover by torrefaction for improving reducing sugar and biohydrogen production. Biores Technol. 2022;351:351. doi: 10.1016/j.biortech.2022.126905
  • Asadi N, Zilouei H. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using enterobacter aerogenes. Biores Technol. 2017;227:335–344. doi: 10.1016/j.biortech.2016.12.073
  • Dong LL, Cao GL, Zhao L, et al. Alkali/Urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production. Biores Technol. 2018;267:71–76. doi: 10.1016/j.biortech.2018.05.055
  • Zhu J, Song W, Chen X, et al. Integrated process to produce biohydrogen from wheat straw by enzymatic saccharification and dark fermentation. Int J Hydrogen Energy. 2023;48(30):11153–11161. doi: 10.1016/j.ijhydene.2022.05.056
  • Lorencini P, Siqueira MR, Maniglia BC, et al. Biohydrogen production from liquid and solid fractions of sugarcane bagasse After optimized pretreatment with hydrochloric acid. Waste Biomass Valorization. 2016;7(5):1017–1029. doi: 10.1007/s12649-016-9494-4
  • Lu CY, Jing YY, Zhang H, et al. Biohydrogen production through active saccharification and photo-fermentation from alfalfa. Biores Technol. 2020;304:304. doi: 10.1016/j.biortech.2020.123007
  • Zhang T, Jiang DP, Zhang H, et al. Comparative study on bio-hydrogen production from corn stover: Photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int J Hydrogen Energy. 2020;45(6):3807–3814. doi: 10.1016/j.ijhydene.2019.04.170