1,032
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacterial cellulose nanocrystal as drug delivery system for overcoming the biological barrier of cyano-phycocyanin: a biomedical application of microbial product

, , , , , , , , ORCID Icon & show all
Article: 2252226 | Received 23 Apr 2023, Accepted 09 Aug 2023, Published online: 30 Aug 2023

References

  • Gorgich M, Passos MLC, Mata TM, et al. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption. Energy Rep. 2020;6:312. doi: 10.1016/j.egyr.2020.11.151
  • Izadi M, Fazilati M. Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti- inflammatory activity. Asian J Green Chem. 2018;2:364. doi: 10.22034/AJGC.2018.63597
  • Opretzka LCF, Do Espírito-Santo RF, Nascimento OA, et al. Natural chromones as potential anti-inflammatory agents: pharmacological properties and related mechanisms. Int Immunopharmacol. 2019;72:31. doi: 10.1016/j.intimp.2019.03.044
  • Mitra S, Siddiqui WA, Khandelwal S. C-Phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: a comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact. 2015;238:138. doi: 10.1016/j.cbi.2015.06.016
  • Jiang L, Wang Y, Yin Q, et al. Phycocyanin: a potential drug for cancer treatment. J Cancer. 2017;8:3416. doi: 10.7150/jca.21058
  • Wen P, Hu TG, Wen Y, et al. Targeted delivery of phycocyanin for the prevention of colon cancer using electrospun fibers. Food Funct. 2019;10(4):1816. doi: 10.1039/C8FO02447B
  • Minic SL, Stanic-Vucinic D, Mihailovic J, et al. Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina. J Proteomics. 2016;147:132. doi: 10.1016/j.jprot.2016.03.043
  • Martinho N, Damgé C, Reis CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol. 2011;2(05):510. doi: 10.4236/jbnb.2011.225062
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1). doi: 10.1186/s12951-018-0392-8
  • Korting HC, Schäfer-Korting M. Carriers in the Topical Treatment of Skin Disease. Drug Delivery. Vol. 197, Handbook of Experimental Pharmacology. Springer; 2010. doi:10.1007/978-3-642-00477-3_15
  • Gupta R, Rai B. Computer-aided design of nanoparticles for transdermal drug delivery. 2020;225–518. doi: 10.1007/978-1-4939-9798-5_12
  • Shreya AB, Raut SY, Managuli RS, et al. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: recent advances. AAPS Pharm Sci Tech. 2019;20(1). doi: 10.1208/s12249-018-1262-2
  • Homayun B, Lin X, Choi HJ. Challenges and Recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129. doi: 10.3390/pharmaceutics11030129
  • Araújo F, Das Neves J, Martins JP, et al. Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Prog Mater Sci. 2017;89:306. doi: 10.1016/j.pmatsci.2017.05.001
  • Ates B, Koytepe S, Ulu A, et al. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem Rev. 2020;120(17):9304. doi: 10.1021/acs.chemrev.9b00553
  • Bashari A, Shirvan AR, Shakeri M. Cellulose-based hydrogels for personal care products. Polym Adv Technol. 2018;29(12):2853–2867. doi: 10.1002/pat.4290
  • Sun B, Zhang M, Shen J, et al. Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem. 2018;26:2485. doi: 10.2174/0929867324666170705143308
  • Gupta GK, Shukla P. Lignocellulosic biomass for the Synthesis of nanocellulose and its eco-friendly advanced applications. Front Chem. 2020;8(1). doi: 10.3389/fchem.2020.601256
  • Camacho M, Regina Y, Ureña C, et al. Synthesis and Characterization of nanocrystalline cellulose derived from pineapple peel residues. J Ren Mater. 2017;5:271. doi: 10.7569/JRM.2017.634117
  • Noor MHM, Ngadi N, Luing WS. Synthesis of magnetic cellulose as flocculant for pre- treatment of anaerobically treated palm oil mill effluent. Chem Eng Trans. 2018;63:589. doi: 10.3303/CET1863099
  • Anwar B, Bundjali B, Arcana IM. Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem. 2015;16:279. doi: 10.1016/j.proche.2015.12.051
  • Mansor AM, Lim JS, Ani FN. Characteristics of Cellulose, Hemicellulose and Lignin of MD2 Pineapple Biomass. Chem Eng Trans. 2018;63:127. doi: 10.3303/CET1972014
  • Qing W, Wang Y, Wang Y, et al. The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci. 2016;366:404. doi: 10.1016/j.apsusc.2016.01.133
  • Zainuddin N, Ahmad I, Kargarzadeh H, et al. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym. 2017;163:261. doi: 10.1016/j.carbpol.2017.01.036
  • Thomas D, Latha MS, Thomas KK. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol. 2018;46:392. doi: 10.1016/j.jddst.2018.06.004
  • Malikmammadov E, Tanir TE, Kiziltay A, et al. PCL and PCL-Based Materials in Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2017;29(7–9):1–55. doi: 10.1080/09205063.2017.1394711
  • Catalina M, Attenburrow GE, Cot J, et al. Influence of crosslinkers and crosslinking method on the properties of gelatin films extracted from leather solid waste. J Appl Polym Sci. 2010;119:2105. doi: 10.1002/app.32932
  • Hulupi M, Haryadi H. Synthesis and Characterization of electrospinning PVA nanofiber-crosslinked by glutaraldehyde. Mater Today Proc. 2019;13:199. doi: 10.1016/j.matpr.2019.03.214
  • Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17(5):471. doi: 10.1016/0142-9612(96)82721-9
  • Scheffel DLS, Soares DG, Basso FG, et al. Transdentinal cytotoxicity of glutaraldehyde on odontoblast-like cells. J Dent. 2015;43:997. doi: 10.1016/j.jdent.2015.05.004
  • Yang L, Yang Q, Lu DN. Effect of chemical crosslinking degree on mechanical properties of bacterial cellulose/poly(vinyl alcohol) composite membranes. Monatshefte Fur Chemie. 2014;145:91. doi: 10.1007/s00706-013-0968-9
  • Anwar B, Bundjali B, Sunarya Y, et al. Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fibers Polym. 2021;22:1228. doi: 10.1007/s12221-021-0765-8
  • Nelson ML, O’Connor RT. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci. 1964;8(3):1325. doi: 10.1002/app.1964.070080323
  • Ditzel FI, Prestes E, Carvalho BM, et al. Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr Polym. 2017;157:1577. doi: 10.1016/j.carbpol.2016.11.036
  • Ren -D, Yi H, Wang W, et al. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 2005;340(15):2403–2410. doi: 10.1016/j.carres.2005.07.022
  • Munawaroh HSH, Darojatun K, Gumilar GG, et al. Characterization of phycocyanin from Spirulina fusiformis and its thermal stability. J Phys Conf Ser. 2018;1013:012205. doi: 10.1088/1742-6596/1013/1/012205
  • Liu R, Qin S, Li W. Phycocyanin: anti-inflammatory effect and mechanism. Biomed Pharmacother. 2022;153:113362. doi: 10.1016/j.biopha.2022.113362
  • Munawaroh HSH, Gumilar GG, Nurjanah F. In-vitro molecular docking analysis of microalgae extracted phycocyanin as an anti-diabetic candidate. Biochem Eng J. 2020;161:107666. doi: 10.1016/j.bej.2020.107666
  • Sala L, Figueira FS, Cerveira GP, et al. Kinetics and adsorption isotherm of C-phycocyanin from Spirulina platensis on ion-exchange resins. Brazilian J Chem Eng. 2014;31(4):1013. doi: 10.1590/0104-6632.20140314s00002443
  • Batmaz R, (2013).
  • Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:1–11. doi: 10.1155/2017/3039817
  • Kumar KV, Gadipelli S, Wood B, et al. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J Mater Chem A. 2019;7:10104. doi: 10.1039/C9TA00287A
  • Tsade Kara H, Anshebo ST, Sabir FK, et al. Removal of methylene blue dye from wastewater using periodiated modified nanocellulose. Int J Chem Eng. 2021;1:1–16. doi: 10.1155/2021/9965452
  • Johar N, Ahmad I, Dufresne A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops And Products. 2012;37:93. doi: 10.1016/j.indcrop.2011.12.016
  • Kumar A, Singh Negi Y, Choudhary V, et al. Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem. 2020;2(1):1–8. doi: 10.12691/jmpc-2-1-1
  • Jeon JG, Kim HC, Palem RR, et al. Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Mater Lett. 2019;250:99. doi: 10.1016/j.matlet.2019.05.002
  • Hou T, Guo K, Wang Z, et al. Glutaraldehyde and polyvinyl alcohol crosslinked cellulose membranes for efficient methyl orange and Congo red removal. Cellul. 2019;26(8):5065. doi: 10.1007/s10570-019-02433-w
  • Liu L, Jiang T, Yao J. A two-step chemical process for the extraction of cellulose fiber and pectin from mulberry branch bark efficiently. J Polym Environ. 2011;19(3):568. doi: 10.1007/s10924-011-0300-x
  • Wijaya CJ, Saputra SN, Soetaredjo, FE, et al. Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr Polym. 2017;175:370–376. doi: 10.1016/j.carbpol.2017.08.004
  • Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym. 2013;94:154. doi: 10.1016/j.carbpol.2013.01.033
  • Oun AA, Rhim JW. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym. 2016;150:187. doi: 10.1016/j.carbpol.2016.05.020
  • Maiti S, Jayaramudu J, Das K, et al. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym. 2013;98(1):562. doi: 10.1016/j.carbpol.2013.06.029
  • Eriksen NT. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol. 2008;80(1):1–14. doi: 10.1007/s00253-008-1542-y
  • Manna S, Roy D, Saha P, et al. Rapid methylene blue adsorption using modified lignocellulosic materials. Process Saf Environ Prot. 2017;107:346. doi: 10.1016/j.psep.2017.03.008
  • R R, Thomas D, Philip E, et al. Potential of nanocellulose for wastewater treatment. Chemosphere. 2021;281:130738. doi: 10.1016/j.chemosphere.2021.130738
  • Zhang Y, Zheng Y, Yang Y, et al. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour Technol. 2021;337:125432. doi: 10.1016/j.biortech.2021.125432
  • Saadi R, Saadi Z, Fazaeli R, et al. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J Chem Eng. 2015;32:787. doi: 10.1007/s11814-015-0053-7
  • Hasan N, Rahman L, Kim SH, et al. Recent advances of nanocellulose in drug delivery systems. J Pharm Investig. 2020;50(6):553. doi: 10.1007/s40005-020-00499-4
  • Qi W, Yu J, Zhang Z, et al. Effect of pH on the aggregation behavior of cellulose nanocrystals in aqueous medium. Mater Res Express. 2019;6:125078. doi: 10.1088/2053-1591/ab5974
  • Kamida K, Kunihiko K, Matsui T, et al. Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J. 1984;16:857. doi: 10.1295/polymj.16.857
  • Genta I, Costantini M, Asti A, et al. Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydr Polym. 1998;36:81. doi: 10.1016/S0144-8617(98)00022-8
  • Jantarat C, Muenraya P, Srivaro S, et al. Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. RSC Adv. 2021;11(59):37354. doi: 10.1039/D1RA07761A