2,857
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight

, , , , , & ORCID Icon show all
Article: 2252228 | Received 10 Feb 2023, Accepted 23 May 2023, Published online: 04 Sep 2023

References

  • Azarpour A, Zendehboudi S, Mohammadzadeh O, et al. A review on microalgal biomass and biodiesel production through co-cultivation strategy. Energy Convers Manag. 2022;267:267. doi: 10.1016/j.enconman.2022.115757
  • Kim GS, Choi SK, Seok JH. Does biomass energy consumption reduce total energy CO2 emissions in the US? J Policy Model. 2020;42(5):953–25. doi: 10.1016/j.jpolmod.2020.02.009
  • Olawore YA, Nwinyi OC. Algae based biofuel and co-products-A review. ASJ Int J Adv Sci Res Rev [Internet]. 2019 [cited 2021 Jul 27];4:74–88. Available from www.academiascholarlyjournal.org/ijasrr/index_ijasrr.htm
  • Vijayalakshmi S, Anand M, Ranjitha J. Microalgae Cultiv Biofuels Prod. 2020;251–263.
  • Milano J, Ong HC, Masjuki HH, et al. Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable Sustainable Energy Rev. 2016;58:180–197. doi: 10.1016/j.rser.2015.12.150
  • Arodudu O, Helming K, Wiggering H, et al. Towards a more holistic sustainability assessment framework for agro-bioenergy systems — a review. Environ Impact Assess Rev. 2017;62:61–75. doi: 10.1016/j.eiar.2016.07.008
  • Dewangan A, Yadav AK, Mallick A. Current scenario of biodiesel development in India: prospects and challenges. Energy sources, part a recover. Util Environ Eff. 2018;40(20):2494–2501. doi: 10.1080/15567036.2018.1502849
  • Kaniapan S, Hassan S, Ya H, et al. The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: a review. Sustain. 2021;13(6):3110. doi: 10.3390/su13063110
  • Ahmad A, Banat F, Alsafar H, et al. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci Total Environ. 2022;806:150585. doi: 10.1016/j.scitotenv.2021.150585
  • Alazaiza MYD, Albahnasawi A, Ahmad Z, et al. Potential use of algae for the bioremediation of different types of wastewater and contaminants: production of bioproducts and biofuel for green circular economy. J Environ Manage. 2022;324:116415. doi: 10.1016/j.jenvman.2022.116415
  • Cheregi O, Ekendahl S, Engelbrektsson J, et al. Microalgae biotechnology in Nordic countries – the potential of local strains. Physiol Plant [Internet]. 2019 [cited 2023 Apr 28];166(1):438–450. 10.1111/ppl.12951
  • Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ. 2021;766:144236. doi: 10.1016/j.scitotenv.2020.144236
  • Kim JY, Jung JM, Jung S, et al. Biodiesel from microalgae: recent progress and key challenges. Prog Energy Combust Sci. 2022;93:101020. doi: 10.1016/j.pecs.2022.101020
  • Rana RL, Lombardi M, Giungato P, et al. Trends in scientific literature on energy return ratio of renewable energy sources for supporting policymakers. Adm Sci [Internet]. 2020 [cited 2022 Nov 30];10(2):21. 10.3390/admsci10020021
  • Walters JP, Archer DW, Sassenrath GF, et al. Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol Modell. 2016;333:51–65. doi: 10.1016/j.ecolmodel.2016.04.015
  • Sulaiman C, Abdul-Rahim AS, Ofozor CA. Does wood biomass energy use reduce CO2 emissions in European Union member countries? Evidence from 27 members. J Clean Prod. 2020;253:253. doi: 10.1016/j.jclepro.2020.119996
  • Gomiero T. Are biofuels an effective and viable energy strategy for industrialized societies? A reasoned overview of potentials and limits. Sustain. 2015;7(7):8491–8521. doi: 10.3390/su7078491
  • Demirbas A, Fatih Demirbas M. Importance of algae oil as a source of biodiesel. Energy Convers Manag. 2011;52(1):163–170. doi: 10.1016/j.enconman.2010.06.055. Elsevier Ltd.
  • Stephens E, Ross IL, King Z, et al. An economic and technical evaluation of microalgal biofuels. Nat Biotechnol. 2010;28(2):126–128. doi: 10.1038/nbt0210-126
  • Wigmosta MS, Coleman AM, Skaggs RJ, et al. National microalgae biofuel production potential and resource demand. Water Resour Res [Internet]. 2011 [cited 2023 Jan 12];47(3). doi:10.1029/2010WR009966
  • Schenk PM, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 2008;1(1):20–43. doi: 10.1007/s12155-008-9008-8
  • Ranjbar S, Malcata FX. Challenges and prospects for sustainable microalga-based oil: a comprehensive review, with a focus on metabolic and genetic engineering. Fuel. 2022;324:124567. doi: 10.1016/j.fuel.2022.124567
  • Chisti Y, Yan J. Energy from algae: current status and future trends. Algal biofuels - a status report. Appl Energy. 2011;88(10):3277–3279. doi: 10.1016/j.apenergy.2011.04.038
  • Tredici MR. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels. 2010;1(1):143–162. doi: 10.4155/bfs.09.10
  • Behera S, Singh R, Arora R, et al. Scope of algae as third generation biofuels. Front Bioeng Biotechnol. 2015;2:90. doi: 10.3389/fbioe.2014.00090
  • AEMMR A, Shalaby EA, Shanab SMM. Enhancement of biodiesel production from different species of algae. Grasas y Aceites. 2010;61(4):416–422. doi: 10.3989/gya.021610
  • Baruah J, Nath BK, Sharma R, et al. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res. 2018;6:6. doi: 10.3389/fenrg.2018.00141
  • Kröger M, Müller-Langer F. Review on possible algal-biofuel production processes. Biofuels. 2012;3:333–349. doi: 10.4155/bfs.12.14
  • Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: High value products perspectives. Bioresour Technol. 2017;229:53–62. doi: 10.1016/j.biortech.2017.01.006
  • Gendy TS, El-Temtamy SA. Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet. 2013;22(1):43–51. doi: 10.1016/j.ejpe.2012.07.001
  • Johnson MB, Wen Z. Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol. 2010;85(3):525–534. doi: 10.1007/s00253-009-2133-2
  • Ghaffar I, Deepanraj B, Sundar LS, et al. A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels. Chemosphere. 2023;311:137094. doi: 10.1016/j.chemosphere.2022.137094
  • Debeni Devi N, Chaudhuri A, Goud VV. Algae biofilm as a renewable resource for production of biofuel and value-added products: a review. Sustain Energy Technol. 2022;53:53. doi: 10.1016/j.seta.2022.102749 Assessments.
  • Cho S, Luong TT, Lee D, et al. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol. 2011;102(18):8639–8645. doi: 10.1016/j.biortech.2011.03.037
  • Krimech A, Helamieh M, Wulf M, et al. Differences in adaptation to light and temperature extremes of Chlorella sorokiniana strains isolated from a wastewater lagoon. Bioresour Technol. 2022;350:350. doi: 10.1016/j.biortech.2022.126931
  • Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102(1):17–25. doi: 10.1016/j.biortech.2010.06.035
  • Ali SS, El-Sheekh M, Manni A, et al. Microalgae-mediated wastewater treatment for biofuels production: a comprehensive review. Microbiol Res. 2022;265:265. doi: 10.1016/j.micres.2022.127187
  • Xu J, Yao Y, Ehyaei MA, et al. Performance assessment of biomass–geothermal configuration energy resources for cooling and power generation. Energy Sci Eng. 2022;10(9):3650–3666. doi: 10.1002/ese3.1215
  • Lam MK, Khoo CG, Lee KT. Biofuels From Algae. 2019;475–506. doi: 10.1016/B978-0-444-64192-2.00019-6
  • Ahn Y, Park S, Ji MK, et al. Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater. J Environ Manage. 2022;314:314. doi: 10.1016/j.jenvman.2022.115031
  • Zahedi R, Ahmadi A, Gitifar S. Reduction of the environmental impacts of the hydropower plant by microalgae cultivation and biodiesel production. J Environ Manage. 2022;304:114247. doi: 10.1016/j.jenvman.2021.114247
  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, et al. Review: biofuel production from plant and algal biomass. Int J Hydrogen Energy. 2016;41(39):17257–17273. doi: 10.1016/j.ijhydene.2016.07.084
  • Rattanapoltee P, Kaewkannetra P. Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Appl Biochem Biotechnol. 2014;173(6):1495–1510. doi: 10.1007/s12010-014-0949-4
  • Zhu L, Yan C, Li Z. Microalgal cultivation with biogas slurry for biofuel production. Bioresour Technol. 2016;220:629–636. doi: 10.1016/j.biortech.2016.08.111
  • Stephens E, Ross IL, Mussgnug JH, et al. Future prospects of microalgal biofuel production systems. Trends Plant Sci. 2010;15(10):554–564. doi: 10.1016/j.tplants.2010.06.003
  • Alavi M, Miller T, Erlandson K, et al. Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol. 2001;3(6):380–396. doi: 10.1046/j.1462-2920.2001.00207.x
  • Yao S, Lyu S, An Y, et al. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol [Internet]. 2019 [cited 2022 Dec 1];126(2):359–368. doi: 10.1111/jam.14095
  • Barclay W, Apt K. Strategies for bioprospecting microalgae for potential commercial applications. In: Second. Handbook of microalgal culture: applied phycology and biotechnology. wiley;2013pp. 69–79. doi: 10.1002/9781118567166.ch4
  • Mihic S, Golusin M, Mihajlovic M. Policy and promotion of sustainable inland waterway transport in Europe – Danube River. Sustain Energy Rev. 2011;15(4):1801–1809. doi: 10.1016/j.rser.2010.11.033
  • Rezania S, Oryani B, Park J, et al. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers Manag. 2019;201:112155. doi: 10.1016/j.enconman.2019.112155
  • Low SS, Bong KX, Mubashir M, et al. Microalgae cultivation in palm oil mill effluent (POME) treatment and biofuel production. Sustainability [Internet]. 2021 [cited 2022 Sep 22];13(6):3247. doi: 10.3390/su13063247
  • Gupte AP, Basaglia M, Casella S, et al. Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives. Renewable Sustainable Energy Rev. 2022;167:112673. doi: 10.1016/j.rser.2022.112673
  • Zhang W, Wang C, Luo B, et al. Efficient and economic transesterification of waste cooking soybean oil to biodiesel catalyzed by outer surface of ZSM-22 supported different Mo catalyst. Biomass Bioenergy. 2022;167:167. doi: 10.1016/j.biombioe.2022.106646
  • Ghosh N, Halder G. Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel production from edible and inedible feedstock: a review. Energy Convers Manag. 2022;270:270. doi: 10.1016/j.enconman.2022.116292
  • Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, et al. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Prep Biochem Biotechnol. 2016;46(2):150–156. doi: 10.1080/10826068.2014.995812
  • Abu-Ghazala AH, Abdelhady HH, Mazhar AA, et al. Valorization of hazard waste: efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process. Renewable Energy. 2022;200:1120–1133. doi: 10.1016/j.renene.2022.10.045
  • Nordin N, Yusof N, Md Nadzir S, et al. Effect of photo-autotrophic cultural conditions on the biomass productivity and composition of Chlorella vulgaris. Biofuels. 2022;13(2):149–159. doi: 10.1080/17597269.2019.1652787
  • Athar M, Zaidi S. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng. 2020;8(6):104523. doi: 10.1016/j.jece.2020.104523
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516. doi: 10.1016/j.biortech.2012.01.125
  • Bellou S, Baeshen MN, Elazzazy AM, et al. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv. 2014;32(8):1476–1493. doi: 10.1016/j.biotechadv.2014.10.003
  • Vazhappilly R, Chen F. Heterotrophic production potential of omega-3 polyunsaturated fatty acids by microalgae and algae-like microorganisms. Bot Mar. 1998;41(1–6):553–558. doi: 10.1515/botm.1998.41.1-6.553
  • Pinzi S, Leiva D, López-García I, et al. Latest trends in feedstocks for biodiesel production. Biofuels, Bioprod Bioref. 2014;8(1):126–143. doi: 10.1002/bbb.1435
  • Abreu AP, Morais RC, Teixeira JA, et al. A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renewable Sustainable Energy Rev. 2022;159:112247. doi: 10.1016/j.rser.2022.112247
  • Lari Z, Abrishamchi P, Ahmadzadeh H, et al. Differential carbon partitioning and fatty acid composition in mixotrophic and autotrophic cultures of a new marine isolate Tetraselmis sp. KY114885. J Appl Phycol. 2019;31(1):201–210. doi: 10.1007/s10811-018-1549-4
  • Cai W, Wang L, Li L, et al. A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking. Renewable Sustainable Energy Rev. 2022;159:159. doi: 10.1016/j.rser.2022.112227
  • Patel AK, Singhania RR, Di Dong C, et al. Mixotrophic biorefinery: a promising algal platform for sustainable biofuels and high value coproducts. Renewable Sustainable Energy Rev. 2021;152:111669. doi: 10.1016/j.rser.2021.111669
  • Patel AK, Singhania RR, Sim SJ, et al. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresource Technology. 2021;320:124421. doi: 10.1016/j.biortech.2020.124421
  • Dixit M, Gupta GK, Usmani Z, et al. Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: a greener approach. Renewable Sustainable Energy Rev. 2021;152:152. doi: 10.1016/j.rser.2021.111664
  • Patel AK, Choi YY, Sim SJ. Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour Technol. 2020;300:300. doi: 10.1016/j.biortech.2020.122741
  • Hoang AT, Sirohi R, Pandey A, et al. Biofuel production from microalgae: challenges and chances. Phytochem Rev. 2022;1–38. doi: 10.1007/s11101-022-09819-y
  • Escalante J, Chen WH, Tabatabaei M, et al. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: a review of thermogravimetric analysis (TGA) approach. Renewable Sustainable Energy Rev. 2022;169:112914. doi: 10.1016/j.rser.2022.112914
  • Hong W, Chen J, Ding Q, et al. Efficient thermochemical liquefaction of microalgae Haematococcus pluvialis for production of high quality biocrude with high selectivity over Fe/montmorillonite catalyst. J Energy Inst. 2021;97:73–79. doi: 10.1016/j.joei.2021.04.004
  • Ong HC, Chen WH, Farooq A, et al. Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renewable Sustainable Energy Rev. 2019;113:109266. doi: 10.1016/j.rser.2019.109266
  • Velusamy K, Devanand J, Senthil Kumar P, et al. A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel. 2021;306:121632. doi: 10.1016/j.fuel.2021.121632
  • Gnanasekaran L, Priya AK, Thanigaivel S, et al. The conversion of biomass to fuels via cutting-edge technologies: explorations from natural utilization systems. Fuel. 2023;331:331. doi: 10.1016/j.fuel.2022.125668
  • Ağbulut Ü, Sirohi R, Lichtfouse E, et al. Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: mechanism and characteristics. Bioresour Technol. 2023;376:128860. doi: 10.1016/j.biortech.2023.128860
  • Ayub HMU, Ahmed A, Lam SS, et al. Sustainable valorization of algae biomass via thermochemical processing route: an overview. Bioresour Technol. 2022;344:126399. doi: 10.1016/j.biortech.2021.126399
  • Ramos A, Monteiro E, Rouboa A. Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods – a review. Energy Convers Manag. 2022;270:270. doi: 10.1016/j.enconman.2022.116271
  • Le V, Siriwatwechakul W. Sustainable vancomycin production from industrial residues and the effects of inoculum control to ensure reproducibility. Bioresour Technol Reports. 2021;15:15. doi: 10.1016/j.biteb.2021.100805
  • Biswas WK, Barton L, Carter D. Biodiesel production in a semiarid environment: a life cycle assessment approach. Environ Sci Technol. 2011;45(7):3069–3074. doi: 10.1021/es1031807
  • Onay M. Biobutanol from microalgae. In: 3rd generation biofuels: disruptive technologies to enable commercial production. Elsevier; 2022. pp. 547–569.
  • Kandasamy S, Zhang B, He Z, et al. Microalgae as a multipotential role in commercial applications: current scenario and future perspectives. Fuel. 2022;308:122053. doi: 10.1016/j.fuel.2021.122053
  • Akram F, Ul Haq I, Raja SI, et al. Current trends in biodiesel production technologies and future progressions: a possible displacement of the petro-diesel. J Clean Prod. 2022;370. doi: 10.1016/j.jclepro.2022.133479
  • Bibi F, Jamal A, Huang Z, et al. Advancement and role of abiotic stresses in microalgae biorefinery with a focus on lipid production. Fuel. 2022;316:123192. doi: 10.1016/j.fuel.2022.123192
  • Figueroa-Torres GM, Wan Mahmood WMA, Pittman JK, et al. Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochem Eng J. 2020;153:107396. doi: 10.1016/j.bej.2019.107396
  • Huang X, Bai S, Liu Z, et al. Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts. Green Chem. 2020;22(1):153–162. doi: 10.1039/C9GC02634G
  • Tan XB, Zhang YL, Zhao XC, et al. Anaerobic digestates grown oleaginous microalgae for pollutants removal and lipids production. Chemosphere. 2022;308:308. doi: 10.1016/j.chemosphere.2022.136177
  • Pinpatthanapong K, Khetkorn W, Honda R, et al. Effects of high-strength landfill leachate effluent on stress-induced microalgae lipid production and post-treatment micropollutant degradation. J Environ Manage. 2022;324:324. doi: 10.1016/j.jenvman.2022.116367
  • Nagarajan D, Lee DJ, Varjani S, et al. Microalgae-based wastewater treatment – microalgae-bacteria consortia, multi-omics approaches and algal stress response. Sci Total Environ. 2022;845:157110. doi: 10.1016/j.scitotenv.2022.157110
  • Xu L, Weathers PJ, Xiong XR, et al. Microalgal bioreactors: challenges and opportunities. Eng Life Sci. 2009;9(3):178–189. doi: 10.1002/elsc.200800111
  • Ranganathan P, Pandey AK, Sirohi R, et al. Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. Bioresour Technol. 2022;350:126920. doi: 10.1016/j.biortech.2022.126920
  • Prabhu C, Navaneetha Krishnan B, Prakash T, et al. Biodiesel unsaturation and the synergic effects of hydrogen sharing rate on the characteristics of a compression ignition engine in dual-fuel mode. Fuel. 2023;334:126699. doi: 10.1016/j.fuel.2022.126699
  • Leo VV, Lallawmsangi, Lalrokimi, et al. Microbes as resource of biomass, bioenergy, and biofuel. In: Microbial interventions in agriculture and environment: volume 1 : research trends, priorities and prospects. Springer Singapore; 2019. pp. 241–260. doi:10.1007/978-981-13-8391-5_9.
  • Abd Elaziz M, Abualigah L, Issa M, et al. Optimal parameters extracting of fuel cell based on Gorilla troops optimizer. Fuel. 2023;332:126162. doi: 10.1016/j.fuel.2022.126162
  • Sathya AB, Thirunavukkarasu A, Nithya R, et al. Microalgal biofuel production: potential challenges and prospective research. Fuel. 2023;332:126199. doi: 10.1016/j.fuel.2022.126199
  • Terbish N, Popuri SR, Lee CH. Improved performance of organic–inorganic nanocomposite membrane for bioelectricity generation and wastewater treatment in microbial fuel cells. Fuel. 2023;332:126167. doi: 10.1016/j.fuel.2022.126167
  • Siqueira JC, Braga MQ, Ázara MS, et al. Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: analysis of related process considerations. Renewable Sustainable Energy Rev. 2022;155:155. doi: 10.1016/j.rser.2021.111904
  • Brentner LB, Eckelman MJ, Zimmerman JB. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol. 2011;45(16):7060–7067. doi: 10.1021/es2006995
  • Weiss A, Schebek L. The net energy ratio of microalgae biofuels production based on correlated cultivation parameters in flat plate photobioreactors. J Clean Prod. 2021;287:125073. doi: 10.1016/j.jclepro.2020.125073
  • Cordero T, Marquez F, Rodriguez-Mirasol J, et al. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel. 2001;80(11):1567–1571. doi: 10.1016/S0016-2361(01)00034-5
  • Sztancs G, Juhasz L, Nagy BJ, et al. Co-Hydrothermal gasification of Chlorella vulgaris and hydrochar: the effects of waste-to-solid biofuel production and blending concentration on biogas generation. Bioresour Technol. 2020;302:122793. doi: 10.1016/j.biortech.2020.122793
  • Cabuk B, Duman G, Yanik J, et al. Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. Int J Hydrogen Energy. 2020;45(5):3435–3443. doi: 10.1016/j.ijhydene.2019.02.130
  • Solé-Bundó M, Garfí M, Ferrer I. Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Bioresour Technol. 2020;298:122563. doi: 10.1016/j.biortech.2019.122563
  • Cuellar-Bermudez SP, Magdalena JA, Muylaert K, et al. High methane yields in anaerobic digestion of the cyanobacterium pseudanabaena sp. Algal Res. 2019;44:101689. doi: 10.1016/j.algal.2019.101689
  • Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag. 2010;51(7):1412–1421. doi: 10.1016/j.enconman.2010.01.015
  • Torres A, Padrino S, Brito A, et al. Biogas production from anaerobic digestion of solid microalgae residues generated on different processes of microalgae-to-biofuel production. Biomass Conv Bioref. 2021;13(6):4659–4672. doi: 10.1007/s13399-021-01898-9
  • de Jesus SS, Ferreira GF, Moreira LS, et al. Biodiesel production from microalgae by direct transesterification using green solvents. Renewable Energy. 2020;160:1283–1294. doi: 10.1016/j.renene.2020.07.056
  • Ferreira Mota G, Germano de Sousa I, Luiz Barros de Oliveira A, et al. Biodiesel production from microalgae using lipase-based catalysts: current challenges and prospects. Algal Res. 2022;62:102616. doi: 10.1016/j.algal.2021.102616
  • Wong WY, Lim S, Pang YL, et al. Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production. Sci Total Environ. 2020;727:138534. doi: 10.1016/j.scitotenv.2020.138534
  • Faruque MO, Razzak SA, Hossain MM. Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts2020. 2020;10(9):1–25. doi: 10.3390/catal10091025
  • Li G, Zhang J, Li H, et al. Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere. 2021;273:128578. doi: 10.1016/j.chemosphere.2020.128578
  • Gim GH, Kim SW. Optimization of cell disruption and transesterification of lipids from botryococcus braunii LB572. Biotechnol Bioprocess Eng. 2018;23(5):550–556. doi: 10.1007/s12257-018-0277-6
  • Pandey S, Kumar P, Dasgupta S, et al. Gradient strategy for mixotrophic cultivation of Chlamydomonas reinhardtii: small steps, a large impact on biofuel potential and lipid droplet morphology. BioEnergy Res. 2022;16(1):163–176. doi: 10.1007/s12155-022-10454-w
  • Patel A, Krikigianni E, Rova U, et al. Bioprocessing of volatile fatty acids by oleaginous freshwater microalgae and their potential for biofuel and protein production. Chem Eng J. 2022;438:438. doi: 10.1016/j.cej.2022.135529
  • Chen X, Ma X, Chen L, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa and effect of emulsification on upgrading the bio-oil. Bioresour Technol. 2020;316:123914. doi: 10.1016/j.biortech.2020.123914
  • Paz A, Chalima A, Topakas E. Biorefinery of exhausted olive pomace through the production of polygalacturonases and omega-3 fatty acids by crypthecodinium cohnii. Algal Res. 2021;59:102470. doi: 10.1016/j.algal.2021.102470
  • Peter AP, Koyande AK, Chew KW, et al. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: current status and future challenges. Renewable Sustainable Energy Rev. 2022;154:111852. doi: 10.1016/j.rser.2021.111852
  • Saad MG, Dosoky NS, Zoromba MS, et al. Algal biofuels: current status and key challenges. Energies. 2019;12(10):1920. doi: 10.3390/en12101920
  • Hussain ZN, Jazie AAAH. Fucus vesiculosus algae oil deoxygenation and cracking: reaction parameter optimization using response surface methodology [Internet]. In: AIP Conference Proceedings. American Institute of Physics Inc.; 2022 [cited 2022 Dec 2]. page 40024. doi: 10.1063/5.0068718
  • Onay M. Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor. Fuel. 2019;239:1315–1323. doi: 10.1016/j.fuel.2018.11.126
  • Zaki MA, Ashour M, Heneash AMM, et al. Potential applications of native cyanobacterium isolate (Arthrospira platensis NIOF17/003) for biodiesel production and utilization of its byproduct in marine Rotifer (Brachionus plicatilis) production. Sustainability [Internet]. 2021 [cited 2022 Dec 2];13(4):1769. . Doi: 10.3390/su13041769
  • Farrokheh A, Tahvildari K, Nozari M. Biodiesel production from the Chlorella vulgaris and Spirulina platensis microalgae by electrolysis using CaO/KOH-Fe3O4 and KF/KOH-Fe3O4 as magnetic nanocatalysts. Biomass Conv Bioref. 2022;12(2):403–417. doi: 10.1007/s13399-020-00688-z
  • Sahabudin E, Lee J, Asada R, et al. Isolation and characterization of acid-tolerant Stichococcus-like microalga (Tetratostichococcus sp. P1) from a tropical peatland in Malaysia. J Appl Phycol. 2022;34(4):1881–1892. doi: 10.1007/s10811-022-02762-7
  • Mutaf T, Oz Y, Kose A, et al. The effect of medium and light wavelength towards Stichococcus bacillaris fatty acid production and composition. Bioresour Technol. 2019;289:121732. doi: 10.1016/j.biortech.2019.121732
  • Goswami RK, Agrawal K, Verma P. Microalgae Dunaliella as biofuel feedstock and β-carotene production: an influential step towards environmental sustainability. Energy Convers Manag X. 2022;13:100154. doi: 10.1016/j.ecmx.2021.100154
  • Chen S, Qu D, Xiao X, et al. Biohydrogen production with lipid-extracted Dunaliella biomass and a new strain of hyper-thermophilic archaeon thermococcus eurythermalis A501. Int J Hydrogen Energy. 2020;45(23):12721–12730. doi: 10.1016/j.ijhydene.2020.03.010
  • Nishshanka GKSH, Liyanaarachchi VC, Nimarshana PHV, et al. Haematococcus pluvialis: a potential feedstock for multiple-product biorefining. J Clean Prod. 2022;344:131103. doi: 10.1016/j.jclepro.2022.131103
  • Hosseini A, Jazini M, Mahdieh M, et al. Efficient superantioxidant and biofuel production from microalga Haematococcus pluvialis via a biorefinery approach. Bioresour Technol. 2020;306:123100. doi: 10.1016/j.biortech.2020.123100
  • Amit A, Kumar Ghosh U. Utilization of kinnow peel extract with different wastewaters for cultivation of microalgae for potential biodiesel production. J Environ Chem Eng. 2019;7(3):103135. doi: 10.1016/j.jece.2019.103135
  • Vinoth Arul Raj J, Bharathiraja B, Vijayakumar B, et al. Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous poly ethylene glycol (PEG) encapsulated ZnOMn2+ nanocatalyst. Bioresour Technol. 2019;282:348–352. doi: 10.1016/j.biortech.2019.03.030
  • Turkkul B, Deliismail O, Seker E. Ethyl esters biodiesel production from Spirulina sp. and Nannochloropsis oculata microalgal lipids over alumina-calcium oxide catalyst. Renewable Energy. 2020;145:1014–1019. doi: 10.1016/j.renene.2019.06.093
  • Bumbiere K, Gancone A, Pubule J, et al. Ranking of bioresources for biogas production. Environ Clim Technol. 2020;24(1):368–377. doi: 10.2478/rtuect-2020-0021
  • Kendir E, Ugurlu A. A comprehensive review on pretreatment of microalgae for biogas production. Int J Energy Res. 2018 [cited 2022 Dec 2];42(12):3711–3731. 10.1002/er.4100.
  • Saleem M, Hanif MU, Bahadar A, et al. The effects of Hot water and Ultrasonication pretreatment of microalgae (Nannochloropsis oculata) on biogas production in anaerobic co-digestion with Cow Manure. Processes [Internet]. 2020 [cited 2022 Dec 2];8(12):1558. doi: 10.3390/pr8121558.
  • Kalaimurugan K, Karthikeyan S, Periyasamy M, et al. Emission analysis of CI engine with CeO2 nanoparticles added neochloris oleoabundans biodiesel-diesel fuel blends. In: Materials Today: Proceedings, Tamilnadu, India. Elsevier Ltd; 2020. page 2877–2881.
  • Pushpakumari Kudahettige N, Pickova J, Gentili FG. Stressing algae for biofuel production: biomass and biochemical composition of Scenedesmus dimorphus and selenastrum minutum grown in municipal untreated wastewater. Front Energy Res. 2018 cited 2022 Dec 2;6:132. DOI:10.3389/fenrg.2018.00132
  • Atmanli A. Experimental comparison of biodiesel production performance of two different microalgae. Fuel. 2020;278:118311. doi: 10.1016/j.fuel.2020.118311
  • Bouras S, Katsoulas N, Antoniadis D, et al. Use of biofuel industry wastes as alternative nutrient sources for DHA-Yielding schizochytrium limacinum production. Appl Sci [Internet]. 2020 [cited 2022 Dec 2];10(12):4398. doi: 10.3390/app10124398.
  • Ido AL, de Luna MDG, Ong DC, et al. Upgrading of Scenedesmus obliquus oil to high-quality liquid-phase biofuel by nickel-impregnated biochar catalyst. J Clean Prod. 2019;209:1052–1060. doi: 10.1016/j.jclepro.2018.10.028
  • Mona S, Kumar SS, Kumar V, et al. Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ. 2020;728:138481. doi: 10.1016/j.scitotenv.2020.138481
  • Bhatia SK, Mehariya S, Bhatia RK, et al. Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ. 2021;751:751. doi: 10.1016/j.scitotenv.2020.141599
  • Goswami RK, Mehariya S, Obulisamy PK, et al. Advanced microalgae-based renewable biohydrogen production systems: a review. Bioresour Technol. 2021;320:320. doi: 10.1016/j.biortech.2020.124301
  • Nagarajan D, Chang JS, Lee DJ. Pretreatment of microalgal biomass for efficient biohydrogen production – Recent insights and future perspectives. Bioresour Technol. 2020;302:122871. doi: 10.1016/j.biortech.2020.122871
  • Rashid N, Rehman MSU, Memon S, et al. Current status, barriers and developments in biohydrogen production by microalgae. Renewable Sustainable Energy Rev. 2013;22:571–579. doi: 10.1016/j.rser.2013.01.051
  • El-Dalatony MM, Zheng Y, Ji MK, et al. Metabolic pathways for microalgal biohydrogen production: current progress and future prospectives. Bioresour Technol. 2020;318:124253. doi: 10.1016/j.biortech.2020.124253
  • Nagarajan D, Lee DJ, Kondo A, et al. Recent insights into biohydrogen production by microalgae – from biophotolysis to dark fermentation. Bioresour Technol. 2017;227:373–387. doi: 10.1016/j.biortech.2016.12.104
  • Sovacool BK, Cabeza LF, Pisello AL, et al. Decarbonizing household heating: reviewing demographics, geography and low-carbon practices and preferences in five European countries. Renewable Sustainable Energy Rev. 2021;139:139. doi: 10.1016/j.rser.2020.110703
  • Liu Y, Lyu Y, Tian J, et al. Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renewable Sustainable Energy Rev. 2021;139:110716. doi: 10.1016/j.rser.2021.110716
  • Behera HT, Mojumdar A, Das SR, et al. Microbial intervention in sustainable production of biofuels and other bioenergy products [Internet]. In: Environmental and agricultural microbiology. Wiley; 2021 cited 2022 Dec 2. pp. 361–381. 10.1002/9781119525899.ch17
  • Poompavai T, Kowsalya M. Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: a review. Renewable Sustainable Energy Rev. 2019;107:108–122. doi: 10.1016/j.rser.2019.02.023
  • Dancs G, Kakucska G, Dobrányi S, et al. Efficient method for the determination of the neutral lipid content of oil-producing microalgae strains required for biodiesel. Fuel. 2023;331:331. doi: 10.1016/j.fuel.2022.125831
  • Menegazzo ML, Fonseca GG. Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renewable Sustainable Energy Rev. 2019;107:87–107. doi: 10.1016/j.rser.2019.01.064
  • Debnath C, Bandyopadhyay TK, Bhunia B, et al. Microalgae: sustainable resource of carbohydrates in third-generation biofuel production. Renewable Sustainable Energy Rev. 2021;150:111464. doi: 10.1016/j.rser.2021.111464
  • Xue J, Balamurugan S, Li T, et al. Biotechnological approaches to enhance biofuel producing potential of microalgae. Fuel. 2021;302:121169. doi: 10.1016/j.fuel.2021.121169
  • Khan S, Naushad M, Iqbal J, et al. Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment. Fuel. 2022;311:122543. doi: 10.1016/j.fuel.2021.122543
  • Ebhodaghe SO, Imanah OE, Ndibe H. Biofuels from microalgae biomass: a review of conversion processes and procedures. Arab J Chem. 2022;15(2):15. doi: 10.1016/j.arabjc.2021.103591
  • Singh D, Sharma D, Soni SL, et al. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel. 2020;262:116553. doi: 10.1016/j.fuel.2019.116553
  • Kumar MS, Buddolla V. Future prospects of biodiesel production by microalgae: a short review. In: Recent developments in applied microbiology and biochemistry. Elsevier; 2018. pp. 161–166. doi:10.1016/B978-0-12-816328-3.00012-X.
  • Gourvenec S, Sturt F, Reid E, et al. Global assessment of historical, current and forecast ocean energy infrastructure: Implications for marine space planning, sustainable design and end-of-engineered-life management. Renewable Sustainable Energy Rev. 2022;154:154. doi: 10.1016/j.rser.2021.111794
  • Hossain N, Mahlia TMI. Progress in physicochemical parameters of microalgae cultivation for biofuel production. Crit Rev Biotechnol. 2019;39(6):835–859. doi: 10.1080/07388551.2019.1624945
  • Olabi AG, Shehata N, Sayed ET, et al. Role of microalgae in achieving sustainable development goals and circular economy. Sci Total Environ. 2023;854:854. doi: 10.1016/j.scitotenv.2022.158689
  • Kim B, Heo HY, Son J, et al. Simplifying biodiesel production from microalgae via wet in situ transesterification: a review in current research and future prospects. Algal Res. 2019;41:101557. doi: 10.1016/j.algal.2019.101557
  • Jeyakumar N, Hoang AT, Nižetić S, et al. Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae. Fuel. 2022;329:125362. doi: 10.1016/j.fuel.2022.125362
  • Chamkalani A, Zendehboudi S, Rezaei N, et al. A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects. Renewable Sustainable Energy Rev. 2020;134:110143. doi: 10.1016/j.rser.2020.110143
  • Ali SS, Mastropetros SG, Schagerl M, et al. Recent advances in wastewater microalgae-based biofuels production: a state-of-the-art review. Energy Rep. 2022;8:13253–13280. doi:10.1016/j.egyr.2022.09.143
  • Awasthi AK, Cheela VRS, D’Adamo I, et al. Zero waste approach towards a sustainable waste management. Resour Environ Sustain. 2021;3:100014. doi: 10.1016/j.resenv.2021.100014
  • Iqbal MW, Kang Y, Jeon HW. Zero waste strategy for green supply chain management with minimization of energy consumption. J Clean Prod. 2020;245:245. doi: 10.1016/j.jclepro.2019.118827