816
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review

ORCID Icon
Article: 2252234 | Received 17 Apr 2023, Accepted 05 Jul 2023, Published online: 15 Sep 2023

References

  • Hamad MTMH, El-Sesy ME. Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. Bioresour Bioprocess. 2023;10(1):1. doi: 10.1186/s40643-022-00616-1
  • González Peña OI, Zavala MÁ L, Cabral Ruelas H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int J Environ Res Public Health. 2021;18(5):2532. doi: 10.3390/ijerph18052532
  • Hawash HB, Moneer AA, Galhoum AA, et al. Occurrence and spatial distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic environment, their characteristics, and adopted legislations. J Water Process Eng. 2023;52:103490. doi: 10.1016/j.jwpe.2023.103490
  • González-González RB, Sharma P, Singh SP, et al. Persistence, environmental hazards, and mitigation of pharmaceutical active residual contaminants from water matrices. Sci Total Environ. 2022;821:153329. doi: 10.1016/j.scitotenv.2022.153329
  • Andrzejak T, Raje H, LaFleur G, et al. Water quality and antibiotic resistance in the recreational waters. Bioresour Technol. 2023;370:128546. doi: 10.1016/j.biortech.2022.128546
  • Quadra GR, Silva PSA, Paranaíba JR, et al. Investigation of medicines consumption and disposal in Brazil: A study case in a developing country. Sci Total Environ. 2019;671:505–17. doi: 10.1016/j.scitotenv.2019.03.334
  • Karungamye P, Rugaika A, Mtei K, et al. The pharmaceutical disposal practices and environmental contamination: A review in East African countries. HydroResearch. 2022;5:99–107. doi: 10.1016/j.hydres.2022.11.001
  • Ariffin M, Zakili TST. Household pharmaceutical waste disposal in Selangor, Malaysia—policy, public perception, and current practices. Environ Manage. 2019;64(4):509–519. doi: 10.1007/s00267-019-01199-y
  • Ratnasari A, Syafiuddin A, Zaidi NS, et al. Bioremediation of micropollutants using living and non-living algae - current perspectives and challenges. Environ Pollut. 2022;292:118474. doi: 10.1016/j.envpol.2021.118474
  • Subrahmanya TM, Arshad AB, Lin PT, et al. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv. 2021;11(16):9638–9663. doi: 10.1039/D1RA00060H
  • Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem Soc Rev. 2021;50(11):6290–6307. doi: 10.1039/D0CS00502A
  • Ravula T, Hardin NZ, Ramamoorthy A. Polymer nanodiscs: Advantages and limitations. Chem Phys Lipids. 2019;219:45–49. doi: 10.1016/j.chemphyslip.2019.01.010
  • Song Y, Wang Y, Zhang N, et al. Quaternized carbon-based nanoparticles embedded positively charged composite membranes towards efficient removal of cationic small-sized contaminants. J Membr Sci. 2021;630:119332. doi: 10.1016/j.memsci.2021.119332
  • Ahsani M, Hazrati H, Javadi M, et al. Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater. Sep Purif Technol. 2020;249:116938. doi: 10.1016/j.seppur.2020.116938
  • Singh A, Ramachandran SK, Gumpu MB, et al. Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water. J Chem Technol Biotechnol. 2021;96(4):1057–1066. doi: 10.1002/jctb.6617
  • Chijioke-Okere MO, Adlan Mohd Hir Z, Ogukwe CE, et al. TiO2/Polyethersulphone films for photocatalytic degradation of acetaminophen in aqueous solution. J Mol Liq. 2021;338:116692. doi: 10.1016/j.molliq.2021.116692
  • Patala R, Mahlangu OT, Nyoni H, et al. In situ generation of fouling resistant Ag/Pd modified PES membranes for treatment of pharmaceutical wastewater. Membranes (Basel). 2022;12(8):762. doi: 10.3390/membranes12080762
  • Rosman N, Norharyati Wan Salleh W, Aqilah Mohd Razali N, et al. Ibuprofen removal through photocatalytic filtration using antifouling PVDF- ZnO/Ag2CO3/Ag2O nanocomposite membrane. Mater Today Proc. 2021;42:69–74. doi: 10.1016/j.matpr.2020.09.476
  • Yadav A, Yadav P, Labhasetwar PK, et al. CNT functionalized ZIF-8 impregnated poly(vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for antibiotics removal from pharmaceutical industry wastewater by vacuum membrane distillation. J Environ Chem Eng. 2021;9(6):106560. doi: 10.1016/j.jece.2021.106560
  • Zakeritabar SF, Jahanshahi M, Peyravi M, et al. Photocatalytic study of nanocomposite membrane modified by CeF3 catalyst for pharmaceutical wastewater treatment. J Environ Health Sci Eng. 2020;18(2):1151–1161. doi: 10.1007/s40201-020-00534-4
  • Sawunyama L, Oyewo OA, Seheri N, et al. Metal oxide functionalized ceramic membranes for the removal of pharmaceuticals in wastewater. Surf Interfaces. 2023;38:102787. doi: 10.1016/j.surfin.2023.102787
  • Kaczorowska MA, Bożejewicz D, Witt K. The application of polymer Inclusion membranes for the removal of emerging contaminants and synthetic dyes from aqueous solutions—A mini review. Membranes (Basel). 2023;13(2):132. doi: 10.3390/membranes13020132
  • Li X, Bao D, Zhang Y, et al. Development and application of membrane aerated biofilm reactor (MABR)—A review. Water. 2023;15(3):436. doi: 10.3390/w15030436
  • Majumder S, Dhara B, Mitra AK, et al. Applications and implications of carbon nanotubes for the sequestration of organic and inorganic pollutants from wastewater. Environ Sci Pollut Res. 2023. doi: 10.1007/s11356-023-25431-9
  • Sodhi KK, Kumar M, Singh DK. Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. J Water Process Eng. 2021;39:101858. doi: 10.1016/j.jwpe.2020.101858
  • Dai Y, Peng Y, Hu W, et al. Prenatal amoxicillin exposure induces developmental toxicity in fetal mice and its characteristics. J Environ Sci. 2024;137:287–301. doi: 10.1016/j.jes.2023.02.021
  • Qin J, Yao B, Xie L, et al. Impact of prenatal amoxicillin exposure on hippocampal development deficiency. Neuropharmacology. 2023;223:109331. doi: 10.1016/j.neuropharm.2022.109331
  • Yisa AG, Chia MA, Gadzama IMK, et al. Immobilization, oxidative stress and antioxidant response of Daphnia magna to amoxicillin and ciprofloxacin. Environ Toxicol Pharmacol. 2023;98:104078. doi: 10.1016/j.etap.2023.104078
  • Prato E, Biandolino F, Grattagliano A, et al. Individual and combined effects of amoxicillin and carbamazepine to the marine copepod tigriopus fulvus. Environ Sci Pollut Res. 2023;30(22):61672–61681. doi: 10.1007/s11356-023-26498-0
  • Umamaheswari S, Renuka SS, Ramesh M, et al. Chronic amoxicillin exposure affects Labeo rohita: assessment of hematological, ionic compounds, biochemical, and enzymological activities. Heliyon. 2019;5(4):e01434. doi: 10.1016/j.heliyon.2019.e01434
  • Gomes MP, Moreira Brito JC, Cristina Rocha D, et al. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicol Environ Saf. 2020;203:111025. doi: 10.1016/j.ecoenv.2020.111025
  • Singh V, Pandey B, Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere. 2018;201:492–502. doi: 10.1016/j.chemosphere.2018.03.010
  • Rede D, LHMLM S, Ramos S, et al. Individual and mixture toxicity evaluation of three pharmaceuticals to the germination and growth of Lactuca sativa seeds. Sci Total Environ. 2019;673:102–109. doi: 10.1016/j.scitotenv.2019.03.432
  • Lebeaux RM, Madan JC, Nguyen QP, et al. Impact of antibiotics on off-target infant gut microbiota and resistance genes in cohort studies. Pediatr Res. 2022;92(6):1757–1766. doi: 10.1038/s41390-022-02104-w
  • Garnier A-S, Lagarce L, Augusto J-F. Amoxicillin-induced crystal nephropathy: only a French touch? J Nephrol. 2022;35(3):1015–1016. doi: 10.1007/s40620-021-01240-6
  • Benyekkou N, Ghezzar MR, Abdelmalek F, et al. Elimination of paracetamol from water by a spent coffee grounds biomaterial. Environ NanotechnolMonitmanag. 2020;14:100396. doi: 10.1016/j.enmm.2020.100396
  • Veras TB, Luiz Ribeiro de Paiva A, Duarte MMMB, et al. Analysis of the presence of anti-inflammatories drugs in surface water: A case study in Beberibe river - PE, Brazil. Chemosphere. 2019;222:961–969. doi: 10.1016/j.chemosphere.2019.01.167
  • Do Nascimento RF, de Carvalho Filho JAA, Napoleão DC, et al. Presence of non-Steroidal anti-Inflammatories in Brazilian Semiarid waters. Water Air Soil Pollut. 2023;234(4):225. doi: 10.1007/s11270-023-06239-2
  • Koagouw W, Arifin Z, Olivier GWJ, et al. High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. Mar Pollut Bull. 2021;169:112558. doi: 10.1016/j.marpolbul.2021.112558
  • Shigei M, Assayed A, Hazaymeh A, et al. Pharmaceutical and antibiotic Pollutant levels in wastewater and the waters of the Zarqa River, Jordan. Appl Sci. 2021;11(18):8638. doi: 10.3390/app11188638
  • Borrull J, Colom A, Fabregas J, et al. Presence, behaviour and removal of selected organic micropollutants through drinking water treatment. Chemosphere. 2021;276:130023. doi: 10.1016/j.chemosphere.2021.130023
  • Nogueira AF, Pinto G, Correia B, et al. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of danio rerio when exposed to environmental realistic levels of both drugs. Environ Toxicol. 2019;34(11):1177–1190. doi: 10.1002/tox.22819
  • Fatima S, Asif N, Ahmad R, et al. Toxicity of NSAID drug (paracetamol) to nontarget organism—nostoc muscorum. Environ Sci Pollut Res. 2020;27(28):35208–35216. doi: 10.1007/s11356-020-09802-0
  • Sousa AP, Nunes B. Dangerous connections: biochemical and behavioral traits in Daphnia magna and Daphnia longispina exposed to ecologically relevant amounts of paracetamol. Environ Sci Pollut Res. 2021;28(29):38792–38808. doi: 10.1007/s11356-021-13200-5
  • Koagouw W, Ciocan C. Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis. Environ Sci Pollut Res. 2020;27(25):30933–30944. doi: 10.1007/s11356-019-06861-w
  • Perussolo MC, Guiloski IC, Lirola JR, et al. Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf. 2019;182:109438. doi: 10.1016/j.ecoenv.2019.109438
  • Zhang S, Hagstrom D, Hayes P, et al. Multi-behavioral endpoint testing of an 87-chemical compound library in freshwater planarians. Toxicol Sci. 2018;167(1):26–44. doi: 10.1093/toxsci/kfy145
  • Nogueira AF, Nunes B. Effects of paracetamol on the polychaete hediste diversicolor: occurrence of oxidative stress, cyclooxygenase inhibition and behavioural alterations. Environ Sci Pollut Res. 2021;28(21):26772–26783. doi: 10.1007/s11356-020-12046-7
  • Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators lens culinaris med. And pisum sativum L. Environ Sci Pollut Res. 2023;30(22):61965–61976. doi: 10.1007/s11356-023-26475-7
  • Ratnasari A, Syafiuddin A, Kueh ABH, et al. Opportunities and challenges for sustainable bioremediation of natural and synthetic estrogens as emerging water contaminants using bacteria, fungi, and algae. Water Air Soil Pollut. 2021;232(6):242. doi: 10.1007/s11270-021-05183-3
  • Tang Z, Z-H L, Wang H, et al. Occurrence and removal of 17α-ethynylestradiol (EE2) in municipal wastewater treatment plants: Current status and challenges. Chemosphere. 2021;271:129551. doi: 10.1016/j.chemosphere.2021.129551
  • Moreira IS, Lebel A, Peng X, et al. Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS. Biodegradation. 2021;32(5):511–529. doi: 10.1007/s10532-021-09948-9
  • Huang Y, Xie X, Zhou LJ, et al. Multi-phase distribution and risk assessment of endocrine disrupting chemicals in the surface water of the Shaying River, -Huai River Basin, China. Ecotoxicol Environ Saf. 2019;173:45–53. doi: 10.1016/j.ecoenv.2019.02.016
  • Nasri A, Mezni A, Lafon P-A, et al. Ethinylestradiol (EE2) residues from birth control pills impair nervous system development and swimming behavior of zebrafish larvae. Sci Total Environ. 2021;770:145272. doi: 10.1016/j.scitotenv.2021.145272
  • Rehberger K, Wernicke von Siebenthal E, Bailey C, et al. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, oncorhynchus mykiss. Environ Int. 2020;142:105836. doi: 10.1016/j.envint.2020.105836
  • Kuo Y-H, How CM, Huang C-W, et al. Co-contaminants of ethinylestradiol and sulfamethoxazole in groundwater exacerbate ecotoxicity and ecological risk and compromise the energy budget of C. elegans. Aquat Toxicol. 2023;257:106473. doi: 10.1016/j.aquatox.2023.106473
  • Djebbi E, Yahia MND, Farcy E, et al. Acute and chronic toxicity assessments of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) on the calanoid copepod acartia clausi: Effects on survival, development, sex-ratio and reproduction. Sci Total Environ. 2022;807:150845. doi: 10.1016/j.scitotenv.2021.150845
  • Cunha M, Silva MG, De Marchi L, et al. Toxic effects of a mixture of pharmaceuticals in Mytilus galloprovincialis: The case of 17α-ethinylestradiol and salicylic acid. Environ Pollut. 2023;324:121070. doi: 10.1016/j.envpol.2023.121070
  • Castro-Muñoz R, González-Melgoza LL, García-Depraect O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere. 2021;270:129421. doi: 10.1016/j.chemosphere.2020.129421
  • Akter M, Uddin MH, Anik HR. Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Polym Bull. 2023. doi: 10.1007/s00289-023-04733-5
  • Kloos J, Joosten N, Schenning A, et al. Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J Membr Sci. 2021;620:118849. doi: 10.1016/j.memsci.2020.118849
  • El-Mossalamy EH, Batouti MEL, Fetouh HA. The role of natural biological macromolecules: Deoxyribonucleic and ribonucleic acids in the formulation of new stable charge transfer complexes of thiophene schiff bases for various life applications. Int j biol macromol. 2021;193:1572–1586. doi: 10.1016/j.ijbiomac.2021.10.220
  • Elbatouti M, Fetouh HA. Extraction of eco-friendly and biodegradable surfactant for inhibition of copper corrosion during acid pickling. Adsorpt Sci Technol. 2019;37(7–8):649–663. doi: 10.1177/0263617419865130
  • Kim S, Wang H, Lee YM. 2D nanosheets and their composite membranes for water, gas, and Ion separation. Angew. Chem. Int. Ed. 2019;58(49):17512–17527. doi: 10.1002/anie.201814349
  • Huang Y, Xiao C, Huang Q, et al. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chem Eng J. 2021;403:126295. doi: 10.1016/j.cej.2020.126295
  • Gouveia ASL, Malcaitè E, Lozinskaya EI, et al. Poly(ionic liquid)–ionic liquid membranes with fluorosulfonyl-derived anions: Characterization and biohydrogen separation. ACS Sustain Chem Eng. 2020;8(18):7087–7096. doi: 10.1021/acssuschemeng.0c00960
  • Hu Y, Wu W. Application of membrane filtration to cold sterilization of drinks and establishment of aseptic workshop. Food Environ Virol. 2023;15(2):89–106. doi: 10.1007/s12560-023-09551-6
  • Wang Z, Chen Z, Zheng Z, et al. Nanocellulose-based membranes for highly efficient molecular separation. Chem Eng J. 2023;451:138711. doi: 10.1016/j.cej.2022.138711
  • Karami P, Khorshidi B, McGregor M, et al. Thermally stable thin film composite polymeric membranes for water treatment: A review. J Clean Prod. 2020;250:119447. doi: 10.1016/j.jclepro.2019.119447
  • DuChanois RM, Porter CJ, Violet C, et al. Membrane materials for selective ion separations at the water–energy nexus. Adv Mater. 2021;33(38):2101312. doi: 10.1002/adma.202101312
  • Apel P, Koter S, Yaroshchuk A. Time-resolved pressure-induced electric potential in nanoporous membranes: Measurement and mechanistic interpretation. J Membr Sci. 2022;653:120556. doi: 10.1016/j.memsci.2022.120556
  • Li B, Qi B, Guo Z, et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: A review. Chemosphere. 2023;327:138528. doi: 10.1016/j.chemosphere.2023.138528
  • Mamah SC, Goh PS, Ismail AF, et al. Recent development in modification of polysulfone membrane for water treatment application. J Water Process Eng. 2021;40:101835. doi: 10.1016/j.jwpe.2020.101835
  • Behboudi A, Jafarzadeh Y, Yegani R. Incorporation of silica grafted silver nanoparticles into polyvinyl chloride/polycarbonate hollow fiber membranes for pharmaceutical wastewater treatment. Chem Eng Res Des. 2018;135:153–165. doi: 10.1016/j.cherd.2018.03.019
  • Chijioke-Okere M, Abdullah AH, Mohd Hir ZA, et al. Efficient photodegradation of paracetamol by integrated PES-ZnO photocatalyst sheets. Inorg Chem Commun. 2023;148:110377. doi: 10.1016/j.inoche.2022.110377
  • Maryam B, Buscio V, Odabasi SU, et al. A study on behavior, interaction and rejection of paracetamol, diclofenac and ibuprofen (PhAcs) from wastewater by nanofiltration membranes. Environ Technol Innov. 2020;18:100641. doi: 10.1016/j.eti.2020.100641
  • Kuttiani Ali J, Abi Jaoude M, Alhseinat E. Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Sep Purif Technol. 2021;266:118585. doi: 10.1016/j.seppur.2021.118585
  • Shakak M, Rezaee R, Maleki A, et al. Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environ Technol Innov. 2020;17:100529. doi: 10.1016/j.eti.2019.100529
  • Dekkouche S, Morales-Torres S, Ribeiro AR, et al. In situ growth and crystallization of TiO2 on polymeric membranes for the photocatalytic degradation of diclofenac and 17α-ethinylestradiol. Chem Eng J. 2022;427:131476. doi: 10.1016/j.cej.2021.131476
  • Liu S, Véron E, Lotfi S, et al. Poly(vinylidene fluoride) membrane with immobilized TiO2 for degradation of steroid hormone micropollutants in a photocatalytic membrane reactor. J Hazard Mater. 2023;447:130832. doi: 10.1016/j.jhazmat.2023.130832
  • Shi F, Ma Y, Ma J, et al. Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J Membr Sci. 2012;389:522–531. doi: 10.1016/j.memsci.2011.11.022
  • Deng W, Fan T, Li Y. In situ biomineralization-constructed superhydrophilic and underwater superoleophobic PVDF-TiO2 membranes for superior antifouling separation of oil-in-water emulsions. J Membr Sci. 2021;622:119030. doi: 10.1016/j.memsci.2020.119030
  • Zou D, Lee YM. Design strategy of poly(vinylidene fluoride) membranes for water treatment. Prog Polym Sci. 2022;128:101535. doi: 10.1016/j.progpolymsci.2022.101535
  • Qing W, Liu F, Yao H, et al. Functional catalytic membrane development: A review of catalyst coating techniques. Adv Colloid Interface Sci. 2020;282:102207. doi: 10.1016/j.cis.2020.102207
  • Liu T, Liang R, Qin W. Anti-fouling TiO2-Coated polymeric membrane ion-selective electrodes with photocatalytic self-cleaning properties. Anal Chem. 2023;95(16):6577–6585. doi: 10.1021/acs.analchem.2c05514
  • Ratnasari A, Endarko E, Syafiuddin A. A green method for the enhancement of antifungal properties of various textiles functionalized with silver nanoparticles. Biointerface Res Appl Chem. 2020;10. doi: 10.33263/BRIAC106.72847294
  • Fadlilah D, Endarko E, Ratnasari A, et al. Enhancement of antibacterial properties of various polymers functionalized with silver nanoparticles. Biointerface Res Appl Chem. 2020;10:5592–5598. doi: 10.33263/BRIAC0103.592598
  • Yang H, Liu H-B, Tang Z-S, et al. Synthesis, performance, and application of molecularly imprinted membranes: A review. J Environ Chem Eng. 2021;9(6):106352. doi: 10.1016/j.jece.2021.106352
  • Radjabian M, Abetz V. Advanced porous polymer membranes from self-assembling block copolymers. Prog Polym Sci. 2020;102:101219. doi: 10.1016/j.progpolymsci.2020.101219
  • Warsinger DM, Chakraborty S, Tow EW, et al. A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci. 2018;81:209–237. doi: 10.1016/j.progpolymsci.2018.01.004
  • Dolatshah M, Zinatizadeh AA, Zinadini S, et al. Preparation, characterization and performance assessment of antifouling L-Lysine (C, N codoped)-TiO2/WO3-PES photocatalytic membranes: A comparative study on the effect of blended and UV-grafted nanophotocatalyst. J Environ Chem Eng. 2022;10(6):108658. doi: 10.1016/j.jece.2022.108658
  • Ratnasari A, Syafiuddin A, Budiarti RPN, et al. Mass transfer mechanisms of water pollutions adsorption mediated by different natural adsorbents. Environ Qual Manag. 2022;32(1):95–104. doi: 10.1002/tqem.21849
  • Fulazzaky MA, Salim NAA, Puteh MH, et al. Reliability of the mass transfer factor models to describe the adsorption of NH4+ by granular activated carbon. Int J Environ Res. 2022;16(3):30. doi: 10.1007/s41742-022-00408-7
  • Pantić K, Bajić ZJ, Veličković ZS, et al. Arsenic removal by copper-impregnated natural mineral tufa part II: a kinetics and column adsorption study. Environ Sci Pollut Res. 2019;26(23):24143–24161. doi: 10.1007/s11356-019-05547-7
  • Syafiuddin A, Fulazzaky MA. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnol Rep. 2021;29:e00573. doi: 10.1016/j.btre.2020.e00573
  • Fulazzaky MA, Salim NAA, Khamidun MH, et al. The mechanisms and kinetics of phosphate adsorption onto iron-coated waste mussel shell observed from hydrodynamic column. Int J Environ Sci Technol. 2022;19(7):6345–6358. doi: 10.1007/s13762-021-03563-0
  • Salim NAA, Fulazzaky MA, Puteh MH, et al. Mass transfer kinetics and mechanisms of phosphate adsorbed on waste mussel shell. Water Air Soil Pollut. 2022;233(6):223. doi: 10.1007/s11270-022-05693-8
  • Khamidun MH, Rahman MAA, Zainorizuan MJ, et al. Analysis of mass transfer resistance for adsorption of phosphate onto industrial waste materials in plug-flow column. International Symposium on Civil and Environmental Engineering; 5-6 December 2016; Malaysia. MATEC Web conf. 2017;103:06004. doi: 10.1051/matecconf/201710306004
  • Khamidun M, Ali Fulazzaky M, Al-Gheethi A, et al. Adsorption of ammonium from wastewater treatment plant effluents onto the zeolite; a plug-flow column, optimisation, dynamic and isotherms studies. Int J Environ Anal Chem. 2022;102(19):8445–8466. doi: 10.1080/03067319.2020.1849659
  • Mohamed LA, Aniagor CO, Taha GM, et al. Mechanistic investigation of the mass transfer stages involved during the adsorption of aqueous lead onto scopulariopsis brevicompactum fungal biomass. Environ Challenges. 2021;5:100373. doi: 10.1016/j.envc.2021.100373
  • Tran TN, Kim D-G, Ko S-O. Adsorption mechanisms of manganese (II) ions onto acid-treated activated carbon. KSCE J Civil Eng. 2018;22(10):3772–3782. doi: 10.1007/s12205-018-1334-6
  • Ezechi EH, Isa MH, Muda K, et al. A comparative evaluation of two electrode systems on continuous electrocoagulation of boron from produced water and mass transfer resistance. J Water Process Eng. 2020;34:101133. doi: 10.1016/j.jwpe.2020.101133
  • Salim NAA, Puteh MH, Othman MHD, et al. The adsorption of Cr(VI) from synthetic solution onto mussel shell incorporated polyethersulfone flat sheet membranes: Application of the mass transfer factor models. J Water Chem Technol. 2023;45(3):222–233. doi: 10.3103/S1063455X23030098
  • Zhou Q, Zhu F, Gong R, et al. Adsorption, regeneration and kinetic of gas phase elemental mercury capture on sulfur incorporated porous carbon synthesized by template method under simulated coal-fired flue gas. Fuel. 2023;342:127925. doi: 10.1016/j.fuel.2023.127925
  • Siagian UWR, Khoiruddin K, Ting YP, et al. Advances in membrane bioreactor: High performance and antifouling configurations. Curr Pollut Rep. 2022;8(2):98–112. doi: 10.1007/s40726-022-00217-8
  • Heng ZW, Chong WC, Pang YL, et al. Novel visible-light responsive NCQDs-TiO2/PAA/PES photocatalytic membrane with enhanced antifouling properties and self-cleaning performance. J Environ Chem Eng. 2021;9(4):105388. doi: 10.1016/j.jece.2021.105388
  • Teng L, Yue C, Zhang G. Epoxied SiO2 nanoparticles and polyethyleneimine (PEI) coated polyvinylidene fluoride (PVDF) membrane for improved oil water separation, anti-fouling, dye and heavy metal ions removal capabilities. J Colloid Interface Sci. 2023;630:416–429. doi: 10.1016/j.jcis.2022.09.148
  • Ratnasari A. Antimicrobial textile modified with silver nanoparticles in-situ synthesized using weed leaves extract. Environ Toxicol Manage. 2021;1(3):15–18. doi: 10.33086/etm.v1i3.2502
  • Chi L, Qian Y, Guo J, et al. Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning. Catal Today. 2019;335:527–537. doi: 10.1016/j.cattod.2019.02.027
  • Park J, Yamashita N, Tanaka H. Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR. Chemosphere. 2018;197:467–476. doi: 10.1016/j.chemosphere.2018.01.063
  • Mendes Predolin L, Moya-Llamas MJ, Vásquez-Rodríguez ED, et al. Effect of current density on the efficiency of a membrane electro-bioreactor for removal of micropollutants and phosphorus, and reduction of fouling: A pilot plant case study. J Environ Chem Eng. 2021;9(1):104874. doi: 10.1016/j.jece.2020.104874
  • Huang Z, Gong B, Huang C-P, et al. Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol. J Environ Manage. 2019;231:121–128. doi: 10.1016/j.jenvman.2018.09.092
  • Duc Viet N, Lee H, Im S-J, et al. Fate, elimination, and simulation of low-molecular-weight micropollutants in an integrated activated carbon-fertiliser drawn osmotic membrane bioreactor. Bioresour Technol. 2022;351:126972. doi: 10.1016/j.biortech.2022.126972
  • Batouti ME, Sadik W, Eldemerdash AG, et al. New and innovative microwave-assisted technology for synthesis of guar gum-grafted acrylamide hydrogel superabsorbent for the removal of acid red 8 dye from industrial wastewater. Polym Bull. 2023;80(5):4965–4989. doi: 10.1007/s00289-022-04254-7
  • Zhang H, Sun M, Song L, et al. Fate of NaClO and membrane foulants during in-situ cleaning of membrane bioreactors: Combined effect on thermodynamic properties of sludge. Biochem Eng J. 2019;147:146–152. doi: 10.1016/j.bej.2019.04.016
  • Heylen C, Oliveira Aguiar A, String G, et al. Laboratory efficacy of locally available backwashing methods at removing fouling in hollow-fiber membrane filters used for household water treatment. Membranes (Basel). 2021;11(5):375. doi: 10.3390/membranes11050375
  • Ping M, Zhang X, Liu M, et al. Surface modification of polyvinylidene fluoride membrane by atom-transfer radical-polymerization of quaternary ammonium compound for mitigating biofouling. J Membr Sci. 2019;570-571:286–293. doi: 10.1016/j.memsci.2018.10.070
  • Julian H, Ye Y, Li H, et al. Scaling mitigation in submerged vacuum membrane distillation and crystallization (VMDC) with periodic air-backwash. J Membr Sci. 2018;547:19–33. doi: 10.1016/j.memsci.2017.10.035
  • Zhang W, Yu S, Zhao H, et al. Vacuum membrane distillation for seawater concentrate treatment coupled with microbubble aeration cleaning to alleviate membrane fouling. Sep Purif Technol. 2022;290:120864. doi: 10.1016/j.seppur.2022.120864