1,853
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in oligosaccharides production from brown seaweeds: extraction, characterization, antimetabolic syndrome, and other potential applications

, , , , , & show all
Article: 2252659 | Received 02 Mar 2023, Accepted 27 Jun 2023, Published online: 19 Sep 2023

References

  • Zheng L-X, Liu Y, Tang S, et al. Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. Food Sci Hum Wellness. 2023;12(2):359–27. doi: 10.1016/j.fshw.2022.07.038
  • Mohd Fauziee NA, Chang LS, Wan Mustapha WA, et al. Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). Int J Biol Macromol. 2021;167:1135–1145. PMID 33188815. doi: 10.1016/j.ijbiomac.2020.11.067
  • Myklestad SM, Granum E. Chapter 4.2. Biology of (1,3)-β-glucans and related glucans in protozoans and chromistans. In: Bacic A, Fincher G Stone B, editors. Chemistry, biochemistry, and biology of 1-3 beta glucans and related polysaccharides. San Diego: Academic Press; 2009. pp. 353–385. doi: 10.1016/B978-0-12-373971-1.00010-8
  • Zhang L, Liao W, Huang Y, et al. Global seaweed farming and processing in the past 20 years. Food Prod Process And Nutr. 2022;4(1):23. doi: 10.1186/s43014-022-00103-2
  • Huang C-Y, Huang C-Y, Yang C-C, et al. Hair growth-promoting effects of Sargassum glaucescens oligosaccharides extracts. J Taiwan Inst Chem Eng. 2022;134:104307. doi: 10.1016/j.jtice.2022.104307
  • Zaitseva OO, Sergushkina MI, Khudyakov AN, et al. Seaweed sulfated polysaccharides and their medicinal properties. Algal Res. 2022;68:102885. doi: 10.1016/j.algal.2022.102885
  • Soukaina B, Zainab EA, Guillaume P, et al. Radical depolymerization of alginate extracted from Moroccan brown seaweed Bifurcaria bifurcata. Appl Sci. 2020;10(12):4166. doi: 10.3390/app10124166
  • Zhang X, Liu Y, Chen X-Q, et al. Catabolism of Saccharina japonica polysaccharides and oligosaccharides by human fecal microbiota. LWT. 2020;130:109635. doi: 10.1016/j.lwt.2020.109635
  • Gurpilhares D, Gurpilhares DB, Cinelli LP, et al. Marine prebiotics: polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem. 2019;280:175–186. PMID 30642484. doi: 10.1016/j.foodchem.2018.12.023
  • Nordgård CT, Rao SV, Draget KI. The potential of marine oligosaccharides in pharmacy. Bioact Carbohydr Diet Fibre. 2019;18:100178. doi: 10.1016/j.bcdf.2019.100178
  • Suprunchuk VE. Low-molecular-weight fucoidan: chemical modification, synthesis of its oligomeric fragments and mimetics. Carbohydr Res. 2019;485:107806. PMID 31526929. doi: 10.1016/j.carres.2019.107806
  • Zhang C, Wang W, Zhao X, et al. Preparation of alginate oligosaccharides and their biological activities in plants: a review. Carbohydr Res. 2020;494:108056. PMID 32559511. doi: 10.1016/j.carres.2020.108056
  • Gabbia D, Saponaro M, Sarcognato S, et al. Fucus vesiculosus and Ascophyllum nodosum ameliorate liver function by reducing diet-induced steatosis in rats. Mar Drugs. 2020;18(1):62. PMID 31963560. doi: 10.3390/md18010062
  • Shih M-K, Hou C-Y, Dong C-D, et al. Production and characterization of Durvillaea Antarctica enzyme extract for antioxidant and anti-metabolic syndrome effects. Catalysts. 2022;12(10):1284. doi: 10.3390/catal12101284
  • Gabbia D, De Martin S. Brown seaweeds for the management of metabolic syndrome and associated diseases. Molecules. 2020;25(18):4182. PMID 32932674. doi: 10.3390/molecules25184182
  • Charoensiddhi S, Conlon MA, Vuaran MS, et al. Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. J Funct Foods. 2016;24:221–230. doi: 10.1016/j.jff.2016.04.016
  • Han ZL, Yang M, Fu XD, et al. Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis. Mar Drugs. 2019;17(3):173. PMID 30889794. doi: 10.3390/md17030173
  • Shang Q, Jiang H, Cai C, et al. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: an overview. Carbohydr Polym. 2018;179:173–185. PMID 29111040. doi: 10.1016/j.carbpol.2017.09.059
  • Huang W, Tan H, Nie S. Beneficial effects of seaweed-derived dietary fiber: highlights of the sulfated polysaccharides. Food Chem. 2022;373(B):131608. PMID 34815114. doi: 10.1016/j.foodchem.2021.131608
  • Xing M, Cao Q, Wang Y, et al. Advances in research on the bioactivity of alginate oligosaccharides. Mar Drugs. 2020;18(3):144. PMID 32121067. doi: 10.3390/md18030144
  • Patel AK, Singhania RR, Awasthi M, et al. Emerging role of macro- and microalgae as prebiotic. Microb Cell Factories. 2021c;20(1):112. doi: 10.1186/s12934-021-01601-7
  • Patel AK, Vadrale AP, Singhania RR, et al. Algal polysaccharide: current status and future perspectives. Phytochem Rev. 2022a;22(4):1167–1196. doi: 10.1007/s11101-021-09799-5
  • Sellimi S, Kadri N, Barragan-Montero V, et al. Fucans from a Tunisian brown seaweed Cystoseira barbata: structural characteristics and antioxidant activity. Int j biol macromol. 2014;66:281–288. PMID 24582933. doi: 10.1016/j.ijbiomac.2014.02.041
  • Wu SJ. Preparation and antioxidant activity of the oligosaccharides derived from Laminaria japonica. Carbohydr Polym. 2014;106:22–24. PMID 24721046. doi: 10.1016/j.carbpol.2014.01.098
  • Huang Y, Jiang H, Mao X, et al. Laminarin and laminarin oligosaccharides originating from brown algae: preparation, biological activities, and potential applications. J Ocean Univ China. 2021;20(3):641–653. doi: 10.1007/s11802-021-4584-8
  • Jayapala N, Toragall V, GK BS, et al. Preparation, characterization, radical scavenging property and antidiabetic potential of laminarioligosaccharides derived from laminarin. Algal Res. 2022;63:102642. doi: 10.1016/j.algal.2022.102642
  • Liu M, Liu L, Zhang H-F, et al. Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry. Journal Of Integrative Agriculture. 2021;20(1):24–34. doi: 10.1016/S2095-3119(20)63195-1
  • Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: recent developments, barriers, and future outlooks. Carbohydr Polym. 2021;267:118158. PMID 34119132. doi: 10.1016/j.carbpol.2021.118158
  • Cheong KL, Qiu HM, Du H, et al. Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications. Molecules. 2018;23(10):2451. PMID 30257445. doi: 10.3390/molecules23102451
  • Nazarudin MF, Alias NH, Balakrishnan S, et al. Chemical, nutrient and physicochemical properties of brown seaweed, Sargassum polycystum C. Agardh (Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. Molecules. 2021;26(17):5216. PMID 34500650. doi: 10.3390/molecules26175216
  • Wang M, Chen L, Zhang Z. Potential applications of alginate oligosaccharides for biomedicine – a mini review. Carbohydr Polym. 2021;271:118408. PMID 34364551. doi: 10.1016/j.carbpol.2021.118408
  • Zúñiga EA, Matsuhiro B, Mejías E. Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and its anticoagulant activity. Carbohydr Polym. 2006;66(2):208–215. doi: 10.1016/j.carbpol.2006.03.007
  • Zhou R, Shi X, Gao Y, et al. Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells. J Agric Food Chem. 2015;63(1):160–168. PMID 25483391. doi: 10.1021/jf503548a
  • Yang Z, Li J-P, Guan H-S. Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymers. 2004;58(2):115–121. doi: 10.1016/j.carbpol.2004.04.022
  • Okolie CL, Mason B, Mohan A, et al. The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum. Food Hydrocoll. 2019;90:462–471. doi: 10.1016/j.foodhyd.2018.12.053
  • Li X, Xu A, Xie H, et al. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym. 2010;79(3):660–664. doi: 10.1016/j.carbpol.2009.09.020
  • Yudiati E, Santosa GW, Tontowi MR, et al. Optimization of alginate alkaline extraction technology from Sargassum polycystum and its antioxidant properties. IOP Conf S Earth Environ Sci. 2018;139(1):012052. doi: 10.1088/1755-1315/139/1/012052
  • Ermakova S, Men’shova R, Vishchuk O, et al. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: Structural characteristics and antitumor activity. Algal Res. 2013;2(1):51–58. doi: 10.1016/j.algal.2012.10.002
  • Cheong KL, Li JK, Zhong S. Preparation and structure characterization of high-value laminaria digitata oligosaccharides. Front Nutr. 2022;9:945804. PMID 35873409. doi: 10.3389/fnut.2022.945804
  • Hu T, Li C, Zhao X, et al. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method. Carbohydr Res. 2013;373:53–58. PMID 23584235. doi: 10.1016/j.carres.2013.03.014
  • Wang S-H, Huang C-Y, Chen C-Y, et al. Isolation and purification of brown algae fucoidan from Sargassum siliquosum and the analysis of anti-lipogenesis activity. Biochem Eng J. 2021;165:107798. doi: 10.1016/j.bej.2020.107798
  • Aida TM, Yamagata T, Watanabe M, et al. Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr Polym. 2010;80(1):296–302. doi: 10.1016/j.carbpol.2009.11.032
  • Choi JI, Kim HJ. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity. Carbohydr Polym. 2013;97(2):358–362. PMID 23911457. doi: 10.1016/j.carbpol.2013.05.002
  • Sun M, Sun C, Xie H, et al. A simple method to calculate the degree of polymerization of alginate oligosaccharides and low molecular weight alginates. Carbohydr Res. 2019;486:107856. PMID 31689577. doi: 10.1016/j.carres.2019.107856
  • Becker S, Scheffel A, Polz MF, et al. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83(9): PMID 28213541. doi: 10.1128/AEM.03389-16
  • Li L, Jiang X, Guan H, et al. Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res. 2011;346(6):794–800. PMID 21371694. doi: 10.1016/j.carres.2011.01.023
  • Wang D, Kim DH, Seo N, et al. A novel glycoside hydrolase family 5 β-1,3-1,6-Endoglucanase from saccharophagus degradans 2-40T and its transglycosylase activity. Appl Environ Microbiol. 2016;82(14):4340–4349. PMID 27208098. doi: 10.1128/AEM.00635-16
  • Mitsuya D, Sugiyama T, Zhang S, et al. Enzymatic properties and the gene structure of a cold-adapted laminarinase from Pseudoalteromonas species LA. J Biosci Bioeng. 2018;126(2):169–175. PMID 29627318. doi: 10.1016/j.jbiosc.2018.02.018
  • Shiao W-C, Kuo C-H, Tsai Y-H, et al. In vitro evaluation of anti-colon cancer potential of crude extracts of fucoidan obtained from Sargassum glaucescens pretreated by compressional-puffing. Appl Sci. 2020;10(9):3058. doi: 10.3390/app10093058
  • Sumiyoshi W, Miyanishi N, Nakakita S-I, et al. An alternative strategy for structural glucanomics using β-gluco-oligosaccharides from the brown algae Ecklonia stolonifera as models. Bioact Carbohydr Diet Fibre. 2015;5(2):137–145. doi: 10.1016/j.bcdf.2015.03.002
  • Ale MT, Meyer AS. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013;3(22):8131–8141. doi: 10.1039/C3RA23373A
  • Coelho E, Rocha MA, Saraiva JA, et al. Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr Polym. 2014;99:415–422. PMID 24274525. doi: 10.1016/j.carbpol.2013.09.003
  • Hakala TK, Liitiä T, Suurnäkki A. Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydr Polym. 2013;93(1):102–108. PMID 23465907. doi: 10.1016/j.carbpol.2012.05.013
  • Spadoni Andreani E, Karboune S. Comparison of enzymatic and microwave-assisted alkaline extraction approaches for the generation of oligosaccharides from American Cranberry (Vaccinium macrocarpon) Pomace. J Food Sci. 2020;85(8):2443–2451. PMID 32691432. doi: 10.1111/1750-3841.15352
  • Liu J, Yang S, Li X, et al. Alginate oligosaccharides: production, biological activities, and potential applications. Compr Rev Food Sci Food Saf. 2019;18(6):1859–1881. PMID 33336967. doi: 10.1111/1541-4337.12494
  • Li G-Y, Luo Z-C, Yuan F, et al. Combined process of high-pressure homogenization and hydrothermal extraction for the extraction of fucoidan with good antioxidant properties from Nemacystus decipients. Food And Bioproducts Processing. 2017;106:35–42. doi: 10.1016/j.fbp.2017.08.002
  • Shi D, Qi J, Zhang H, et al. Comparison of hydrothermal depolymerization and oligosaccharide profile of fucoidan and fucosylated chondroitin sulfate from Holothuria floridana. Int j biol macromol. 2019;132:738–747. PMID 30904529. doi: 10.1016/j.ijbiomac.2019.03.12
  • Saravana PS, Cho YN, Patil MP, et al. Hydrothermal degradation of seaweed polysaccharide: characterization and biological activities. Food Chem. 2018;268:179–187. PMID 30064746. doi: 10.1016/j.foodchem.2018.06.077
  • Stefaniak Vidarsson M, Gudjonsdottir M, Sigurjonsson O, et al. Fucoidan oligosaccharides – bioactive and therapeutic potential. Encycl Mar Biotechnol. 2020;2:1133–1139. doi: 10.1002/9781119143802.ch46
  • Zhang C, Li M, Rauf A, et al. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr. 2021;63:1–19.
  • El-Mohdy HLA. Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arab J Chem. 2017;10:S431–8. doi: 10.1016/j.arabjc.2012.10.003
  • Quitain AT, Kai T, Sasaki M, et al. Microwave–hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Ind Eng Chem Res. 2013;52(23):7940–7946. doi: 10.1021/ie400527b
  • Kadam SU, O’Donnell CP, Rai DK, et al. Laminarin from Irish brown seaweeds Ascophyllum nodosum and laminaria Hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs. 2015;13(7):4270–4280. PMID 26184235. doi: 10.3390/md13074270
  • Zha S, Zhao Q, Zhao B, et al. Molecular weight controllable degradation of Laminaria japonica polysaccharides and its antioxidant properties. J Ocean Univ China. 2016;15(4):637–642. doi: 10.1007/s11802-016-2943-7
  • Yang CF, Lai SS, Chen YH, et al. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota. Food Chem Toxicol. 2019;131:110562. PMID 31181236. doi: 10.1016/j.fct.2019.110562
  • Tran VHN, Nguyen TT, Meier S, et al. The endo-α(1,3)-fucoidanase Mef2 releases uniquely branched oligosaccharides from Saccharina latissima fucoidans. Mar Drugs. 2022;20(5):305. PMID 35621956. doi: 10.3390/md20050305
  • Rocher DF, Cripwell RA, Viljoen-Bloom M. Engineered yeast for enzymatic hydrolysis of laminarin from brown macroalgae. Algal Res. 2021;54:102233. doi: 10.1016/j.algal.2021.102233
  • Wang Y, Li L, Ye C, et al. Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice. Appl Microbiol Biotechnol. 2020;104(8):3541–3554. PMID 32103315. doi: 10.1007/s00253-020-10449-7
  • Zhu B, Ni F, Xiong Q, et al. Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications. Crit Rev Food Sci Nutr. 2021;61(1):60–74. PMID 31968996. doi: 10.1080/10408398.2020.1716207
  • Hifney AF, Fawzy MA, Abdel-Gawad KM, et al. Upgrading the antioxidant properties of fucoidan and alginate from Cystoseira trinodis by fungal fermentation or enzymatic pretreatment of the seaweed biomass. Food Chem. 2018;269:387–395. PMID 30100450. doi: 10.1016/j.foodchem.2018.07.026
  • Li SY, Wang ZP, Wang LN, et al. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresour Technol. 2019;281:84–89. PMID 30802819. doi: 10.1016/j.biortech.2019.02.056
  • Li G, Dai Y, Wang X, et al. Molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with two templates for the simultaneous solid-phase extraction of fucoidan and laminarin from marine kelp. Anal Lett. 2019;52(3):511–525. doi: 10.1080/00032719.2018.1471697
  • Rajauria G, Ravindran R, Garcia-Vaquero M, et al. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria Hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll. 2021;112:106332. doi: 10.1016/j.foodhyd.2020.106332
  • Uliyanchenko E. Size-exclusion chromatography—from high-performance to ultra-performance. Anal Bioanal Chem. 2014;406(25):6087–6094. PMID 25116601. doi: 10.1007/s00216-014-8041-z
  • Mei J, Shao J, Wang Q, et al. Separation and quantification of neoagaro-oligosaccharides. J Food Sci Technol. 2013;50(6):1217–1221. PMID 24426038. doi: 10.1007/s13197-011-0448-3
  • Nobre C, Teixeira JA, Rodrigues LR. New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Compr Rev Food Sci Food Saf. 2015;55(10):1444–1455. doi: 10.1080/10408398.2012.697082
  • Kuhn RC, Filho FM. Purification of fructooligosaccharides in an activated charcoal fixed bed column. N Biotechnol. 2010;27(6):862–869. doi: 10.1016/j.nbt.2010.05.008
  • Kuhn RC, Palacio L, Prádanos P, et al. Selection of membranes for purification of fructooligosaccharides. Desalin Water Treat. 2011;27(1–3):18–24. doi: 10.5004/dwt.2011.2038
  • Goulas AK, Kapasakalidis PG, Sinclair HR, et al. Purification of oligosaccharides by nanofiltration. J Membr Sci. 2002;209(1):321–335, ISSN 0376–7388. doi: 10.1016/S0376-7388(02)00362-9
  • Pruksasri S, Nguyen TH, Novalin S, et al. Purification of heterooligosaccharides by microbial treatment and nanofiltration. Int J Food Sci Technol. 2023;58(5):2618–2624. doi: 10.1111/ijfs.16414
  • Feng YM, Chang XL, Wang WH, et al. Separation of galacto-oligosaccharides mixture by nanofiltration. J Taiwan Inst Chem Eng. 2009;40(3):326–332. ISSN 1876-1070. doi: 10.1016/j.jtice.2008.12.003
  • Kailemia MJ, Ruhaak LR, Lebrilla CB, et al. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem. 2014;86(1):196–212. PMID 24313268. doi: 10.1021/ac403969n
  • Holtan S, Zhang Q, Strand WI, et al. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI−mass spectrometry. Biomacromolecules. 2006;7(7):2108–2121. PMID 16827577. doi: 10.1021/bm050984q
  • Veena N, Neelam U, Battula Surendra N, et al. Advances in fractionation and analysis of milk carbohydrates. In: Nurcan K, editor. Technological approaches for novel applications in dairy processing. Rijeka: IntechOpen; 2018. p. Ch. 7.
  • Thanh TTT, Quach TTM, Tran VTT, et al. Structural characteristics and biological activity of different alginate blocks extracted from brown seaweed Turbinaria ornata. J Carbohydr Chem. 2021;40(1–3):97–114. doi: 10.1080/07328303.2021.1928155
  • Tran VHN, Perna V, Mikkelsen MD, et al. A new FTIR assay for quantitative measurement of endo-fucoidanase activity. Enzyme Microb Technol. 2022;158:110035. PMID 35489196. doi: 10.1016/j.enzmictec.2022.110035
  • Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr. 2022;62(28):7703–7717. PMID 33939558. doi: 10.1080/10408398.2021.1916736
  • Dobrinčić A, Balbino S, Zorić Z, et al. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar Drugs. 2020;18(3):168. PMID 32197494. doi: 10.3390/md18030168
  • Krishnamoorthy Y, Rajaa S, Murali S, et al. Association between anthropometric risk factors and metabolic syndrome among adults in India: A systematic review and meta-analysis of observational studies. Prev Chronic Dis. 2022;19:E24. PMID 35512304. doi: 10.5888/pcd19.210231
  • Lee MK, Han K, Kim MK, et al. Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study. Sci Rep. 2020;10(1):2313. PMID 32047219. doi: 10.1038/s41598-020-59203-z
  • Kawser Hossain M, Abdal Dayem A, Han J, et al. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci. 2016;17(4):569. PMID 27092490. doi: 10.3390/ijms17040569
  • Lan Y, Zeng X, Guo Z, et al. Polyguluronate sulfate and its oligosaccharides but not heparin promotes FGF19/FGFR1c signaling. J Ocean Univ China. 2017;16(3):532–536. doi: 10.1007/s11802-017-3195-x
  • Feuerstein GZ, Ruffolo RR, Coughlin C, et al. Inflammation. In: Fink G, editor. Encyclopedia of stress. 2nd. New York: Academic Press; 2007. pp. 530–535. doi: 10.1016/B978-012373947-6/00530-4
  • Zhao Y, Feng Y, Liu M, et al. Single-cell RNA sequencing analysis reveals alginate oligosaccharides preventing chemotherapy-induced mucositis. Mucosal Immunol. 2020;13(3):437–448. PMID 31900405. doi: 10.1038/s41385-019-0248-z
  • Xiong B, Liu M, Zhang C, et al. Alginate oligosaccharides enhance small intestine cell integrity and migration ability. Life Sci. 2020;258:118085. PMID 32663578. doi: 10.1016/j.lfs.2020.118085
  • Rodríguez-Guzmán R, Miranda EMC, Guzmán-Díaz P. Endothelial dysfunction and cardiovascular diseases through oxidative stress pathways. In: Chatterjee S, editor. Endothelial signaling in vascular dysfunction and disease. Academic Press; 2021. pp. 213–219. doi: 10.1016/B978-0-12-816196-8.00012-6
  • Seca AML, Pinto DCGA. Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar Drugs. 2018;16(7):237. PMID 30011911. doi: 10.3390/md16070237
  • Bolling CF, Daniels SR. Obesity. In: Haith M Benson J, editors Encyclopedia of infant and early childhood development. San Diego: Academic Press; 2008. pp. 461–468.
  • Mobbs CV. Obesity. In: Aminoff M Daroff R, editors. Encyclopedia of the neurological sciences. 2nd ed. Oxford: Academic Press; 2014. pp. 621–622. doi: 10.1016/B978-0-12-385157-4.01212-4
  • Sanders MH, Givelber R. Obesity. In: Laurent G Shapiro S, editors. Encyclopedia of respiratory medicine. Oxford: Academic Press; 2006. pp. 181–185. doi: 10.1016/B0-12-370879-6/00268-4
  • Uchegbu EC, Kopelman PG. Obesity | treatment. In: Caballero B, editor. Encyclopedia of human nutrition. 2nd ed. Oxford: Elsevier; 2005. pp. 421–431. doi: 10.1016/B0-12-226694-3/00237-4
  • Cheung BM, Cheung TT, Samaranayake NR. Safety of antiobesity drugs. Ther Adv Drug Saf. 2013;4(4):171–181. PMID 25114779. doi: 10.1177/2042098613489721
  • Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J. 2012;36(1):13–25. PMID 22363917. doi: 10.4093/dmj.2012.36.1.13
  • Tak YJ, Lee SY. Long-term efficacy and safety of anti-obesity treatment: where do we stand? Curr Obes Rep. 2021;10(1):14–30. PMID 33410104. doi: 10.1007/s13679-020-00422-w
  • Kim MJ, Jeon J, Lee JS. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytother Res. 2014;28(1):137–143. PMID 23580241. doi: 10.1002/ptr.4965
  • Li S, Wang L, Liu B, et al. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice. Food Funct. 2020;11(5):4773–4784. PMID 32420551. doi: 10.1039/C9FO02857A
  • Kong S, Huang X, Cao H, et al. Anti-obesity effects of galacto-oligosaccharides in obese rats. Eur J Pharmacol. 2022;917:174728. PMID 34965390. doi: 10.1016/j.ejphar.2021.174728
  • Robert L, Molinari J, Ravelojaona V, et al. Age- and passage-dependent upregulation of fibroblast elastase-type endopeptidase activity. Role of advanced glycation endproducts, inhibition by fucose- and rhamnose-rich oligosaccharides. Arch Gerontol Geriatr. 2010;50(3):327–331. PMID 19560218. doi: 10.1016/j.archger.2009.05.006
  • Zhao J, Han Y, Wang Z, et al. Alginate oligosaccharide protects endothelial cells against oxidative stress injury via integrin-α/FAK/PI3K signaling. Biotechnol Lett. 2020;42(12):2749–2758. PMID 32986180. doi: 10.1007/s10529-020-03010-z
  • Kim KH, Kim YW, Kim HB, et al. Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnol Lett. 2006;28(6):439–446. PMID 16614911. doi: 10.1007/s10529-005-6177-9
  • Yamamoto Y, Kurachi M, Yamaguchi K, et al. Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration. Carbohydr Res. 2007;342(8):1133–1137. PMID 17336950. doi: 10.1016/j.carres.2007.02.015
  • Xu X, Wu X, Wang Q, et al. Immunomodulatory effects of alginate oligosaccharides on murine macrophage RAW264.7 cells and their structure-activity relationships. J Agric Food Chem. 2014;62(14):3168–3176. PMID 24628671. doi: 10.1021/jf405633n
  • Xu X, Bi D, Wu X, et al. Unsaturated guluronate oligosaccharide enhances the antibacterial activities of macrophages. FASEB J. 2014;28(6):2645–2654. PMID 24599964. doi: 10.1096/fj.13-247791
  • Fang W, Bi D, Zheng R, et al. Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Sci Rep. 2017;7(1):1663. PMID 28490734. doi: 10.1038/s41598-017-01868-0
  • Miao Y, Sun T, Sun G. Application of alginate oligosaccharides and sodium alginate in breast abscess incision and drainage. IOP Conf S Mater Sci Eng. 2019;562(1):012135. doi: 10.1088/1757-899X/562/1/012135
  • Pritchard MF, Jack AA, Powell LC, et al. Alginate oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive human candidosis. J Appl Microbiol. 2017;123(3):625–636. PMID 28635170. doi: 10.1111/jam.13516
  • Chen LM, Liu PY, Chen YA, et al. Oligo-fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci Rep. 2017;7(1):11864. PMID 28928376. doi: 10.1038/s41598-017-12111-1
  • Szekalska M, Wróblewska M, Trofimiuk M, et al. Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Mar Drugs. 2019;17(12): PMID 31835313. doi: 10.3390/md17120692
  • Li S, He N, Wang L. Efficiently anti-obesity effects of unsaturated alginate oligosaccharides (UAOS) in high-fat diet (HFD)-fed mice. Mar Drugs. 2019;17(9):540. PMID 31533255. doi: 10.3390/md17090540
  • Bi D, Lai Q, Han Q, et al. Seleno-polymannuronate attenuates neuroinflammation by suppressing microglial and astrocytic activation. J Funct Foods. 2018;51:113–120. doi: 10.1016/j.jff.2018.10.010
  • Guo JJ, Ma LL, Shi HT, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis. Mar Drugs. 2016;14(12):231. PMID 27999379. doi: 10.3390/md14120231
  • Yamasaki Y, Yokose T, Nishikawa T, et al. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii. J Biosci Bioeng. 2012;113(1):112–116. PMID 22018736. doi: 10.1016/j.jbiosc.2011.09.009
  • Wan J, Zhang J, Chen D, et al. Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs. J Anim Sci Biotechnol. 2018;9(1):58. PMID 30128148. doi: 10.1186/s40104-018-0273-x
  • Roberts JL, Khan S, Emanuel C, et al. An in vitro study of alginate oligomer therapies on oral biofilms. J Dent. 2013;41(10):892–899. PMID 23907083. doi: 10.1016/j.jdent.2013.07.011
  • Park R-M, Ahn J-Y, Kim SY, et al. Effect of alginate oligosaccharides on collagen expression in HS 27 human dermal fibroblasts. Toxicol Environ Health Sci. 2019;11(4):327–334. doi: 10.1007/s13530-019-0421-5
  • Park E-J, Choi J-I. Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida. J Appl Phycol. 2017;29(5):2213–2217. doi: 10.1007/s10811-016-1048-4
  • Lee S. Chapter 4. Strategic design of delivery systems for nutraceuticals. In: Oprea A Grumezescu A, editors. Nanotechnology applications in food. Academic Press; 2017. pp. 65–86. doi: 10.1016/B978-0-12-811942-6.00004-2
  • Rincón-León F. Functional foods. In: Caballero B, editor. Encyclopedia of food science and nutrition. 2nd ed. Oxford: Academic Press; 2003. pp. 2827–2832.
  • Lin F, Yang D, Huang Y, et al. The potential of neoagaro-oligosaccharides as a treatment of type II diabetes in mice. Mar Drugs. 2019;17(10):541. PMID 31547097. doi: 10.3390/md17100541
  • Charoensiddhi S, Conlon MA, Franco CMM, et al. The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci Technol. 2017;70:20–33. doi: 10.1016/j.tifs.2017.10.002
  • Jutur PP, Nesamma AA, Shaikh KM. Algae-derived marine oligosaccharides and their biological applications. Front Mar Sci. 2016;3:83. doi: 10.3389/fmars.2016.00083
  • Hu J, Lin S, Zheng B, et al. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr. 2018;58(8):1243–1249. PMID 27786539. doi: 10.1080/10408398.2016.1245650
  • Paxman JR, Richardson JC, Dettmar PW, et al. Daily ingestion of alginate reduces energy intake in free-living subjects. Appetite. 2008;51(3):713–719. PMID 18655817. doi: 10.1016/j.appet.2008.06.013
  • Yang J, Shen Z, Sun Z, et al. Growth stimulation activity of alginate-derived oligosaccharides with different molecular weights and mannuronate/guluronate ratio on Hordeum vulgare L. J Plant Growth Regul. 2021;40(1):91–100. doi: 10.1007/s00344-020-10078-4
  • González A, Castro J, Vera J, et al. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul. 2013;32(2):443–448. doi: 10.1007/s00344-012-9309-1
  • Wang Z, Li J, Liu J, et al. Management of blue mold (Penicillium italicum) on mandarin fruit with a combination of the yeast, Meyerozyma guilliermondii and an alginate oligosaccharide. Biol Control. 2021;152:104451. doi: 10.1016/j.biocontrol.2020.104451
  • Jiang H, Liang S, Yao XR, et al. Laminarin improves developmental competence of porcine early stage embryos by inhibiting oxidative stress. Theriogenology. 2018;115:38–44. PMID 29705658. doi: 10.1016/j.theriogenology.2018.04.019
  • Lomartire S, Gonçalves AMM. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications. Mar Drugs. 2022;20(2):141. PMID 35200670. doi: 10.3390/md20020141
  • Manigandan V, Karthik R, Ramachandran S, et al. Chapter 15. Chitosan applications in food industry. In: Grumezescu A Holban A, editors. Biopolymers for food design. Academic Press; 2018. pp. 469–491. doi: 10.1016/B978-0-12-811449-0.00015-3
  • Chen J, Hu Y, Zhang L, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. Front Pharmacol. 2017;8:623. PMID 28955228. doi: 10.3389/fphar.2017.00623
  • Lu J, Shi KK, Chen S, et al. Fucoidan extracted from the New Zealand Undaria pinnatifida—physicochemical comparison against five other fucoidans: unique low molecular weight fraction bioactivity in breast cancer cell lines. Mar Drugs. 2018;16(12):461. PMID 30469516. doi: 10.3390/md16120461
  • Rodrigues F, Cádiz-Gurrea MDL, Nunes L. Cosmetics. In: Galanakis C, editor. Polyphenols: Properties, recovery, and applications. Pinto: MA, D. Vinha. Linares: AF, I. B., … Carretero, A. S. Woodhead Publishing. 12 - Cosmetics; 2018. pp. 393–427.
  • Chen Q, Kou L, Wang F, et al. Size-dependent whitening activity of enzyme-degraded fucoidan from Laminaria japonica. Carbohydr Polym. 2019;225:115211. PMID 31521267. doi: 10.1016/j.carbpol.2019.115211
  • Gouda M, Tadda MA, Zhao Y, et al. Microalgae bioactive carbohydrates as a novel sustainable and eco-friendly source of prebiotics: Emerging health functionality and recent technologies for extraction and detection. Front Nutr. 2022;9:806692. doi: 10.3389/fnut.2022.806692
  • Sim SJ, Joun J, Hong ME, et al. Split mixotrophy: A novel cultivation strategy to enhance the mixotrophic biomass and lipid yield of Chlorella protothecoides. Bioresour Technol. 2019;291:121820. PMID 31344639. doi: 10.1016/j.biortech.2019.121820
  • Patel AK, Joun JM, Hong ME, et al. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour Technol. 2019;282:245–253. PMID 30870690. doi: 10.1016/j.biortech.2019.03.024
  • Patel AK, Singhania RR, Chen CW, et al. Advances in micro-and Nano bubbles technology for application in biochemical processes. Environ Technol Innov. 2021d;23:101729. doi: 10.1016/j.eti.2021.101729
  • Patel AK, Kumar P, Chen CW, et al. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. Bioresour Technol. 2022;363:128009. PMID 36162780. doi: 10.1016/j.biortech.2022.128009
  • Patel AK, Singhania RR, Sim SJ, et al. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. Bioresour Technol. 2021;320(B):124421. PMID 33246239. doi: 10.1016/j.biortech.2020.124421
  • Patel AK, Singhania RR, Dong CD, et al. Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts. Renew Sustain Energ Rev. 2021e;152:111669. doi: 10.1016/j.rser.2021.111669
  • Patel AK, Albarico FPJB, Perumal PK, et al. Algae as an emerging source of bioactive pigments. Bioresour Technol. 2022;351:126910. PMID 35231601. doi: 10.1016/j.biortech.2022.126910
  • Patel AK, Vadrale AP, Tseng YS, et al. Bioprospecting of marine microalgae from Kaohsiung seacoast for lutein and lipid production. Bioresour Technol. 2022;351:126928. PMID 35257880. doi: 10.1016/j.biortech.2022.126928
  • Patel AK, Chauhan AS, Kumar P, et al. Emerging prospects of microbial production of omega fatty acids: recent updates. Bioresour Technol. 2022;360:127534. PMID 35777644. doi: 10.1016/j.biortech.2022.127534
  • Patel AK, Tambat VS, Chen CW, et al. Recent advancements in astaxanthin production from microalgae: a review. Bioresour Technol. 2022;364:128030. PMID 36174899. doi: 10.1016/j.biortech.2022.128030
  • Patel AK, Katiyar R, Chen CW, et al. Antibiotic bioremediation by new generation biochar: recent updates. Bioresour Technol. 2022;358:127384. PMID 35644454. doi: 10.1016/j.biortech.2022.127384
  • Patel AK, Choi YY, Sim SJ. Emerging prospects of mixotrophic microalgae: way forward to bioprocess sustainability, environmental remediation and cost-effective biofuels. Bioresour Technol. 2020a;300:122741. PMID 31956058. doi: 10.1016/j.biortech.2020.122741
  • Patel AK, John J, Sim SJ. A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresour Technol. 2020b;313:123681. PMID 32562971. doi: 10.1016/j.biortech.2020.123681
  • Patel AK, Tseng YS, Rani Singhania R, et al. Novel application of microalgae platform for biodesalination process: a review. Bioresour Technol. 2021;337:125343. PMID 34120057. doi: 10.1016/j.biortech.2021.125343
  • Patel AK, Singhania RR, Pal A, et al. Advances on tailored biochars for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Sci Total Environ. 2022b;817:153054. PMID 35026237. doi: 10.1016/j.scitotenv.2022.153054
  • Patel AK, Singhania RR, Albarico FPJB, et al. Organic wastes bioremediation and its changing prospects. Science Of The Total Environment. 2022c;824:153889. PMID 35181362. doi: 10.1016/j.scitotenv.2022.153889
  • Bixler HJ, Porse H. A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. 2011;23(3):321–335. doi: 10.1007/s10811-010-9529-3
  • Alboofetileh M, Rezaei M, Tabarsa M, et al. Ultrasound-assisted extraction of sulfated polysaccharide from Nizamuddinia zanardinii: Process optimization, structural characterization, and biological properties. J Food Process Eng. 2019;42(2):e12979. doi: 10.1111/jfpe.12979