739
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection

ORCID Icon, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2252667 | Received 08 Feb 2023, Accepted 25 May 2023, Published online: 04 Sep 2023

References

  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–536. doi: 10.1038/256495a0
  • Emmons C, Hunsicker LG. Muromonab-CD3 (Orthoclone OKT3): the first monoclonal antibody approved for therapeutic use. Iowa Med. 1987;77(2):78–82.
  • Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10. doi: 10.1016/j.ymeth.2005.01.001
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1(2):118–129. doi: 10.1038/35101072
  • Ober RJ, Radu CG, Ghetie V, et al. Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13(12):1551–1559. doi: 10.1093/intimm/13.12.1551
  • dos Santos ML, Quintilio W, Manieri TM, et al. Advances and challenges in therapeutic monoclonal antibodies drug development. Braz J Pharm Sci. 2018;54(spe):1–15. doi: 10.1590/s2175-97902018000001007
  • Antibody Society [Internet]. 2022 [cited 2022 Nov 24]; Available from: https://www.antibodysociety.org/resources/approved-antibodies/
  • Morrison SL, Johnsont MJ, Herzenbergt LA, et al. Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. Immunology. 1984;81(21):6851–6855. doi: 10.1073/pnas.81.21.6851
  • Güssow D, Seemann G. Humanization of monoclonal antibodies. Methods Enzymol. 1991;203:99–121.
  • Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–525. doi: 10.1038/321522a0
  • Verhoeyen M, Milsrein CE, Winter G. Reshaping human antibodies: Grafting an antilysozyme activity. Sci (1979). 1988;239(4847):1534–1536. doi: 10.1126/science.2451287
  • Tempest PR, Bremner P, Lambert M, et al. Reshaping a human monoclonal antibody to inhibit human respiratory syncytial virus infection in vivo. Nat Biotechnol. 1991;9(3):266–271. doi: 10.1038/nbt0391-266
  • dos Santos ML, Yeda FP, Tsuruta LR, et al. Rebmab200, a humanized monoclonal antibody targeting the sodium phosphate transporter NaPi2b displays strong immune mediated cytotoxicity against cancer: A novel reagent for targeted antibody therapy of cancer. PLoS One. 2013;8(7):e70332. doi: 10.1371/journal.pone.0070332
  • Tsuruta LR, dos Santos ML, Moro AM. Display technologies for the selection of monoclonal antibodies for clinical use. In: Böldicke T, editor. Antibody engineering. 2018. doi: 10.5772/intechopen.70930
  • Barbas CF, Burton DR, Scott JK, et al. Phage display: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001.
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–1317. 1979. doi: 10.1126/science.4001944
  • Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8(7):1177–1194. doi: 10.1080/19420862.2016.1212149
  • Figini M, Obici L, Mezzanzanica D, et al. Panning phage antibody libraries on cells: Isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res. 1998;58(5):991–996.
  • Jespers LS, Roberts A, Mahler SM, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Bio/Technology. 1994;12:899–903. doi: 10.1038/nbt0994-899
  • Watzka H, Pfizenmaier K, Moosmayer D. Guided selection of antibody fragments specific for human interferon γ receptor 1 from a human VH- and VL-gene repertoire. Immunotechnology. 1998;3(4):279–291. doi: 10.1016/S1380-2933(97)10008-2
  • Beiboer SHW, Reurs A, Roovers RC, et al. Guided selection of a pan carcinoma specific antibody reveals similar binding characteristics yet structural divergence between the original murine antibody and its human equivalent. J Mol Biol. 2000;296(3):833–849. doi: 10.1006/jmbi.2000.3512
  • Kim SJ, Hong HJ. Guided selection of human antibody light chains against TAG-72 using a phage display chain shuffling approach. J Microbiol. 2007;45:572–577.
  • Bao GQ, Li Y, Ma QJ, et al. Isolating human antibody against human hepatocellular carcinoma by guided-selection. Cancer Biol Ther. 2005;4(12):1374–1380. doi: 10.4161/cbt.4.12.2273
  • Osbourn J, Groves M, Vaughan T. From rodent reagents to human therapeutics using antibody guided selection. Methods. 2005;36(1):61–68. doi: 10.1016/j.ymeth.2005.01.006
  • de Aguiar RB, Parise CB, Souza CRT, et al. Blocking FGF2 with a new specific monoclonal antibody impairs angiogenesis and experimental metastatic melanoma, suggesting a potential role in adjuvant settings. Cancer Lett. 2016;371(2):151–160. doi: 10.1016/j.canlet.2015.11.030
  • Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984;223:1296–1299. 1979. doi: 10.1126/science.6199844
  • Moscatelli D, Presta M, Rifkin DB. Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis, and migration. Proc Nat Acad Sci. 1986;83(7):2091–2095. doi: 10.1073/pnas.83.7.2091
  • Akl MR, Nagpal P, Ayoub NM, et al. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 2016;7(28):44735–44762. doi: 10.18632/oncotarget.8203
  • Gordon-Weeks AN, Lim SY, Yuzhalin AE, et al. Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2–dependent angiogenesis in mice. Hepatology. 2017;65(6):1920–1935. doi: 10.1002/hep.29088
  • Yu P, Wilhelm K, Dubrac A, et al. FGF-Dependent metabolic control of vascular development. J Vasc Surg. 2017;66(3):959. doi: 10.1016/j.jvs.2017.07.055
  • Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9(5):639–651. doi: 10.2174/156800909789057006
  • Hu M, Hu Y, He J, et al. Prognostic value of basic fibroblast growth factor (bFGF) in lung cancer: A systematic review with meta-analysis. PLoS One. 2016;11(1):1–14. doi: 10.1371/journal.pone.0147374
  • Ugurel S, Rappl G, Tilgen W, et al. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 2001;19(2):577–583. doi: 10.1200/JCO.2001.19.2.577
  • Ding G, Chen X, Zhu J, et al. Identification of two aberrant transcripts derived from a hybridoma with amplification of functional immunoglobulin variable genes. Cell Mol Immunol. 2010;7(5):349–354. doi: 10.1038/cmi.2010.33
  • Bradbury ARM, Trinklein ND, Thie H, et al. When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. MAbs. 2018;10(4):539–546. doi: 10.1080/19420862.2018.1445456
  • Zhu Z, Dimitrov DS. Construction of a large naïve human phage-displayed fab library through one-step cloning. Methods Mol Biol. 2009;525:1–12.
  • Kabat EA, Wu TT, Perry HM, et al. Sequences of proteins of immunological interest. 5th ed. Bethesda, MD: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health; 1991.
  • Tsuruta LR, Tomioka Y, Hishinuma T, et al. Characterization of 11-dehydro-thromboxane B2 recombinant antibody obtained by phage display technology. Prostaglandins Leukot Essent Fatty Acids. 2003;68(4):273–284. doi: 10.1016/S0952-3278(03)00006-1
  • Murata VM, Schmidt MCB, Kalil J, et al. Anti-digoxin fab variants generated by phage display. Mol Biotechnol. 2013;54(2):269–277. doi: 10.1007/s12033-012-9564-1
  • Oliveira MLS, Coutinho JA, Krieger JE, et al. Site-directed mutagenesis of bovine FGF-2 cDNA allows the production of the human-form of FGF-2 in Escherichia coli. Biotechnol Lett. 2001;23(14):1151–1157. doi: 10.1023/A:1010528404170
  • Xia J, Zhang Y, Qian J, et al. Isolation, identification and expression of specific human CD133 antibodies. Sci Rep. 2013;3(1):1–9. doi: 10.1038/srep03320
  • Andris-Widhopf J, Rader C, Steinberger P, et al. Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods. 2000;242(1–2):159–181. doi: 10.1016/S0022-1759(00)00221-0
  • Green M, Sambrook J. Molecular cloning: A laboratory manual. 4a. New York, USA: Cold Spring Harbor Laboratory Press; 2012.
  • Wardemann H, Kofer J. Expression cloning of human B cell immunoglobulins. Methods Mol Biol. 2013;971:93–111.
  • Leem J, Dunbar J, Georges G, et al. ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation. MAbs [Internet]. 2016;8:1259–1268. Available from. doi: 10.1080/19420862.2016.1205773.
  • Marks C, Nowak J, Klostermann S, et al. Sphinx: Merging knowledge-based and ab initio approaches to improve protein loop prediction. Bioinformatics. 2017;33(9):1346–1353. doi: 10.1093/bioinformatics/btw823
  • Van Zundert GCP, Rodrigues JPGLM, Trellet M, et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J Mol Biol [Internet]. 2016;428(4):720–725. Available from. doi: 10.1016/j.jmb.2015.09.014
  • Ambrosetti F, Jandova Z, Bonvin AMJJ. A protocol for information-driven antibody-antigen modelling with the HADDOCK2.4 webserver. ArXiv [Internet]. 2020;1–22. Available from: http://arxiv.org/abs/2005.03283.
  • Méndez R, Leplae R, Lensink MF, et al. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins: Structure, Function And Genetics. 2005;60(2):150–169. doi: 10.1002/prot.20551
  • Laskowski R, Swindells M. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–2786. doi: 10.1021/ci200227u
  • Venkataraman G, Raman R, Sasisekharan V, et al. Molecular characteristics of fibroblast growth factor–fibroblast growth factor receptor–heparin-like glycosaminoglycan complex. Proc Natl Acad Sci U S A. 1999;96(7):3658–3663. doi: 10.1073/pnas.96.7.3658
  • Ye S, Luo Y, Lu W, et al. Structural basis for interaction of FGF-1, FGF-2, and FGF-7 with different heparan sulfate motifs. Biochemistry. 2001;40(48):14429–14439. doi: 10.1021/bi011000u
  • LI D, Wang H, Xiang J-J, et al. Monoclonal antibodies targeting basic fibroblast growth factor inhibit the growth of B16 melanoma in vivo and in vitro. Oncol Rep. 2010;24(2):457–463. doi: 10.3892/or_00000879
  • Wang L, Park H, Chhim S, et al. A novel monoclonal antibody to fibroblast growth factor 2 effectively Inhibits growth of hepatocellular carcinoma xenografts. Mol Cancer Ther. 2012;11(4):864–872. doi: 10.1158/1535-7163.MCT-11-0813
  • Yang Y, Luo Z, Qin Y, et al. Production of bFGF monoclonal antibody and its inhibition of metastasis in Lewis lung carcinoma. Mol Med Rep. 2017;16(4):4015–4021. doi: 10.3892/mmr.2017.7099
  • Wang S, Qin Y, Wang Z, et al. Construction of a human monoclonal antibody against bFGF for suppression of NSCLC. J Cancer. 2018;9(11):2003–2011. doi: 10.7150/jca.24255
  • Tao J, Xiang JJ, Li D, et al. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2. Biochem Biophys Res Commun. 2010;394(3):767–773. doi: 10.1016/j.bbrc.2010.03.067
  • Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol. 2008;20(4):460–470. doi: 10.1016/j.coi.2008.06.012
  • Mirick GR, Bradt BM, Denardo SJ, et al. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging. 2004;48(4):251–257.
  • Carmen S, Jermutus L. Concepts in antibody phage display. Brief Funct Genomic Proteomic. 2002;1(2):189–203. doi: 10.1093/bfgp/1.2.189
  • Steinberger P, Sutton JK, Rader C, et al. Generation and characterization of a recombinant human CCR5-specific antibody. J Biol Chem. 2000;275(46):36073–36078. doi: 10.1074/jbc.M002765200
  • Boado RJ, Zhang Y, Zhang Y, et al. Humanization of anti-human Insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol Bioeng. 2007;96(2):381–391. doi: 10.1002/bit.21120
  • Makabe K, Nakanishi T, Tsumoto K, et al. Thermodynamic consequences of mutations in vernier zone residues of a humanized anti-human epidermal growth factor receptor murine antibody, 528. J Biol Chem. 2008;283(2):1156–1166. doi: 10.1074/jbc.M706190200
  • Tsuiji M, Yurasov S, Velinzon K, et al. A checkpoint for autoreactivity in human IgM+ memory B cell development. J Exp Med. 2006;203(2):393–400. doi: 10.1084/jem.20052033
  • Eccles SA, Box C, Court W. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev. 2005;11:391–421.
  • Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res. 2007;74(2–3):172–183. doi: 10.1016/j.mvr.2007.05.006
  • Cao L, Liu H, Lam DSC, et al. In vitro screening for angiostatic potential of herbal chemicals. Invest Ophthalmol Vis Sci. 2010;51(12):6658–6664. doi: 10.1167/iovs.10-5524
  • Friedl P, Wolf K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–374. doi: 10.1038/nrc1075
  • Xu L, Gordon R, Farmer R, et al. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat Commun. 2018;9(1):1–14. doi: 10.1038/s41467-017-02088-w
  • de Aguiar RB, da Silva TDA, Costa BA, et al. Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep. 2021;11(1):1–11. doi: 10.1038/s41598-020-80746-8
  • Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Sig Transduct Target Ther. 2020;5(1):181. doi: 10.1038/s41392-020-00222-7