601
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of temperature behavior in biological tissue in photothermal therapy according to laser irradiation angle

&
Article: 2252668 | Received 15 Mar 2023, Accepted 04 Jul 2023, Published online: 03 Sep 2023

References

  • Hawes MC, Wheeler H. Factors affecting victorin-induced root cap cell death: Temperature and plasmolysist. Physiol Plant Pathol. 1982;20(2):137–16. doi: 10.1016/0048-4059(82)90079-0
  • Wyllie AH. Cell Death. 4th ed. Cytology and Cell Physiology. Elsevier; 1987. p. 755–785. doi: 10.1016/B978-0-08-091882-2.50024-5
  • Jung HS, Verwilst P, Sharma A, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev. 2018;47(7):2280–2297. doi: 10.1039/C7CS00522A
  • Zhi D, Yang T, O’hagan J, et al. Photothermal therapy. Photothermal Ther, J Controlled Release. 2020;325:52–71. doi: 10.1016/j.jconrel.2020.06.032
  • Erkol H, Yelken S, Algarawi M, et al. Validation of a comprehensive analytical model for photothermal therapy planning in a layered medium with gold nanoparticles. Int J Heat & Mass Trans. 2020;163:120438. doi: 10.1016/j.ijheatmasstransfer.2020.120438
  • Li X, Yuan H, Tian X, et al. Biocompatible copper sulfide–based nanocomposites for artery interventional chemo-photothermal therapy of orthotropic hepatocellular carcinoma. Mater Today Bio. 2021;12:100128. doi: 10.1016/j.mtbio.2021.100128
  • Yang Y, Zhu W, Dong Z, et al. 1D coordination polymer nanofibers for low‐temperature photothermal therapy. Adv Mater. 2017;29(40):1703588. doi: 10.1002/adma.201703588
  • Zhang Y, Zhan X, Xiong J, et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep. 2018;8(1):1–9. doi: 10.1038/s41598-018-26978-1
  • Chen J, Ning C, Zhou Z, et al. Nanomaterials as photothermal therapeutic agents. Pro Mater Sci. 2019;99:1–26. doi: 10.1016/j.pmatsci.2018.07.005
  • Tao Y, Ju E, Liu Z, et al. Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. Biomaterials. 2014;35(24):6646–6656. doi: 10.1016/j.biomaterials.2014.04.073
  • Wang H, Chang J, Shi M, et al. A dual‐targeted organic photothermal agent for enhanced photothermal therapy. Angew Chem. 2019;131(4):1069–1073. doi: 10.1002/ange.201811273
  • Doria G, Conde J, Veigas B, et al. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12(2):1657–1687. doi: 10.3390/s120201657
  • Giljohann DA, Seferos DS, Daniel WL, et al. Spherical Nucleic Acids. 1st ed. Jenny Stanford Publishing; 2020. p. 55–90.
  • Lu X-Y, Wu D-C, Li Z-J, et al. Polymer nanoparticles. Prog Mol Biol Transl Sci. 2011;104:299–323.
  • Sepúlveda B, Angelomé PC, Lechuga LM, et al. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–251. doi: 10.1016/j.nantod.2009.04.001
  • dos Santos DS Jr, Alvarez-Puebla RA, Oliveira ON Jr, et al. Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. J Mater Chem. 2005;15(29):3045–3049. doi: 10.1039/b506218g
  • Wang Y, Feng L, Wang S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv Funct Mater. 2019;29(5):1806818. doi: 10.1002/adfm.201806818
  • Capart A, Metwally K, Bastiancich C, et al. Multiphysical numerical study of photothermal therapy of glioblastoma with photoacoustic temperature monitoring in a mouse head. Biomed Opt Express. 2022;13(3):1202–1223. doi: 10.1364/BOE.444193
  • Beik J, Asadi M, Mirrahimi M, et al. An image-based computational modeling approach for prediction of temperature distribution during photothermal therapy. Appl Phys B. 2019;125(11):1–13. doi: 10.1007/s00340-019-7316-7
  • Paul A, Narasimhan A, Kahlen FJ, et al. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating. J Therm Biol. 2014;41:77–87. doi: 10.1016/j.jtherbio.2014.02.010
  • Asadi M, Beik J, Hashemian R, et al. MRI-based numerical modeling strategy for simulation and treatment planning of nanoparticle-assisted photothermal therapy. Phys Med. 2019;66:124–132. doi: 10.1016/j.ejmp.2019.10.002
  • Beik J, Asadi M, Khoei S, et al. Simulation-guided photothermal therapy using MRI-traceable iron oxide-gold nanoparticle. J Photochem Photobiol, B. 2019;199:111599. doi: 10.1016/j.jphotobiol.2019.111599
  • Lee K-S, El-Sayed MA. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B. 2005;109(43):20331–20338. doi: 10.1021/jp054385p
  • Dombrovsky LA, Timchenko V, Jackson M, et al. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int J Heat & Mass Trans. 2011;54(25–26):5459–5469. doi: 10.1016/j.ijheatmasstransfer.2011.07.045
  • Marti D, Aasbjerg RN, Andersen PE, et al. Mcmatlab: an open-source, user-friendly, MATLAB-integrated three-dimensional Monte Carlo light transport solver with heat diffusion and tissue damage. J Biomed Opt. 2018;23(12):121622. doi: 10.1117/1.JBO.23.12.121622
  • Luo M, Shi L, Zhang F, et al. Laser immunotherapy for cutaneous squamous cell carcinoma with optimal thermal effects to enhance tumour immunogenicity. Int J Hyperthermia. 2018;34(8):1337–1350. doi: 10.1080/02656736.2018.1446221
  • Nestor MS, Han H, Yousefian F, et al. The efficacy and safety of aminolevulinic acid 20% topical solution activated by pulsed dye laser and blue light for the treatment of facial cutaneous squamous cell carcinoma in situ. SKIN J Cutaneous Med. 2023;7(2):s183–s183. doi: 10.25251/skin.7.supp.183
  • Olesen UH, Jacobsen K, Lerche CM, et al. Repeated exposure to fractional CO 2 laser delays squamous cell carcinoma formation and prevents clinical and subclinical photodamage visualized by line-field confocal optical coherence tomography and histology. Lasers Surg Med. 2023;55(1):73–81. doi: 10.1002/lsm.23613
  • Çetingül MP, Herman C. A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis. Phys In Med & Biol. 2010;55(19):5933. doi: 10.1088/0031-9155/55/19/020
  • Holmer C, Lehmann K-S, Wanken J, et al. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction. J Biomed Opt. 2007;12(1):014025. doi: 10.1117/1.2564793
  • Jiang S, Ma N, Li H, et al. Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns. 2002;28(8):713–717. doi: 10.1016/S0305-4179(02)00104-3
  • Paul A, Paul A. Thermomechanical analysis of a triple layered skin structure in presence of nanoparticle embedding multi-level blood vessels. Int J Heat & Mass Trans. 2020;148:119076. doi: 10.1016/j.ijheatmasstransfer.2019.119076
  • Prasad B, Kim S, Cho W, et al. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia. J Therm Biol. 2018;74:281–289. doi: 10.1016/j.jtherbio.2018.04.007
  • Salomatina EV, Jiang B, Novak J, et al. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J Biomed Opt. 2006;11(6):064026. doi: 10.1117/1.2398928
  • Torvi D, Dale J. A finite element model of skin subjected to a flash fire. J Biomech Eng. 1994;116(3):250–255. doi: 10.1115/1.2895727
  • Wilson SB, Spence VA. A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters. Phys In Med & Biol. 1988;33(8):895. doi: 10.1088/0031-9155/33/8/001
  • Kim D, Kim H. Induction of apoptotic temperature in photothermal therapy under various heating conditions in multi-layered skin structure. Int J Mol Sci. 2021;22(20):11091. doi: 10.3390/ijms222011091
  • Surowiec A, Shrivastava P, Astrahan M, et al. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators. Int J Hyperthermia. 1992;8(6):795–807. doi: 10.3109/02656739209005027
  • Iizuka MN, Sherar MD, Vitkin IA. Optical phantom materials for near infrared laser photocoagulation studies, lasers in surgery and medicine. Off J Am Soc Laser Med Surg. 1999;25(2):159–169. doi: 10.1002/(SICI)1096-9101(1999)25:2<159:AID-LSM10>3.0.CO;2-V