806
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of some structural features in EPS from microalgae stimulating collagen production by human dermal fibroblasts

, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2254027 | Received 10 Jan 2023, Accepted 28 Aug 2023, Published online: 12 Sep 2023

References

  • Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123(7):801–19. doi: 10.1016/S0047-6374(01)00425-0
  • Boraschi-Diaz I, Wang J, Mort JS, et al. Collagen type I as a ligand for receptor-mediated signaling. Front Phys. 2017;5(12):1–11. doi: 10.3389/fphy.2017.00012
  • Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–434. doi: 10.1159/000371708
  • de Araújo R, Lôbo M, Trindade K, et al. Fibroblast growth factors: a controlling mechanism of skin aging. Skin Pharmacol Physiol. 2019;32(5):275–282. doi: 10.1159/000501145
  • Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol. 2012;4(3):253–258. doi: 10.4161/derm.21923
  • Uitto J, Fazio MJ, Olsen DR. Molecular mechanisms of cutaneous aging: age-associated connective tissue alterations in the dermis. J Am Acad Dermatol. 1989;21(3):614–622. doi: 10.1016/S0190-9622(89)70228-0
  • Lago JC, Puzzi MB. The effect of aging in primary human dermal fibroblasts. PLoS One. 2019;14(7):e0219165. doi: 10.1371/journal.pone.0219165
  • Delattre C, Pierre G, Laroche C, et al. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv. 2016;34(7):1159–1179. doi: 10.1016/j.biotechadv.2016.08.001
  • Hentati F, Tounsi L, Djomdi D, et al. Bioactive polysaccharides from seaweeds. Molecules. 2020;25(14):3152. doi: 10.3390/molecules25143152
  • Rengasamy KRR, Mahomoodally MF, Aumeeruddy MZ, et al. Bioactive compounds in seaweeds: an overview of their biological properties and safety. Food Chem Toxicol. 2020;135:111013. doi: 10.1016/j.fct.2019.111013
  • Cheong K-L, Yu B, Chen J, et al. A comprehensive review of the cardioprotective effect of marine algae polysaccharide on the gut microbiota. Foods. 2022;11(22):3550. doi: 10.3390/foods11223550
  • Yim JH, Kim SJ, Ahn SH, et al. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour Technol. 2007;98(2):361–367. doi: 10.1016/j.biortech.2005.12.021
  • Geresh S, Adin I, Yarmolinsky E, et al. Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties. Carbohydr Polym. 2002;50(2):183–189. doi: 10.1016/S0144-8617(02)00019-X
  • Heaney-Kieras J, Chapman DJ. Structural studies on the extracellular polysaccharide of the red alga, Porphyridium cruentum. Carbohydr Res. 1976;52(1):169–177. doi: 10.1016/S0008-6215(00)85957-1
  • Tannin-Spitz T, Bergman M, van-Moppes D, et al. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol. 2005;17:215–222. doi: 10.1007/s10811-005-0679-7
  • Díaz Bayona KC, Navarro Gallón SM, Lara EA, et al. Activity of sulfated polysaccharides from microalgae Porphyridium cruentum over degenerative mechanisms of the skin. Int J Sci Adv Technol. 2012;2(8):85–92.
  • Sun L, Wang L, Zhou Y. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym. 2012;87(2):1206–1210. doi: 10.1016/j.carbpol.2011.08.097
  • He P, Zhang A, Zhang F, et al. Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia. Carbohydr Polym. 2016;152(5):222–230. doi: 10.1016/j.carbpol.2016.07.010
  • Villay A, Lakkis de Filippis F, Picton L, et al. Comparison of polysaccharide degradations by dynamic high-pressure homogenization. Food Hydrocoll. 2012;27(2):278–286. doi: 10.1016/j.foodhyd.2011.10.003
  • Sun L, Wang C, Shi Q, et al. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int j biol macromol. 2009;45(1):42–47. doi: 10.1016/j.ijbiomac.2009.03.013
  • Guilloux K, Gaillard I, Courtois J, et al. Production of Arabinoxylan-oligosaccharides from flaxseed (Linum usitatissimum). J Agric Food Chem. 2009;57(23):11308–11313. doi: 10.1021/jf902212z
  • Adrien A, Bonnet A, Dufour D, et al. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydr Polym. 2017;157:1306–1314. doi: 10.1016/j.carbpol.2016.11.014
  • Gaignard C, Laroche C, Pierre G, et al. Screening of marine microalgae: investigation of new exopolysaccharide producers. Algal Res. 2019;44:101711. doi: 10.1016/j.algal.2019.101711
  • Dodgson KS, Price RG. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J. 1962;84:106–110. doi: 10.1042/bj0840106
  • Gao G-Z, Jiao Q-C, Ding Y-L, et al. [Study on quantitative assay of chondroitin sulfate with a spectrophotometric method of azure A]. Guang Pu Xue Yu Guang Pu Fen Xi. 2003;23(3):600–602.
  • Jaques LB, Balueux RE, Dietrich CP, et al. A microelectrophoresis method for heparin. Can J Physiol Pharmacol. 1968;46(3):351–360. doi: 10.1139/y68-055
  • Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1
  • Filisetti-Cozzi TM, Carpita NC. Measurement of uronic acids without interference from neutral sugars. Anal Biochem. 1991;197(1):157–162. doi: 10.1016/0003-2697(91)90372-z
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4
  • Legrand C, Bour JM, Jacob C, et al. Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol. 1992;25(3):231–243. doi: 10.1016/0168-1656(92)90158-6
  • Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by human bone cells with a Sirius Red-based colorimetric microassay: effects of transforming growth factor β2 and ascorbic acid 2-phosphate. Histochem Cell Biol. 1999;112:271–276. doi: 10.1007/s004180050447
  • Percival E, Foyle RAJ. The extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum. Carbohydr Res. 1979;72:165–176. doi: 10.1016/S0008-6215(00)83932-4
  • Raposo MF de J, de Morais AMMB, de Morais RMSC. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci. 2014;101(1–2):56–63. doi: 10.1016/j.lfs.2014.02.013
  • Blumreisinger M, Meindl D, Loos E. Cell wall composition of chlorococcal algae. Phytochemistry. 1983;22(7):1603–1604. doi: 10.1016/0031-9422(83)80096-X
  • Bernaerts TMM, Gheysen L, Foubert I, et al. The potential of microalgae and their biopolymers as structuring ingredients in food: a review. Biotechnol Adv. 2019;37(8):107419. doi: 10.1016/j.biotechadv.2019.107419
  • Gargouch N, Elleuch F, Karkouch I, et al. Potential of exopolysaccharide from Porphyridium marinum to contend with bacterial proliferation, biofilm formation, and breast cancer. Mar Drugs. 2021;19(2):66. doi: 10.3390/md19020066
  • Leite SR de A. Inhibitors of human collagenase, MMP1. Eclet Quím. 2009;34(4):87–102. doi: 10.26850/1678-4618eqj.v39.4.2009.p87-102
  • Mast BA, Diegelmann RF, Krummel TM, et al. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix. 1993;13(6):441–446. doi: 10.1016/S0934-8832(11)80110-1
  • Nawrat P, Surazyński A, Karna E, et al. The effect of hyaluronic acid on interleukin-1-induced deregulation of collagen metabolism in cultured human skin fibroblasts. Pharmacol Res. 2005;51(5):473–477. doi: 10.1016/j.phrs.2004.12.002
  • Donejko M, Przylipiak A, Rysiak E, et al. Hyaluronic acid abrogates ethanol-dependent inhibition of collagen biosynthesis in cultured human fibroblasts. Drug Des Devel Ther. 2015;9:6225–6233. doi: 10.2147/DDDT.S91968
  • Shirzad M, Hamedi J, Motevaseli E, et al. Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1051–1061. doi: 10.1080/21691401.2018.1443274
  • Nie X-R, Li H-Y, Du G, et al. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. Int j biol macromol. 2019;139:459–467. doi: 10.1016/j.ijbiomac.2019.08.016