4,787
Views
0
CrossRef citations to date
0
Altmetric
Review

Health effects of herbicides and its current removal strategies

, ORCID Icon, , , , , & show all
Article: 2259526 | Received 13 Apr 2023, Accepted 12 Sep 2023, Published online: 25 Sep 2023

References

  • Tostado L, Bollmohr S. Eds. Pesticide atlas: facts and figures about toxic chemicals in agriculture. 2nd (Germany: Heinrich-Böll-Stiftung) ed; 2022. https://eu.boell.org/sites/default/files/2023-04/pesticideatlas2022_ii_web_20230331.pdf
  • Dayan FE. Current status and future prospects in herbicide discovery. Plants (Basel Switzerland). 2019;8(9):341. doi: 10.3390/PLANTS8090341
  • Dolatabadi M, Ghaneian MT, Wang C, et al. Electro-Fenton approach for highly efficient degradation of the herbicide 2,4-dichlorophenoxyacetic acid from agricultural wastewater: process optimization, kinetic and mechanism. J Mol Liq. 2021;334:116116. doi: 10.1016/j.molliq.2021.116116
  • Montull JM, Torra J. Herbicide resistance is increasing in Spain: concomitant management and prevention. Plants (Basel, Switzerland). 2023;12(3):469. doi: 10.3390/plants12030469
  • Cullen MG, Thompson LJ, Carolan JC, et al. Fungicides, herbicides and bees: a systematic review of existing research and methods. PLoS One. 2019;14(12):e0225743. doi: 10.1371/journal.pone.0225743
  • Liao H, Li X, Yang Q, et al. Herbicide selection promotes antibiotic resistance in soil microbiomes. Mol Biol Evol. 2021;38(6):2337–21. doi: 10.1093/molbev/msab029
  • Nandula VK. Herbicide resistance traits in maize and soybean: Current status and future outlook. Plants (Basel Switzerland). 2019;8(9):337. doi: 10.3390/PLANTS8090337
  • Cavalier H, Trasande L, Porta M. Exposures to pesticides and risk of cancer: evaluation of recent epidemiological evidence in humans and paths forward. Int J Cancer. 2023;152(5):879–912. doi: 10.1002/ijc.34300
  • Wilms W, Wozniak-Karczewska M, Syguda A, et al. Herbicidal ionic liquids: a promising future for old herbicides? Review on synthesis, toxicity, biodegradation, and efficacy studies. J Agric Food Chemistry. 2020;68(39):10456–10488. doi: 10.1021/acs.jafc.0c02894
  • Brillas E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. J Clean Prod. 2021;290:125841. doi: 10.1016/j.jclepro.2021.125841
  • Sharma A, Kumar V, Shahzad B, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1(11):1446. doi: 10.1007/s42452-019-1485-1
  • Li C, Zhang N, Chen J, et al. Temperature and pH sensitive composite for rapid and effective removal of sulfonylurea herbicides in aqueous solution. Environ Pollut. 2019;255(1):113150. doi: 10.1016/j.envpol.2019.113150
  • Ruuskanen S, Fuchs B, Nissinen R, et al. Ecosystem consequences of herbicides: the role of microbiome. Trends Ecol Evol. 2023;38(1):35–43. doi: 10.1016/j.tree.2022.09.009
  • Lamb BT, McCrea AA, Stoodley SH, et al. Monitoring and water quality impacts of an herbicide treatment on an aquatic invasive plant in a drinking water reservoir. J Environ Manage. 2021;288:112444. doi: 10.1016/j.jenvman.2021.112444
  • Wang A, Hu X, Wan Y, et al. A nationwide study of the occurrence and distribution of atrazine and its degradates in tap water and groundwater in China: assessment of human exposure potential. Chemosphere. 2020;252:126533. doi: 10.1016/j.chemosphere.2020.126533
  • Wang R, Zhang S, Cai M, et al. Screening triazine herbicides in drinking water in the Yangtze River Delta, China: occurrence and health risk. J Hazard Mater Adv. 2023;10:100277. doi: 10.1016/j.hazadv.2023.100277
  • Kamata M, Matsui Y, Asami M. National trends in pesticides in drinking water and water sources in Japan. Sci Total Environ. 2020;744:744. doi: 10.1016/j.scitotenv.2020.140930.
  • Wan Y, Tran TM, Nguyen VT, et al. Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci Total Environ. 2021;750:141507. doi: 10.1016/j.scitotenv.2020.141507
  • Kraehmer H, Laber B, Rosinger C, et al. Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture. Plant Physiol. 2014;166(3):1119–1131. doi: 10.1104/pp.114.241901
  • Freisthler MS, Robbins CR, Benbrook CM, et al. Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the national health and nutrition examination survey, 2001–2014. Environ Health. 2022;21(1). doi: 10.1186/s12940-021-00815-x
  • Radicetti E, Mancinelli R. Sustainable weed control in the Agro-ecosystems. Sustainability. 2021;13(15):8639. doi: 10.3390/su13158639
  • Tudi M, Daniel Ruan H, Wang L, et al. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 2021;18(3):1112. doi: 10.3390/ijerph18031112
  • Ou J, Li H, Ou X, et al. Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicol Environ Saf. 2020;205:111374. doi: 10.1016/j.ecoenv.2020.111374
  • U.S. EPA. 2023, March. Herbicide. CADDIS vol. 2 sources, stressors and responses, United States Environmental Protection Agency (EPA). Office of Pesticide Programs. https://www.epa.gov/caddis-vol2/herbicides#tab-6
  • Daramola IO, Ojemaye MO, Okoh AI, et al. Occurrence of herbicides in the aquatic environment and their removal using advanced oxidation processes: a critical review. Environ Geochem Health. 2022;45(5):1231–1260. doi: 10.1007/s10653-022-01326-5
  • Sherwani SI, Arif IA, Khan HA. Modes of action of different classes of herbicides. Herbicides, Physiology of Action, and Safety: 2015. doi: 10.5772/61779
  • Lima AC, Mendes KF. Variable rate application of herbicides for weed management in pre-and postemergence. Pests, Weeds Dis Agric Crop Animal Husb Prod. 2020. doi: 10.5772/intechopen.93558
  • Dong H, Huang Y, Wang K. The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes. 2021;12(6):912. doi: 10.3390/genes12060912
  • Brookes G. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012. GM Crops Food. 2014;5(4):321–332. doi: 10.4161/21645698.2014.958930
  • Ajwa HA, Trout T, Mueller J, et al. Application of alternative fumigants through drip irrigation systems. Phytopathology. 2002;92(12):1349–1355. doi: 10.1094/PHYTO.2002.92.12.1349
  • Datta MK, Kundu CK, Singharoy S, et al. Effectiveness of 2, 4-D ethyl ester 80% EC to control of weeds in Kharif rice. J Crop Weed. 2017;13(1):196–199.
  • Rangani G, Salas-Perez RA, Aponte RA, et al. A novel single-site mutation in the catalytic domain of protoporphyrinogen oxidase IX (PPO) confers resistance to PPO-Inhibiting herbicides. Front Plant Sci. 2019;10:568. doi: 10.3389/fpls.2019.00568
  • Kim J, Yun B, Choi JS, et al. Death mechanisms caused by carotenoid biosynthesis inhibitors in green and in undeveloped plant tissues. Pestic Biochem Physiol. 2004;78(3):127–139. doi: 10.1016/j.pestbp.2003.12.001
  • Caio ACGB, Hudson KT, Carol AM, et al. Role of glutamine synthetase isogenes and herbicide metabolism in the mechanism of resistance to glufosinate in Lolium perenne L. spp. multiflorum biotypes from Oregon. J Agric Food Chemistry. 2019;67(31):8431–8440. doi: 10.1021/acs.jafc.9b01392
  • Babineau M, Mathiassen SK, Kristensen M, et al. Fitness of ALS-Inhibitors herbicide resistant population of loose silky bentgrass (Apera spica-venti). Front Plant Sci. 2017;8:1660. doi: 10.3389/fpls.2017.01660
  • Emily CMF, da Costa KS, Jerônimo L, et al. Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate. RSC Adv. 2020;10(72):44352–44360. doi: 10.1039/D0RA09061A
  • Rangani G, Noguera M, Salas-Perez R, et al. Mechanism of resistance to S-metolachlor in Palmer amaranth. Front Plant Sci. 2021;12:652581. doi: 10.3389/fpls.2021.652581
  • Sosnowski J, Truba M, Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023;13(3):724. doi: 10.3390/agriculture13030724
  • Rivas-Garcia T, Espinosa-Calderón A, Hernández-Vázquez B, et al. Overview of environmental and health effects related to glyphosate usage. Sustainability. 2022;14(11):6868. doi: 10.3390/su14116868
  • Syafrudin M, Kristanti RA, Yuniarto A, et al. Pesticides in drinking water-A review. Int J Environ Res Public Health. 2021;18(2):468. doi: 10.3390/ijerph18020468
  • World Health Organization (WHO). 2019. Preventing Disease Through Healthy Environments: Exposure To Highly Hazardous Pesticides: A Major Public Health Concern. World Health Organization. Department of Public Health, Environmental and Social Determinants of Health. https://apps.who.int/iris/bitstream/handle/10665/329501/WHO-CED-PHE-EPE-19.4.6-eng.pdf?sequence=1&isAllowed=y
  • Ustuner T, Al Sakran M, Almhemed K. Effect of herbicides on living organisms in the ecosystem and available alternative control methods. Int J Sci Res Publ. 2020;10(8):622–632. doi: 10.29322/IJSRP.10.08.2020.p10480
  • U.S. EPA. Recognition and management of pesticide poisoning. 6th ed. United States Environmental Protection Agency (EPA), Office of Pesticide Programs; 2013. https://www.epa.gov/sites/default/files/2015-01/documents/rmpp_6thed_final_lowresopt.pdf
  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, et al. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. 2016;4:148. doi: 10.3389/fpubh.2016.00148.
  • Alavanja MCR. Introduction: pesticides use and exposure extensive worldwide. Rev Environ Health. 2009;24(4):303–309. doi: 10.1515/reveh.2009.24.4.303
  • Kandiah V, Kennedy IR. Health risks from pesticides in groundwater: a global perspective. Critical Rev Environ Sci Technol. 2021;51(16):1413–1433. doi: 10.1080/10643389.2020.1846545
  • Sameeha MS 2023, March 15. Herbicides And Human Health - An Overview. iCliniq. https://www.icliniq.com/articles/healthy-living-wellness-and-prevention/herbicides-and-human-health
  • Damalas CA, Koutroubas SD. Farmers’ exposure to pesticides: toxicity types and ways of prevention. Toxics. 2016;4(1):1. doi: 10.3390/toxics4010001
  • Bolognesi C, Creus A, Ostrosky-Wegman P, et al. Micronuclei and pesticide exposure. Mutagenesis. 2011;26(1):19–26. https://doi.org/10.1093/mutage/geq070
  • Islas-González K, González-Horta C, Sánchez-Ramírez B, et al. In vitro assessment of the genotoxicity of ethyl paraoxon in newborns and adults. Hum Exp Toxicol. 2005;24(6):319–324. https://doi.org/10.1191/0960327105ht534oa
  • Kaur K, Kaur R. Occupational pesticide exposure, impaired DNA repair, and diseases. Indian J Occup Environ Med. 2018;22(2):74–81. doi: 10.4103/ijoem.IJOEM_45_18
  • Hart RW, Hall KY, Daniel FB. DNA repair and mutagenesis in mammalian cells. Photochem Photobiol. 1978;28(2):131–155. doi: 10.1111/j.1751-1097.1978.tb07689.x
  • Van Bruggen AHC, He MM, Shin K, et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616-617:255–268. doi: 10.1016/j.scitotenv.2017.10.309
  • Myers JP, Antoniou MN, Blumberg B, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health. 2016;15(19). doi: 10.1186/s12940-016-0117-0
  • McGinley J, Healy MG, Ryan PC, et al. Batch adsorption of herbicides from aqueous solution onto diverse reusable materials and granulated activated carbon. J Environ Manage. 2022;323:116102. doi: 10.1016/j.jenvman.2022.116102
  • James A, Yadav D. Valorization of coconut waste for facile treatment of contaminated water: a comprehensive review (2010–2021. Environ Technol Innov. 2021;24:102075. doi: 10.1016/j.eti.2021.102075.
  • Angın D, Gunes S. The usage of orange pulp activated carbon in the adsorption of 2,4-dichlorophenoxy acetic acid from aqueous solutions. Int J Phytorem. 2021;23(4):436–444. doi: 10.1080/15226514.2020.1825325
  • Soares SF, Amorim CO, Amaral JS, et al. On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. J Environ Chem Eng. 2021;9(3):105189. doi: 10.1016/j.jece.2021.105189
  • Ge Y, Li Z. Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng. 2018;6(5):7181–7192. doi: 10.1021/acssuschemeng.8b01345
  • Nik Yusoff NR, Mohd Layli NN, Mohd Ghazi R, et al. 2022. Foxtail palm fruits as potential activated carbon for metamifop removal. IOP conference series: Earth and Environmental Science in 4th International Conference on Tropical Resources and Sustainable Science. 1102. https://iopscience.iop.org/article/10.1088/1755-1315/1102/1/012065
  • Ma W, Fan J, Cui X, et al. Pyrolyzing spent coffee ground to biochar treated with H3PO4 for the efficient removal of 2,4-dichlorophenoxyacetic acid herbicide: adsorptive behaviors and mechanism. J Environ Chem Eng. 2023;11(1):109165. doi: 10.1016/j.jece.2022.109165
  • Essandoh M, Wolgemuth D, Pittman CU, et al. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere. 2017;174:49–57. doi: 10.1016/j.chemosphere.2017.01.105
  • Calisto JS, Pacheco IS, Freitas LL, et al. Adsorption kinetic and thermodynamic studies of the 2, 4 - dichlorophenoxyacetate (2,4-D) by the [co-al-cl] layered double hydroxide. Heliyon. 2019;5(12):e02553. doi: 10.1016/j.heliyon.2019.e02553
  • Wu H, Gong L, Zhang X, et al. Bifunctional porous polyethyleneimine-grafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem Eng J. 2021;411:128539. doi: 10.1016/j.cej.2021.128539
  • Li Z, Ge Y, Wan L. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J Hazard Mater. 2015;285:77–83. doi: 10.1016/j.jhazmat.2014.11.033
  • Thakur VK, Thakur MK, Raghavan P, et al. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng. 2014;2(5):1072–1092. doi: 10.1021/sc500087z
  • Khan A, Bhatti HN, Tahira M, et al. Na-alginate, polyaniline and polypyrrole composites with cellulosic biomass for the adsorptive removal of herbicide: kinetics, equilibrium and thermodynamic studies. Arabian J Chem. 2023;16(1):104399. doi: 10.1016/j.arabjc.2022.104399
  • Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci. 2012;368(1):540–546. doi: 10.1016/j.jcis.2011.11.015
  • Bak JM, Lee T, Seo E, et al. Thermoresponsive graphene nanosheets by functionalization with polymer brushes. Polymer. 2012;53(2):316–323. doi: 10.1016/j.polymer.2011.11.057
  • Liu Z, Robinson JT, Sun X, et al. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–10877. doi: 10.1021/ja803688x
  • Li C, Zhang N, Chen J, et al. Temperature and pH sensitive composite for rapid and effective removal of sulfonylurea herbicides in aqueous solution. Environ Pollut. 2019;255(Pt 1):113150. doi: 10.1016/j.envpol.2019.113150
  • Zadeh RJ, Sayadi MH, Rezaei MR. Synthesis of Thiol modified magMCM-41 nanoparticles with rice husk ash as a robust, high effective, and recycling magnetic sorbent for the removal of herbicides. J Environ Chem Eng. 2021;9(1):104804. doi: 10.1016/j.jece.2020.104804
  • Chandra PN, Usha K. Removal of atrazine herbicide from water by polyelectrolyte multilayer membranes. Mater Today Proc. 2020;41(3):622–627. doi: 10.1016/j.matpr.2020.05.263
  • Shad S, Bashir N, Nault M-FB-D, et al. Incorporation of biogenic zinc nanoparticles into a polymeric membrane: impact on the capture of organic herbicides. Cleaner Eng Technol. 2021;5:100339. doi: 10.1016/j.clet.2021.100339
  • Ma J, Li S, Wu G, et al. Preparation of mixed-matrix membranes from metal organic framework (MIL-53) and poly (vinylidene fluoride) for use in determination of sulfonylurea herbicides in aqueous environments by high performance liquid chromatography. J Colloid Interface Sci. 2019;553:834–844. doi: 10.1016/j.jcis.2019.06.082.
  • ZareKarizi F, Joharian M, Morsali A. Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. J Mater Chem A. 2018;6(40):19288–19329. doi: 10.1039/C8TA03306D
  • Xiao B, Yuan QC. Nanoporous metal organic framework materials for hydrogen storage. Particuology. 2009;7(2):129–140. doi: 10.1016/j.partic.2009.01.006
  • Mwakalesi AJ, Potter ID. Removal of picloram herbicide from an aqueous environment using polymer inclusion membranes. J Environ Chem Eng. 2020;8(5):103936. doi: 10.1016/j.jece.2020.103936
  • Pandiarajan S, Venkatesan S. Removal of 2,4-dichlorophenol using ionic liquid [BMIM]+[PF6]− encapsulated PVDF membrane. J Indian Chem Soc. 2023;100(1):100781. doi: 10.1016/j.jics.2022.100781
  • Borella L, Novello G, Gasparotto M, et al. Design and experimental validation of an optimized microalgae-bacteria consortium for the bioremediation of glyphosate in continuous photobioreactors. J Hazard Mater. 2023;441:129921. doi: 10.1016/j.jhazmat.2022.129921
  • Zhang W, Li J, Zhang Y, et al. Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. J Hazard Mater. 2022;432:128689. doi: 10.1016/j.jhazmat.2022.128689
  • Rossi F, Carles L, Donnadieu F, et al. Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. J Hazard Mater. 2021;420:126651. doi: 10.1016/j.jhazmat.2021.126651
  • Masotti F, Garavaglia BS, Piazza A, et al. Bacterial isolates from Argentine pampas and their ability to degrade glyphosate. Sci Total Environ. 2021;774:145761. doi: 10.1016/j.scitotenv.2021.145761
  • Firdous S, Iqbal S, Anwar S. Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. 2020;30(5):618–627. doi: 10.1016/S1002-0160(17)60381-3
  • Singh S, Kumar V, Singh J. Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe(III) and Cu(II) ions. J Environ Chem Eng. 2019;7(3):103098. doi: 10.1016/j.jece.2019.103098
  • Lara-Moreno A, Morillo E, Merchán F, et al. Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. Sci Total Environ. 2022;840:156695. doi: 10.1016/j.scitotenv.2022.156695
  • Zhang J, Yu Z, Gao Y, et al. Biodegradation of crystalline and nonaqueous phase liquid-dissolved atrazine by Arthrobacter sp. ST11 with Cd2+ resistance. Catalysts. 2022;12(12):1653. doi: 10.3390/catal12121653
  • Duc HD. Degradation of isoproturon in vitro by a mix of bacterial strains isolated from arable soil. Can J Microbiol. 2022;68(9):605–613. doi: 10.1139/cjm-2022-0084
  • Avarseji Z, Taliei F, Alamdari EG, et al. Investigation of the biodegradability of pendimethalin by Bacillus subtilis. Pseudomonas Fluorescens, Escherichia coli Adv Environ Technol. 2021;7(4):221–229. doi: 10.22104/aet.2022.5115.1399
  • Zhang Z, Yang D, Si H, et al. Biotransformation of the herbicide nicosulfuron residues in soil and seven sulfonylurea herbicides by Bacillus subtilis YB1: a climate chamber study. Environ Pollut. 2020;263(Part B):114492. doi: 10.1016/j.envpol.2020.114492
  • Liu H, Liu S, Liu H, et al. Revealing the driving synergistic degradation mechanism of Rhodococcus sp. B2 on the bioremediation of pretilachlor-contaminated soil. Sci Total Environ. 2023;856(2):159086. doi: 10.1016/j.scitotenv.2022.159086
  • Nguyen TLA, Dao ATN, Dang HTC, et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by fungi originating from Vietnam. Biodegradation. 2022;33(3):301–316. doi: 10.1007/s10532-022-09982-1
  • Ghime D, Ghosh P. 2020. Advanced oxidation processes: a powerful treatment option for the removal of recalcitrant organic compounds. In: Bustillo-Lecompte C editor. Advanced oxidation processes - applications, trends, and prospects. IntechOpen. 2020Available from. doi:10.5772/intechopen.90192.
  • Lim S, Shi JL, von Gunten U, et al. Ozonation of organic compounds in water and wastewater: a critical review. Water Res. 2022;213:Article 118053. doi: 10.1016/j.watres.2022.118053
  • Espinoza-Montero PJ, Vega-Verduga C, Alulema-Pullupaxi P, et al. Technologies employed in the treatment of water contaminated with glyphosate: a review. Molecules. 2020;25(23):5550. doi: 10.3390/molecules25235550
  • He H, Liu Y, You S, et al. A review on recent treatment technology for herbicide atrazine in contaminated environment. Int J Environ Res Public Health. 2019;16(24):5129. doi: 10.3390/ijerph16245129
  • Martins AS, Ferreira TCR, Carneiro RL, et al. Simultaneous degradation of hexazinone and diuron herbicides by H2O2/UV and toxicity assessment. J Brazilian Chem Soci. 2014;25(11):2000–2006. doi: 10.5935/0103-5053.20140184
  • Tseng D, Juang L, Huang H. Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in TiO2 aqueous suspension. Inter J Of Photoenergy. 2012;2012:1–9. Article 328526. doi: 10.1155/2012/328526
  • Zhang Y, Pagilla K. Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation. Desalination. 2010;263(1–3):36–44. doi: 10.1016/j.desal.2010.06.031
  • Ikehata K, El-Din MG. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part II). Ozone: Sci Eng, J Int Ozone Assoc. 2005;27(3):173–202. doi: 10.1080/01919510590945732
  • Jazić JM, Đurkić T, Bašić B, et al. Degradation of a chloroacetanilide herbicide in natural waters using UV activated hydrogen peroxide, persulfate and peroxymonosulfate processes. Environ Sci Water Res Technol. 2020;6(10):2800–2815. doi: 10.1039/d0ew00358a
  • Wen Y, Sharma VK, Ma X. Activation of peroxymonosulfate by phosphate and carbonate for the abatement of atrazine: roles of radical and nonradical species. ACS EST Water. 2022;2(4):635–643. doi: 10.1021/acsestwater.1c00482
  • Pillai IMS, Gupta AK. Effect of inorganic anions and oxidizing agents on electrochemical oxidation of methyl orange, malachite green and 2,4-dinitrophenol. J Electroanal Chem. 2016;762:66–72. doi: 10.1016/j.jelechem.2015.12.027
  • Tahmasseb LA, Nelieu S, Kerhoas L, et al. Ozonation of chlorophenylurea pesticides in water: reaction monitoring and degradation pathways. Sci Total Environ. 2002;291(1–3):33–44. doi: 10.1016/S0048-9697(01)01090-7
  • Tran MH, Nguyen HC, Le TS, et al. Degradation of glyphosate herbicide by an electro-Fenton process using carbon felt cathode. Environ Technol. 2021;42(8):1155–1164. doi: 10.1080/09593330.2019.1660411
  • Li F, Choong TSY, Soltani S, et al. Investigation of glyphosate removal from aqueous solutions using Fenton-like system based on calcium peroxide. Processes. 2022;10(10):2045. doi: 10.3390/pr10102045
  • Lv X, Ma Y, Li Y, et al. Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nanoscale zero-valent iron assembled on magnetite nanoparticles. Water. 2020;12(10):2909. doi: 10.3390/w12102909
  • El-Saeid MH, Alotaibi MO, Alshabanat M, et al. Impact of photolysis and TiO2 on pesticides degradation in wastewater. Water. 2021;13(5):655. doi: 10.3390/w13050655
  • Amiri F, Dehghani M, Amiri Z, et al. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid from aqueous solutions by Ag3PO4/TiO2 nanoparticles under visible light: kinetic and thermodynamic studies. Water Sci Technol. 2021;83(12):3110–3122. doi: 10.2166/wst.2021.193
  • Yusoff NR, Peng CY, Yusoff M, et al. 2019. Photocatalytic degradation of metamifop using TiO2/Al2O3/G nanocomposite. AIP conference proceeding. 2068, 020034. 10.1063/1.5089333
  • Yusoff NR, Wen LP, Yusoff M, et al. (2020). Performance of TiO2/Al2O3/carbon nanotube nanocomposite on the photocatalytic degradation of metamifop. IOP Conference Series: Earth and Environmental Science. 596, 012069 doi:10.1088/1755-1315/596/1/012069.
  • Khan A, Mir NA, Faisal M, et al. Titanium dioxide-mediated photcatalysed degradation of two herbicide derivatives chloridazon and metribuzin in aqueous suspensions. Int J Chem Eng. 2012;2012:1–8. Article 850468. doi: 10.1155/2012/850468
  • Deng Y, Zhou Z, Zeng H, et al. Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: insights into the depth analysis of the generation and role of singlet oxygen. Appl Catal B Environ. 2023;320:121942. Article 121942. doi: https://doi.org/10.1016/j.apcatb.2022.121942
  • Al-Samarai GF, Mahdi WM, Al-Hilali BM. Reducing environmental pollution by chemical herbicides using natural plant derivatives - allelopathy effect. Ann Agric Environ Med. 2018;25(3):449–452. doi: 10.26444/aaem/90888
  • Mendes KF, Régo APJ, Takeshita V, et al. Water resource pollution by herbicide residues. Biochem Toxicol – Heavy Met Nanomater. 2019. IntechOpen. doi: 10.5772/intechopen.85159
  • Hassaan MA, Nemr AE. Pesticides pollution: classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res. 2020;46(3):207–220. doi: 10.1016/j.ejar.2020.08.007
  • Sunanda, S, Ghosh-Sachan S. Nanobioremediation of pesticides by immobilization technique: a review. Int J Environ Sci Technol. 2023;20(3):3455–3466. doi: 10.1007/s13762-021-03759-4
  • Saleh IA, Zouari N, Al-Ghouti MA. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innov. 2020;19:101026. doi: 10.1016/j.eti.2020.101026
  • Singh Y, Saxena MK. Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Front Microbiol. 2022;13:982611. doi: 10.3389/fmicb.2022.982611
  • Lam S, Jaffari ZH, Sin J, et al. Insight into the influence of noble metal decorated on BiFeO3 for 2,4-dichlorophenol and real herbicide wastewater treatment under visible light. Colloids Surf A Physicochem Eng Asp. 2021;614:126138. doi: 10.1016/j.colsurfa.2021.126138
  • Aziz K, Aziz F, Mamouni R, et al. Engineering of highly brachychiton populneus shells@polyaniline bio-sorbent for efficient removal of pesticides from wastewater: optimization using BBD-RSM approach. J Mol Liq. 2022;346:117092. doi: 10.1016/j.molliq.2021.117092