1,826
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanotechnology-assisted treatment of pharmaceuticals contaminated water

, , , , , , & ORCID Icon show all
Article: 2260919 | Received 15 Mar 2023, Accepted 13 Sep 2023, Published online: 26 Sep 2023

References

  • Farahani B, Firouzi F, Chang V, et al. Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Gener Comput Syst. 2018 Jan;78:659–38. doi: 10.1016/j.future.2017.04.036.
  • Förstner U, Wittmann GTW. Metal pollution in the aquatic environment. Berlin, Heidelberg: Springer; 1981. doi: 10.1007/978-3-642-69385-4.
  • Velusamy S, Roy A, Sundaram S, et al. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem Rec. 2021 Jul;21(7):1570–1610. doi: 10.1002/tcr.202000153.
  • Bottoni P, Caroli S, Caracciolo AB. Pharmaceuticals as priority water contaminants. Toxicol Environ Chem. 2010 Mar;92(3):549–565. doi: 10.1080/02772241003614320.
  • Nageswara Rao R, Nagaraju V. An overview of the recent trends in development of HPLC methods for determination of impurities in drugs. J Pharm Biomed Anal. 2003 Oct;33(3):335–377. doi: 10.1016/S0731-7085(03)00293-0.
  • Gupta A, Kumar Verma M, Kumar R. A critical review for antibiotic removal from aqueous medium using ceria-based nanostructures. Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.02.206
  • Renganathan J, S IUH, Ramakrishnan K, et al. Spatio-temporal distribution of pharmaceutically active compounds in the River Cauvery and its tributaries, South India. Sci Total Environ. 2021 Dec;800:149340. doi: 10.1016/j.scitotenv.2021.149340.
  • Balakrishna K, Rath A, Praveenkumarreddy Y, et al. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf. 2017 Mar;137:113–120. doi: 10.1016/j.ecoenv.2016.11.014.
  • Margot J, Rossi L, Barry DA, et al. A review of the fate of micropollutants in wastewater treatment plants. WIREs Water. 2015 Sep;2(5):457–487. doi: 10.1002/wat2.1090.
  • Colla V, Branca TA, Rosito F, et al. Sustainable reverse osmosis application for wastewater treatment in the steel industry. J Clean Prod. 2016 Sep;130:103–115. doi: 10.1016/j.jclepro.2015.09.025.
  • Ahmed SF, Mofijur M, Ahmed B, et al. Nanomaterials as a sustainable choice for treating wastewater. Environ Res. 2022 Nov;214:113807.
  • AbuKhadra MR, Basyouny MG, AlHammadi AA, et al. Enhanced decontamination of levofloxacin as toxic pharmaceutical residuals from water using CaO/MgO nanorods as a promising adsorbent. Sci Rep. 2020 Sep;10(1):14828. doi: 10.1038/s41598-020-71951-6.
  • Yang X, Wen L, Huang H, et al. Hydrothermal synthesis of MoS2 nanoflowers and its rapid adsorption of tetracycline. Solid State Sci. 2022 Nov;133:107014. doi: 10.1016/j.solidstatesciences.2022.107014.
  • Mansi K, Kumar R, Kaur J, et al. DL-Valine assisted fabrication of quercetin loaded CuO nanoleaves through microwave irradiation method: augmentation in its catalytic and antimicrobial efficiencies. Environ NanotechnolMonitmanag. 2020 Dec;14:100306.
  • Garg A, Basu S, Shetti NP, et al. 2D materials and its heterostructured photocatalysts: synthesis, properties, functionalization and applications in environmental remediation. J Environ Chem Eng. 2021 Dec;9(6):106408. doi: 10.1016/j.jece.2021.106408.
  • Othman A, Vargo P, Andreescu S. Recyclable adsorbents based on Ceria nanostructures on mesoporous silica beads for the removal and recovery of phosphate from eutrophic waters. ACS Appl Nano Mater. 2019 Nov;2(11):7008–7018. doi: 10.1021/acsanm.9b01512.
  • Dutta V, Sharma S, Raizada P, et al. Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications. J Environ Chem Eng. 2020 Dec;8(6):104505. doi: 10.1016/j.jece.2020.104505.
  • Wang H, Liao B, Lu T, et al. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: structural characterization and reaction mechanism. J Hazard Mater. 2020 Mar;385:121552. doi: 10.1016/j.jhazmat.2019.121552.
  • Senasu T, Youngme S, Hemavibool K, et al. Sunlight-driven photodegradation of oxytetracycline antibiotic by BiVO4 photocatalyst. J Solid State Chem. 2021 May;297:122088. doi: 10.1016/j.jssc.2021.122088.
  • Kalambate PK, Noiphung J, Rodthongkum N, et al. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. Trends Analyt Chem. 2021 Oct;143:116403.
  • Umapathi R, Venkateswara Raju C, Majid Ghoreishian S, et al. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev. 2022 Nov;470:214708.
  • Muthusankar G, Sasikumar R, Chen S-M, et al. Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries. J Colloid Interface Sci. 2018 Aug;523:191–200. doi: 10.1016/j.jcis.2018.03.095.
  • Ansari S, Ansari MS, Devnani H, et al. CeO2/g-C3N4 nanocomposite: a perspective for electrochemical sensing of anti-depressant drug. Sens Actuators B Chem. 2018 Nov;273:1226–1236. doi: 10.1016/j.snb.2018.06.036.
  • Selvaraj M, Hai A, Banat F, et al. Application and prospects of carbon nanostructured materials in water treatment: a review. Water Proc Eng. 2020 Feb. 1; 33. Elsevier Ltd. doi: 10.1016/j.jwpe.2019.100996
  • Aziz T, Farid A, Haq F, et al. Role of silica-based porous cellulose nanocrystals in improving water absorption and mechanical properties. Environ Res. 2023 Apr;222:115253.
  • Azhar U, Bashir MS, Babar M, et al. Template-based textural modifications of polymeric graphitic carbon nitrides towards waste water treatment. Chemosphere. 2022 Sep;302:134792.
  • Mafa PJ, Kuvarega AT, Mamba BB, et al. Photoelectrocatalytic degradation of sulfamethoxazole on g-C3N4/BiOI/EG p-n heterojunction photoanode under visible light irradiation. Appl Surf Sci. 2019;483:506–520. doi: 10.1016/j.apsusc.2019.03.281.
  • Bao Y, Chen K. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism. Appl Surf Sci. 2018;437:51–61. doi: 10.1016/j.apsusc.2017.12.075.
  • You Z, Shen Q, Su Y, et al. Construction of a Z-scheme core–shell g-C3N4/MCNTs/BiOI nanocomposite semiconductor with enhanced visible-light photocatalytic activity. New J Chem. 2018;42(1):489–496. doi: 10.1039/C7NJ03623J
  • Yu Z, Li F, Yang Q, et al. Nature-mimic method to fabricate polydopamine/graphitic carbon nitride for enhancing photocatalytic degradation performance. ACS Sustain Chem Eng. 2017 Sep;5(9):7840–7850. doi: 10.1021/acssuschemeng.7b01313.
  • Fu J, Yu J, Jiang C, et al. G-C3N4-based heterostructured photocatalysts. Adv Energy Mater. 2018 Jan;8(3):1701503. doi: 10.1002/aenm.201701503.
  • Zhang W, Zhou L, Shi J, et al. Fabrication of novel visible-light-driven AgI/g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation. J Colloid Interface Sci. 2017 Jun;496:167–176. doi: 10.1016/j.jcis.2017.02.022.
  • Jiang J, Wang X, Yue C, et al. Efficient photoactivation of peroxymonosulfate by Z-scheme nitrogen-defect-rich NiCo2O4/g-C3N4 for rapid emerging pollutants degradation. J Hazard Mater. 2021 Jul;414:125528.
  • Alnaggar G, Hezam A, Drmosh QA, et al. Sunlight-driven activation of peroxymonosulfate by microwave synthesized ternary MoO3/Bi2O3/g-C3N4 heterostructures for boosting tetracycline hydrochloride degradation. Chemosphere. 2021 Jun;272. doi: 10.1016/j.chemosphere.2021.129807.
  • Guo F, Chen J, Zhao J, et al. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole. Chem Eng J. 2020 Apr;386:124014.
  • Raha S, Ahmaruzzaman M. Enhanced performance of a novel superparamagnetic g-C3N4/NiO/ZnO/Fe3O4 nanohybrid photocatalyst for removal of esomeprazole: effects of reaction parameters, co-existing substances and water matrices. Chem Eng J. 2020 Sep;395. doi: 10.1016/j.cej.2020.124969.
  • Zhang N, Li X, Wang Y, et al. Fabrication of magnetically recoverable Fe3O4/CdS/g-C3N4 photocatalysts for effective degradation of ciprofloxacin under visible light. Ceram Int. 2020 Sep;46(13):20974–20984. doi: 10.1016/j.ceramint.2020.05.158.
  • Wang L, Ma X, Huang G, et al. Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight. J Environ Sci. 2021 Feb;112:59–70.
  • Wang S, Long J, Jiang T, et al. Magnetic Fe3O4/CeO2/g-C3N4 composites with a visible-light response as a high efficiency Fenton photocatalyst to synergistically degrade tetracycline. Sep Purif Technol. 2022 Jan;278:119609.
  • He T, Wu Y, Jiang C, et al. Novel magnetic Fe3O4/g-C3N4/MoO3 nanocomposites with highly enhanced photocatalytic activities: visible-light-driven degradation of tetracycline from aqueous environment. PLoS One. 2020 Aug;15(8):e0237389. doi: 10.1371/journal.pone.0237389.
  • Wu Y, Zhao X, Huang S, et al. Facile construction of 2D g-C3N4 supported nanoflower-like NaBiO3 with direct Z-scheme heterojunctions and insight into its photocatalytic degradation of tetracycline. J Hazard Mater. 2021 Jul;414:125547.
  • Jiang X, Lai S, Xu W, et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process. J Alloys Compd. 2019 Nov;809:151804.
  • Akbarzadeh R, Fung CSL, Rather RA, et al. One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen. Chem Eng J. 2018 Jun;341:248–261. doi: 10.1016/j.cej.2018.02.042.
  • Kang J, Tang Y, Wang M, et al. The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4heterojunction catalyst and its mechanism. J Environ Chem Eng. 2021 Aug;9(4):105524. doi: 10.1016/j.jece.2021.105524.
  • Zhang J, Liu X, Liu Q, et al. Z-scheme AgSCN/Ag3PO4/C3N4 heterojunction with excellent photocatalytic degradation of ibuprofen. Ceram Int. 2020 Jan;46(1):106–113. doi: 10.1016/j.ceramint.2019.08.239.
  • Kong L, Wang Q, Wang Y, et al. Sustainable Cu2(OH)2CO3/g-C3N4/cellulose acetate-derived porous composite membrane for Congo red and tetracycline removal with photocatalytic self-cleaning properties under natural solar irradiation. Sustain Horiz. 2023 Mar;5:100047. doi: 10.1016/j.horiz.2023.100047.
  • Qianqian Z, Tang B, Guoxin H. High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. J Hazard Mater. 2011;198:78–86. doi: 10.1016/j.jhazmat.2011.10.012.
  • Lin L, Wang H, Jiang W, et al. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater. 2017;333:162–168. doi: 10.1016/j.jhazmat.2017.02.044.
  • Boruah PK, Szunerits S, Boukherroub R, et al. Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere. 2018;191:503–513. doi: 10.1016/j.chemosphere.2017.10.075.
  • Moztahida M, Jang J, Nawaz M, et al. Effect of rGO loading on Fe 3 O 4: a visible light assisted catalyst material for carbamazepine degradation. Sci Total Environ. 2019 Jun;667:741–750. doi: 10.1016/j.scitotenv.2019.02.376.
  • Shanavas S, Mohana Roopan S, Priyadharsan A, et al. Computationally guided synthesis of (2D/3D/2D) rGo/fe2o3/g-C3N4 nanostructure with improved charge separation and transportation efficiency for degradation of pharmaceutical molecules. Appl Catal, B. 2019 Oct;255:117758.
  • Su G, Liu L, Liu X, et al. Magnetic Fe3O4@SiO2@BiFeO3/rGO composite for the enhanced visible-light catalytic degradation activity of organic pollutants. Ceram Int. 2021 Feb;47(4):5374–5387. doi: 10.1016/j.ceramint.2020.10.118.
  • Sayadi MH, Sobhani S, Shekari H. Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites. J Clean Prod. 2019 Sep;232:127–136. doi: 10.1016/j.jclepro.2019.05.338.
  • Li J, Liu K, Xue J, et al. CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J Catal. 2019;369:450–461. DOI:10.1016/j.jcat.2018.11.026
  • Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362–381. doi: 10.1039/C4CS00269E.
  • Yu H, Huang J, Jiang L, et al. Enhanced photocatalytic tetracycline degradation using N-CQDs/OV-BiOBr composites: unraveling the complementary effects between N-CQDs and oxygen vacancy. Chem Eng J. 2020 Dec;402:126187.
  • Hu Z, Xie X, Li S, et al. Rational construct CQDs/BiOCOOH/uCN photocatalyst with excellent photocatalytic performance for degradation of sulfathiazole. Chem Eng J. 2021 Jan;404:126541.
  • Xie X, Li S, Qi K, et al. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: the role of selectively more CQDs decoration and Z-scheme structure. Chem Eng J. 2021 Sep;420. doi: 10.1016/j.cej.2021.129705.
  • Xiang Y, Xu Z, Wei Y, et al. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. J Environ Manage. 2019;237:128–138. DOI:10.1016/j.jenvman.2019.02.068
  • Smith SC, Ahmed F, Gutierrez KM, et al. A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: potential environmental applications. Chem Eng J. 2014;240:147–154. doi: 10.1016/j.cej.2013.11.030.
  • Fang Li M, Liu Y-G, Liu S-B, et al. Performance of magnetic graphene oxide/diethylenetriaminepentaacetic acid nanocomposite for the tetracycline and ciprofloxacin adsorption in single and binary systems. J Colloid Interface Sci. 2018 Jul;521:150–159.
  • Li M, Liu Y-G, Zeng G-M, et al. Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: influencing factors and uptake mechanism. J Colloid Interface Sci. 2017;485:269–279. DOI:10.1016/j.jcis.2016.09.037
  • Zhang L, Song X, Liu X, et al. Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J. 2011;178:26–33. doi:10.1016/j.cej.2011.09.127
  • Li M, Liu Y-G, Liu S-B, et al. Cu(ii)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms. Chem Eng J. 2017;319:219–228. DOI:10.1016/j.cej.2017.03.016
  • Zhu X, Tsang DCW, Chen F, et al. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. Environ Technol. 2015 Dec;36(24):3094–3102. doi: 10.1080/09593330.2015.1054316.
  • Karimi-Maleh H, Shafieizadeh M, Taher MA, et al. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq. 2020 Jan;298:112040.
  • Monier M, Ayad DM, Wei Y, et al. Immobilization of horseradish peroxidase on modified chitosan beads. Int j biol macromol. 2010;46(3):324–330. doi: 10.1016/j.ijbiomac.2009.12.018.
  • Zeraatkar Moghaddam A, Esmaeilkhanian E, Shakourian-Fard M. Immobilizing magnetic glutaraldehyde cross-linked chitosan on graphene oxide and nitrogen-doped graphene oxide as well-dispersible adsorbents for chromate removal from aqueous solutions. Int j biol macromol. 2019;128:61–73. doi: 10.1016/j.ijbiomac.2019.01.086.
  • Suri A, Khandegar V, Kaur PJ. Ofloxacin exclusion using novel HRP immobilized chitosan cross-link with graphene-oxide nanocomposite. Groundw Sustain Dev. 2021 Feb;12:100515. doi: 10.1016/j.gsd.2020.100515.
  • Huang B, Liu Y, Li B, et al. Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene oxide nanocomposite. Carbohydr Polym. 2017 Feb;157:576–585.
  • Li N, Chen J, Shi YP. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic sorbent for the separation of polar non-steroidal anti-inflammatory drugs in waters. Talanta. 2019 Jan;191:526–534. doi: 10.1016/j.talanta.2018.09.006.
  • Al-Khateeb LA, Hakami W, Abdel Salam M, et al. Solid phase-fabrication of magnetically separable Fe3O4@graphene nanoplatelets nanocomposite for efficient removal of NSAIDs from wastewater. Perception of adsorption kinetics, thermodynamics, and extra-thermodynamics. Anal Chim Acta. 2022 Aug;1223. doi: 10.1016/j.aca.2022.340158.
  • Song Z, Ma YL, Li CE. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Sci Total Environ. 2019 Feb;651:580–590. doi: 10.1016/j.scitotenv.2018.09.240.
  • Ma J, Jiang Z, Cao J, et al. Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosphere. 2020 Mar;242. doi: 10.1016/j.chemosphere.2019.125188.
  • Agha Beygli R, Mohaghegh N, Rahimi E. Metal ion adsorption from wastewater by g-C3N4 modified with hydroxyapatite: a case study from sarcheshmeh acid mine drainage. Res Chem Intermed. 2019;45(4):2255–2268. doi: 10.1007/s11164-018-03733-9.
  • Tonda S, Jo W-K. Plasmonic Ag nanoparticles decorated NiAl-layered double hydroxide/graphitic carbon nitride nanocomposites for efficient visible-light-driven photocatalytic removal of aqueous organic pollutants. Catal Today. 2018;315:213–222. doi: 10.1016/j.cattod.2017.12.019.
  • Foroughi M, Ahmadi Azqhandi MH, Kakhki S. Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN). J Hazard Mater. 2020 Apr;388:121769. doi: 10.1016/j.jhazmat.2019.121769.
  • Juang R-S, Yei Y-C, Liao C-S, et al. Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. J Taiwan Inst Chem Eng. 2018;90:51–60. DOI:10.1016/j.jtice.2017.12.005
  • Mestre AS, Hesse F, Freire C, et al. Chemically activated high grade nanoporous carbons from low density renewable biomass (agave sisalana) for the removal of pharmaceuticals. J Colloid Interface Sci. 2019;536:681–693. doi: 10.1016/j.jcis.2018.10.081.
  • Modesto HR, Lemos SG, dos Santos MS, et al. Activated carbon production from industrial yeast residue to boost up circular bioeconomy. Environ Sci Pollut Res. 2021;28(19):24694–24705. doi: 10.1007/s11356-020-10458-z
  • Viegas RMC, Mestre AS, Mesquita E, et al. Assessing the applicability of a new carob waste-derived powdered activated carbon to control pharmaceutical compounds in wastewater treatment. Sci Total Environ. 2020;743:140791. DOI:10.1016/j.scitotenv.2020.140791
  • Hameed BH, Daud FBM. Adsorption studies of basic dye on activated carbon derived from agricultural waste: hevea brasiliensis seed coat. Chem Eng J. 2008;139(1):48–55. doi: 10.1016/j.cej.2007.07.089.
  • D’Cruz B, Madkour M, Amin MO, et al. Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Mater Chem Phys. 2020 Jan;240:122109. doi: 10.1016/j.matchemphys.2019.122109.
  • Labuto G, Carvalho AP, Mestre AS, et al. Individual and competitive adsorption of ibuprofen and caffeine from primary sewage effluent by yeast-based activated carbon and magnetic carbon nanocomposite. Sustain Chem Pharm. 2022 Sep;28:100703.
  • Dada AO, Inyinbor AA, Bello OS, et al. Novel plantain peel activated carbon–supported zinc oxide nanocomposites (PPAC-ZnO-NC) for adsorption of chloroquine synthetic pharmaceutical used for COVID-19 treatment. Biomass Convers Biorefin. 2021;13(10):9181–9193. doi: 10.1007/s13399-021-01828-9.
  • Miura T, Tao R, Shibata S, et al. Geometries, electronic couplings, and hole dissociation dynamics of photoinduced electron–hole pairs in polyhexylthiophene–fullerene dyads rigidly linked by Oligophenylenes. J Am Chem Soc. 2016 May;138(18):5879–5885. doi: 10.1021/jacs.5b13414.
  • Ali N, Chipara D, Lozano K, et al. Polyethylene oxide—fullerene nanocomposites. Appl Surf Sci. 2017;421:220–227. doi: 10.1016/j.apsusc.2016.11.166.
  • Cano Ordaz J, Chigo Anota E, Salazar Villanueva M, et al. Possibility of a magnetic [BN fullerene: B6 cluster]− nanocomposite as a vehicle for the delivery of dapsone. New J Chem. 2017;41(16):8045–8052. doi: 10.1039/C7NJ01133D.
  • Herreros-López A, Carini M, Da Ros T, et al. Nanocrystalline cellulose-fullerene: novel conjugates. Carbohydr Polym. 2017;164:92–101. DOI:10.1016/j.carbpol.2017.01.068
  • Elessawy NA, Elnouby M, Gouda MH, et al. Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: adsorption process optimization, kinetics, isotherm, regeneration and recycling studies. Chemosphere. 2020 Jan;239:124728.
  • Trakulmututa J, Chuaicham C, Shenoy S, et al. Effect of transformation temperature toward optical properties of derived CuO/ZnO composite from Cu–zn hydroxide nitrate for photocatalytic ciprofloxacin degradation. Opt Mater (Amst). 2022 Nov;133. doi: 10.1016/j.optmat.2022.112941.
  • Rosman N, Salleh WNW, Mohamed MA, et al. Constructing a compact heterojunction structure of Ag2CO3/Ag2O in-situ intermediate phase transformation decorated on ZnO with superior photocatalytic degradation of ibuprofen. Sep Purif Technol. 2020 Nov;251:117391. doi: 10.1016/j.seppur.2020.117391.
  • Yentür G, Dükkancı M. Fabrication of magnetically separable plasmonic composite photocatalyst of Ag/AgBr/ZnFe2O4 for visible light photocatalytic oxidation of carbamazepine. Appl Surf Sci. 2020 Apr;510. doi: 10.1016/j.apsusc.2020.145374.
  • Khan M, Fung CSL, Kumar A, et al. Magnetically separable BiOBr/Fe3O4@SiO2 for visible-light-driven photocatalytic degradation of ibuprofen: mechanistic investigation and prototype development. J Hazard Mater. 2019 Mar;365:733–743. doi: 10.1016/j.jhazmat.2018.11.053.
  • Thiruppathi M, Senthil Kumar P, Devendran P, et al. Ce@TiO2 nanocomposites: an efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J Alloys Compd. 2018 Feb;735:728–734. doi: 10.1016/j.jallcom.2017.11.139.
  • Payan A, Akbar Isari A, Gholizade N. Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO2@functionalized SWCNT ternary porous nanocomposite: influential factors, mechanism, and pathway studies. Chem Eng J. 2019 Apr;361:1121–1141. doi: 10.1016/j.cej.2018.12.118.
  • Li S, Wang Z, Zhang X, et al. Preparation of magnetic nanosphere/nanorod/nanosheet-like Fe3O4/Bi2S3/BiOBr with enhanced (0 0 1) and (1 1 0) facets to photodegrade diclofenac and ibuprofen under visible LED light irradiation. Chemical Engineering Journal. 2019 Dec;378:122169. doi: 10.1016/j.cej.2019.122169.
  • Silvestri S, Ferreira CD, Oliveira V, et al. Synthesis of PPy-ZnO composite used as photocatalyst for the degradation of diclofenac under simulated solar irradiation. J Photochem Photobiol A Chem. 2019 Apr;375:261–269. doi: 10.1016/j.jphotochem.2019.02.034.
  • Ahmadpour N, Sayadi MH, Sobhani S, et al. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J Environ Manage. 2020 Oct;271. doi: 10.1016/j.jenvman.2020.110964.
  • Mrotek E, Dudziak S, Malinowska I, et al. Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst. Sci Total Environ. 2020 Jul;724. doi: 10.1016/j.scitotenv.2020.138167.
  • Liu K, Tong Z, Muhammad Y, et al. Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin. Chem Eng J. 2020 May;388:124374.
  • Nasseh N, Al-Musawi TJ, Miri MR, et al. A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight. Environ Pollut. 2020 Jun;261. doi: 10.1016/j.envpol.2020.114127.
  • Fernández L, Gamallo M, González-Gómez MA, et al. Insight into antibiotics removal: exploring the photocatalytic performance of a Fe 3 O 4/ZnO nanocomposite in a novel magnetic sequential batch reactor. J Environ Manage. 2019 May;237:595–608.
  • Ahmadpour N, Sayadi MH, Sobhani S, et al. A potential natural solar light active photocatalyst using magnetic ZnFe2O4 @ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution. J Clean Prod. 2020 Sep;268. doi: 10.1016/j.jclepro.2020.122023.
  • Abdel-Wahab AM, Al-Shirbini AS, Mohamed O, et al. Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core-shell nanostructures. J Photochem Photobiol A Chem. 2017 Oct;347:186–198. doi: 10.1016/j.jphotochem.2017.07.030.
  • Xu G, Du M, Li T, et al. Facile synthesis of magnetically retrievable Fe3O4/BiVO4/CdS heterojunction composite for enhanced photocatalytic degradation of tetracycline under visible light. Sep Purif Technol. 2021 Nov;275. doi: 10.1016/j.seppur.2021.119157.
  • Liu L, Su G, Liu X, et al. Fabrication of magnetic core–shell Fe3O4@SiO2@Bi2O2CO3–sepiolite microspheres for the high-efficiency visible light catalytic degradation of antibiotic wastewater. Environ Technol Innov. 2021 May;22:101436.
  • Wang B, Lv X-L, Feng D, et al. Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J Am Chem Soc. 2016 May;138(19):6204–6216. doi: 10.1021/jacs.6b01663.
  • Wu M-X, Yang Y-W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134. doi: 10.1002/adma.201606134.
  • Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev. 2018;47(22):8134–8172. doi: 10.1039/C8CS00256H.
  • Keskin S, Sholl DS. Screening metal−Organic framework materials for membrane-based methane/carbon dioxide separations. J Phys Chem C. 2007;111(38):14055–14059. doi: 10.1021/jp075290l.
  • Wu C, Xiong Z, Li C, et al. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv. 2015;5(100):82127–82137. doi: 10.1039/C5RA15497A.
  • Wu G, Ma J, Li S, et al. Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J Colloid Interface Sci. 2018;528:360–371. DOI:10.1016/j.jcis.2018.05.105
  • Yan J, Chen Z, Ji H, et al. Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity. Chem Eur J. 2016 Mar;22(14):4764–4773. doi: 10.1002/chem.201503660.
  • Kobielska PA, Howarth AJ, Farha OK, et al. Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev. 2018;358:92–107. doi: 10.1016/j.ccr.2017.12.010.
  • Zhang W, Hu Y, Ge J, et al. A Facile and general coating approach to moisture/Water-resistant metal–organic frameworks with intact porosity. J Am Chem Soc. 2014 Dec;136(49):16978–16981. doi: 10.1021/ja509960n.
  • Zhuo N, Lan Y, Yang W, et al. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep Purif Technol. 2017;177:272–280. DOI:10.1016/j.seppur.2016.12.041
  • Xiong W, Zeng G, Yang Z, et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci Total Environ. 2018 Jun;627:235–244.
  • Xiong W, Zeng Z, Li X, et al. Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: remarkable adsorptive removal of antibiotics from aqueous solutions. Chemosphere. 2018 Nov;210:1061–1069.
  • Sarker M, Song JY, Jhung SH. Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem Eng J. 2018 Mar;335:74–81. doi: 10.1016/j.cej.2017.10.138.
  • Wei F, Zhang H, Ren Q, et al. Removal of organic contaminants from wastewater with GO/MOFs composites. PLoS One. 2021 Jul;16(7):e0253500. doi: 10.1371/journal.pone.0253500.
  • Bayazit ŞS, Kurtulbaş E, Bilgin M, et al. Decontamination of endocrine disruptors from water by graphene nanoplatelet/UiO-66 nanocomposites. Environ NanotechnolMonitmanag. 2022 Dec;18. doi: 10.1016/j.enmm.2022.100733.
  • Song F, Cao S, Liu Z, et al. Different decorated ZIF-67 adsorption performance towards methamphetamine revealed by theoretical and experimental investigations. J Mol Liq. 2022 Oct;364. doi: 10.1016/j.molliq.2022.119950.
  • Ling Yu L, Cao W, Chuan Wu S, et al. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: preparation, characteristic, adsorption performance and mechanism. Ecotoxicol Environ Saf. 2018 Nov;164:289–296. doi: 10.1016/j.ecoenv.2018.07.110.
  • Jia X, Li S, Wang Y, et al. Adsorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on a novel MIL-101(Cr)@GO composite. J Chem Eng Data. 2019 Mar;64(3):1265–1274. doi: 10.1021/acs.jced.8b01152.
  • Wang K, Wu J, Zhu M, et al. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites. J Solid State Chem. 2020 Apr;284. doi: 10.1016/j.jssc.2020.121200.
  • Jin J, Yang Z, Xiong W, et al. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions. Sci Total Environ. 2019 Feb;650:408–418.
  • Van Tran T, Nguyen DTC, Nguyen TT, et al. High performance of Mn2(BDC)2(DMF)2-derived MnO@C nanocomposite as superior remediator for a series of emergent antibiotics. J Mol Liq. 2020 Jun;308:113038. doi: 10.1016/j.molliq.2020.113038.
  • Van Tran T, Nguyen DTC, Nguyen TT, et al. Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: rapid synthesis and uptake application in antibiotics remediation. Water Proc Eng. 2020 Aug;36:101319. doi: 10.1016/j.jwpe.2020.101319.
  • Naeimi S, Faghihian H. Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid: for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environ Toxicol Pharmacol. 2017 Jul;53:121–132. doi: 10.1016/j.etap.2017.05.007.
  • Ying Zhang Y, Liu Q, Yang C, et al. Magnetic aluminum-based metal organic framework as a novel magnetic adsorbent for the effective removal of minocycline from aqueous solutions. Environ Pollut. 2019 Dec;255. doi: 10.1016/j.envpol.2019.113226.
  • Bayazit ŞS, Danalıoğlu ST, Abdel Salam M, et al. Preparation of magnetic MIL-101 (Cr) for efficient removal of ciprofloxacin. Environ Sci Pollut Res. 2017 Nov;24(32):25452–25461. doi: 10.1007/s11356-017-0121-0.
  • Moradi SE, Haji Shabani AM, Dadfarnia S, et al. Effective removal of ciprofloxacin from aqueous solutions using magnetic metal–organic framework sorbents: mechanisms, isotherms and kinetics. J Iran Chem Soc. 2016 Sep;13(9):1617–1627. doi: 10.1007/s13738-016-0878-y.
  • Duan H, Hu X, Sun Z. Magnetic zeolite imidazole framework material-8 as an effective and recyclable adsorbent for removal of ceftazidime from aqueous solution. J Hazard Mater. 2020 Feb;384. doi: 10.1016/j.jhazmat.2019.121406.
  • Li C, Zhang X, Wen S, et al. Interface engineering of zeolite imidazolate framework−8 on two-dimensional al−metal−organic framework nanoplates enhancing performance for simultaneous capture and sensing tetracyclines. J Hazard Mater. 2020 Aug;395:122615.
  • Álvarez-Torrellas S, Ribeiro RS, Gomes HT, et al. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chem Eng J. 2016;296:277–288. doi: 10.1016/j.cej.2016.03.112.
  • Tian N, Jia Q, Su H, et al. The synthesis of mesostructured NH2-MIL-101(Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. J Porous Mater. 2016;23(5):1269–1278. doi: 10.1007/s10934-016-0186-z
  • Hu T, Lv H, Shan S, et al. Porous structured MIL-101 synthesized with different mineralizers for adsorptive removal of oxytetracycline from aqueous solution. RSC Adv. 2016;6(77):73741–73747. doi: 10.1039/C6RA11684A
  • Chen C, Chen D, Xie S, et al. Adsorption behaviors of organic micropollutants on zirconium metal–organic framework UiO-66: analysis of surface interactions. ACS Appl Mater Interfaces. 2017 Nov;9(46):41043–41054. doi: 10.1021/acsami.7b13443.
  • Choi K-J, Kim S-G, Kim S-H. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008;151(1):38–43. doi: 10.1016/j.jhazmat.2007.05.059.
  • Ahmed MB, Zhou JL, Ngo HH, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater. 2017;323:274–298. doi: 10.1016/j.jhazmat.2016.04.045.
  • Lai C, Zhang M, Li B, et al. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight. Chem Eng J. 2019;358:891–902. DOI:10.1016/j.cej.2018.10.072
  • Subudhi S, Paramanik L, Sultana S, et al. A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: a visible light mediated photocatalytic approach directed towards norfloxacin degradation and green energy (hydrogen) evolution. J Colloid Interface Sci. 2020 May;568:89–105. doi: 10.1016/j.jcis.2020.02.043.
  • Askari N, Beheshti M, Mowla D, et al. Fabrication of CuWO4/Bi2S3/ZIF67 MOF: a novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics. Chemosphere. 2020 Jul;251. doi: 10.1016/j.chemosphere.2020.126453.
  • Wang Z, Wang H, Zeng Z, et al. Metal-organic frameworks derived Bi2O2CO3/porous carbon nitride: a nanosized Z-scheme systems with enhanced photocatalytic activity. Appl Catal, B. 2020 Jun;267:118700.
  • Wang C, Xue Y, Wang P, et al. Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation. J Alloys Compd. 2018 Jun;748:314–322. doi: 10.1016/j.jallcom.2018.03.129.
  • Deng L, Yin D, Khaing KK, et al. The facile boosting sunlight-driven photocatalytic performance of a metal–organic-framework through coupling with Ag 2 S nanoparticles. New J Chem. 2020 Aug;44(29):12568–12578. doi: 10.1039/d0nj02030c.
  • Zhang S, Wang Y, Cao Z, et al. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation. Chem Eng J. 2020 Feb;381:122771.
  • Chen WQ, Li L-Y, Li L, et al. MoS2/ZIF-8 hybrid materials for environmental catalysis: solar-driven antibiotic-degradation engineering. Eng. 2019 Aug;5(4):755–767. doi: 10.1016/j.eng.2019.02.003.
  • Gao Y, Lu J, Xia J, et al. In situ synthesis of defect-engineered MOFs as a photoregenerable catalytic adsorbent: understanding the effect of LML, adsorption behavior, and photoreaction process. ACS Appl Mater Interfaces. 2020 Mar;12(11):12706–12716. doi: 10.1021/acsami.9b21122.
  • Gao Y, Wu J, Wang J, et al. A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline. ACS Appl Mater Interfaces. 2020 Mar;12(9):11036–11044. doi: 10.1021/acsami.9b23314.
  • Liu N, Shang Q, Gao K, et al. Construction of ZnO/ZIF-9 heterojunction photocatalyst: enhanced photocatalytic performance and mechanistic insight. New J Chem. 2020 Apr;44(16):6384–6393. doi: 10.1039/d0nj00510j.
  • Li R, Li W, Jin C, et al. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation. J Alloys Compd. 2020 Jun;825:154008. doi: 10.1016/j.jallcom.2020.154008.
  • He L, Dong Y, Zheng Y, et al. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J Hazard Mater. 2019 Jan;361:85–94. doi: 10.1016/j.jhazmat.2018.08.079.
  • Li S, Cui J, Wu X, et al. Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J Hazard Mater. 2019 Jul;373:408–416. doi: 10.1016/j.jhazmat.2019.03.102.
  • Rasheed HU, Lv X, Zhang S, et al. Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv Powder Technol. 2018 Dec;29(12):3305–3314. doi: 10.1016/j.apt.2018.09.011.
  • Zhang XW, Wang F, Wang CC, et al. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation. Chem Eng J. 2021 Dec;426: doi: 10.1016/j.cej.2021.131927
  • Doan VD, Huynh BA, Le Pham HA, et al. Cu2O/Fe3O4/MIL-101(Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin. Environ Res. 2021 Oct;201:111593. doi: 10.1016/j.envres.2021.111593.
  • Bagherzadeh SB, Kazemeini M, Mahmoodi NM. Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants. J Colloid Interface Sci. 2021 Nov;602:73–94. doi: 10.1016/j.jcis.2021.05.181.
  • Liu N, Wang J, Wu J, et al. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater Res Bull. 2020 Dec;132:111000.
  • Lv SW, Liu J-M, Zhao N, et al. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate. Sep Purif Technol. 2020 Dec;253:117413.
  • He W, Li Z, Lv S, et al. Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe). Chem Eng J. 2021 Apr;409:128274.
  • Shahzad A, Rasool K, Nawaz M, et al. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem Eng J. 2018 Oct;349:748–755.
  • Yi X, Yuan J, Tang H, et al. Embedding few-layer Ti3C2Tx into alkalized g-C3N4 nanosheets for efficient photocatalytic degradation. J Colloid Interface Sci. 2020 Jul;571:297–306.
  • Diao Y, Yan M, Li X, et al. In-situ grown of g-C3N4/Ti3C2/TiO2 nanotube arrays on Ti meshes for efficient degradation of organic pollutants under visible light irradiation. Colloids Surf A Physicochem Eng Asp. 2020 Jun;594:124511.
  • Wu Z, Liang Y, Yuan X, et al. Mxene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem Eng J. 2020 Aug;394:124921.
  • Cui C, Guo R, Xiao H, et al. Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation. Appl Surf Sci. 2020 Mar;505:144595.
  • Ma Y, Lv X, Xiong D, et al. Catalytic degradation of ranitidine using novel magnetic Ti3C2-based MXene nanosheets modified with nanoscale zero-valent iron particles. Appl Catal, B. 2021 May;284. doi: 10.1016/j.apcatb.2020.119720.
  • Cao Y, Fang Y, Lei X, et al. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J Hazard Mater. 2020 Apr;387:122021.
  • Kumar A, Majithia P, Choudhary P, et al. Mxene coupled graphitic carbon nitride nanosheets based plasmonic photocatalysts for removal of pharmaceutical pollutant. Chemosphere. 2022 Dec;308:136297.
  • Zou X, Zhao X, Zhang J, et al. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti3C2/MoS2 under visible light irradiation. J Hazard Mater. 2021 Jul;413:125424. doi: 10.1016/j.jhazmat.2021.125424.
  • Du Z, Feng L, Guo Z, et al. Ultrathin h-BN/Bi2MoO6 heterojunction with synergetic effect for visible-light photocatalytic tetracycline degradation. J Colloid Interface Sci. 2021 May;589:545–555.
  • Lin L, Jiang W, Nasr M, et al. Enhanced visible light photocatalysis by TiO2–BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment. Photochem Photobiol Sci. 2019;18(12):2921–2930. doi: 10.1039/c9pp00304e.
  • Liu N, Wang J, Tian M, et al. Boron nitride nanosheets decorated MIL-53(Fe) for efficient synergistic ibuprofen photocatalytic degradation by persulfate activation. J Colloid Interface Sci. 2021 Dec;603:270–281.
  • Cai H, Wang J, Du Z, et al. Construction of novel ternary MoSe2/ZnO/p-BN photocatalyst for efficient ofloxacin degradation under visible light. Colloids Surf A Physicochem Eng Asp. 2023 Apr;663:131050.
  • Wu Y, Jin X, Liu H, et al. Synergistic effects of boron nitride quantum dots and reduced ultrathin g-C3N4: dual-channel carrier transfer and band structure regulation boost the photodegradation of fluoroquinolone. Sep Purif Technol. 2022 Dec;303. doi: 10.1016/j.seppur.2022.122185.
  • Che H, Che G, Zhou P, et al. Yeast-derived carbon sphere as a bridge of charge carriers towards to enhanced photocatalytic activity of 2D/2D Cu 2 WS 4/g-C 3 N 4 heterojunction. J Colloid Interface Sci. 2019 Jun;546:262–275. doi: 10.1016/j.jcis.2019.03.080.
  • Li J, Xia Z, Ma D, et al. Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO2 nanobelt photocatalyst for eliminating norfloxacin from water. J Colloid Interface Sci. 2021 Mar;586:243–256.
  • Peng D, Wang Y, Shi H, et al. Fabrication of novel Cu2WS4/NiTiO3 heterostructures for efficient visible-light photocatalytic hydrogen evolution and pollutant degradation. J Colloid Interface Sci. 2022 May;613:194–206.
  • Khan A, Danish M, Alam U, et al. Facile synthesis of a Z-Scheme ZnIn2S4/MoO3 heterojunction with enhanced photocatalytic activity under visible light irradiation. ACS Omega. 2020 Apr;5(14):8188–8199. doi: 10.1021/acsomega.0c00446.
  • Ganguly P, Mathew S, Clarizia L, et al. Ternary metal chalcogenide heterostructure (AgIns 2 –TiO 2) nanocomposites for visible light photocatalytic applications. ACS Omega. 2020 Jan;5(1):406–421. doi: 10.1021/acsomega.9b02907.
  • Raheem I, Mubarak NM, Karri RR, et al. Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. Chemosphere. 2023;311:137056. DOI:10.1016/j.chemosphere.2022.137056
  • Cao S, Shen B, Tong T, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater. 2018 May;28(21):1800136. doi: 10.1002/adfm.201800136.
  • Wang H, Zhang L, Chen Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev. 2014;43(15):5234–5244. doi: 10.1039/C4CS00126E
  • Beydoun D, Amal R, Low G, et al. Role of nanoparticles in photocatalysis. J Nanopart Res. 1999;1(4):439–458. doi: 10.1023/A:1010044830871.
  • Bagheri S, TermehYousefi A, Do T-O. Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catal Sci Technol. 2017;7(20):4548–4569. doi: 10.1039/C7CY00468K.
  • Liu H, Yang C, Jin X, et al. One-pot hydrothermal synthesis of MXene Ti3C2/TiO2/BiOCl ternary heterojunctions with improved separation of photoactivated carries and photocatalytic behavior toward elimination of contaminants. Colloids Surf A Physicochem Eng Asp. 2020 Oct;603. doi: 10.1016/j.colsurfa.2020.125239.
  • Zhang Z, Penev ES, Yakobson BI. Two-dimensional boron: structures, properties and applications. Chem Soc Rev. 2017;46(22):6746–6763. doi: 10.1039/C7CS00261K.
  • Auwärter W. Hexagonal boron nitride monolayers on metal supports: versatile templates for atoms, molecules and nanostructures. Surf Sci Rep. 2019;74(1):1–95. doi: 10.1016/j.surfrep.2018.10.001.
  • Chen L, Zhou M, Luo Z, et al. Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. Appl Catal, B. 2019;241:246–255. doi: 10.1016/j.apcatb.2018.09.034.
  • Lei W, Liu D, Chen Y. Highly crumpled boron nitride nanosheets as adsorbents: scalable solvent-less production. Adv Mater Interfaces. 2015 Feb;2(3):1400529. doi: 10.1002/admi.201400529.
  • Han R, Liu F, Wang X, et al. Functionalised hexagonal boron nitride for energy conversion and storage. J Mater Chem A Mater. 2020;8(29):14384–14399. doi: 10.1039/D0TA05008C.
  • Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, et al. Inverse pickering emulsion stabilized by exfoliated hexagonal-boron nitride (h-BN). Langmuir. 2017 Nov;33(46):13394–13400. doi: 10.1021/acs.langmuir.7b03324.
  • Yu S, Wang X, Pang H, et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem Eng J. 2018;333:343–360. doi:10.1016/j.cej.2017.09.163
  • Ejeromedoghene O, Nnyia M, Okoye C, et al. Environmental decontamination using transition metal dichalcogenides based materials: a review. J Mater & Environ Sustain Res. 2022 Mar;2(1):1–18. doi: 10.55455/jmesr.2022.001.
  • Jing D, Liu M, Chen Q, et al. Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process. Int J Hydrogen Energy. 2010;35(16):8521–8527. doi: 10.1016/j.ijhydene.2010.04.170.
  • Goyal A, Aggarwal D, Kapoor S, et al. A comprehensive experimental and theoretical study on BN nanosheets for the adsorption of pharmaceutical drugs. New J Chem. 2020 Mar;44(10):3985–3997. doi: 10.1039/c9nj06029d.
  • Li S, Liu F, Su Y, et al. Luffa sponge-derived hierarchical meso/macroporous boron nitride fibers as superior sorbents for heavy metal sequestration. J Hazard Mater. 2019;378:120669. doi:10.1016/j.jhazmat.2019.05.062
  • Song Q, Fang Y, Liu Z, et al. The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution. Chem Eng J. 2017;325:71–79. doi:10.1016/j.cej.2017.05.057
  • Han L, Khalil AME, Wang J, et al. Graphene-boron nitride composite aerogel: a high efficiency adsorbent for ciprofloxacin removal from water. Sep Purif Technol. 2022 Jan;278:119605.
  • Xu M, Huang C, Lu J, et al. Optimizing adsorption of 17α-ethinylestradiol from water by magnetic mxene using response surface methodology and adsorption kinetics, isotherm, and thermodynamics studies. Molecules. 2021 Jun;26(11):3150. doi: 10.3390/molecules26113150.
  • Data Bridge Market Research. Global nanotechnology market-industry trends and forecast to 2030. March 2023. 350. [cited 2023 May 14].
  • Perkins R Here’s a Way To Produce Nanomaterials On a Larger Scale. University of Southern California news. February 24, 2016. [cited 2023 May 10].
  • Petel BE, Van Allsburg KM, Baddour FG. Cost‐responsive optimization of nickel nanoparticle synthesis. Adv Sustainable Syst. 2023;2300030. doi: 10.1002/adsu.202300030
  • Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef Univ J Basic Appl Sci. 2020;9(1):1–10. doi: 10.1186/s43088-020-00085-5.
  • Mordor Intelligence Research & Advisory. Nanomaterials Market Size & Share Analysis - Growth Trends & Forecasts (2023 - 2028). Mordor Intelligence. 2023 [cited 2023 Sept 23]. Available from: https://www.mordorintelligence.com/industry-reports/nanomaterials-market
  • Wilkinson JL, Boxall AB, Kolpin DW, et al. Pharmaceutical pollution of the world’s rivers. Proc Nat Acad Sci. 2022;119(8):e2113947119. doi: 10.1073/pnas.2113947119.
  • UN World Water Development Report. UNESCO. Accessed on 30 April 2023. [cited 2023 May 10]. Available from: https://www.unesco.org/reports/wwdr/2023/en
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • Larsson DJ, Flach CF. Antibiotic resistance in the environment. Nature Rev Microbiol. 2022;20(5):257–269. doi: 10.1038/s41579-021-00649-x.
  • Malik S, Dhasmana A, Preetam S, et al. Exploring microbial-based green nanobiotechnology for wastewater remediation: a sustainable strategy. Nanomaterials. 2022;12(23):4187. doi: 10.3390/nano12234187.
  • Neha R, Adithya S, Jayaraman RS, et al. Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: a critical review on emerging trends. Chemosphere. 2021;272:129852. doi: 10.1016/j.chemosphere.2021.129852.
  • Poornima S, Manikandan S, Karthik V, et al. Emerging nanotechnology based advanced techniques for wastewater treatment. Chemosphere. 2022;303:135050. doi: 10.1016/j.chemosphere.2022.135050.
  • Jain K, Patel AS, Pardhi VP, et al. Nanotechnology in wastewatermanagement: a new paradigm towards wastewater treatment. Molecules. 2021;26:1797. doi: 10.3390/molecules26061797.
  • Ying S, Guan Z, Ofoegbu PC, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336. doi: 10.1016/j.eti.2022.102336.
  • Gautam A, Sharma P, Ashokhan S, et al. Magnesium oxide nanoparticles improved vegetative growth and enhanced productivity, biochemical potency and storage stability of harvested mustard seeds. Environ Res. 2023;29:116023. doi: 10.1016/j.envres.2023.116023.
  • Grimaldi F, Pucciarelli M, Gavriilidis A, et al. Anticipatory life cycle assessment of gold nanoparticles production: comparison of milli-continuous flow and batch synthesis. J Clean Prod. 2020;269:122335. doi: 10.1016/j.jclepro.2020.122335.
  • Ross A, Muñoz M, Rotstein BH, et al. A low cost and open access system for rapid synthesis of large volumes of gold and silver nanoparticles. Sci Rep. 2021;11(1):1–10. doi: 10.1038/s41598-021-84896-1.
  • Swisher JH, Jibril L, Petrosko SH, et al. Nanoreactors for particle synthesis. Nature Rev Mater. 2022;7(6):428–448. doi: 10.1038/s41578-021-00402-z.