971
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biocontrol rhizobacteria enhances growth and yield of wheat (Triticum aestivum) under field conditions against Fusarium oxysporum

, , ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2260923 | Received 22 Oct 2022, Accepted 12 Jan 2023, Published online: 04 Oct 2023

References

  • Wang X, Ji C, Song X, et al. Biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown wheat. Bio Med Res Int. 2021;2021:1–14. doi: 10.1155/2021/8835275
  • Azeem S, Agha SI, Jamil N, et al. Characterization and survival of broad-spectrum biocontrol agents against phytopathogenic fungi. Revista Argentina de Microbiología. 2022;54(3):233–242. doi: 10.1016/j.ram.2021.10.005
  • Nazarov PA, Baleev DN, Ivanova MI, et al. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae. 2020;12(3):46. doi: 10.32607/actanaturae.11026
  • Bhagat S, Bolton B, Romano R. The promise and peril of corporate governance indices. Colum L Rev. 2008;108:1803. doi: 10.2139/ssrn.1019921
  • Yi Y, Luan P, Liu S, et al. Efficacy of Bacillus subtilis XZ18-3 as a biocontrol agent against rhizoctonia cerealis on wheat. Agriculture. 2022;12(2):258. doi: 10.3390/agriculture12020258
  • Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 2017;121:102–117. doi: 10.1016/j.apsoil.2017.09.030
  • Palazzini J, Roncallo P, Cantoro R, et al. Biocontrol of Fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins (Basel). 2018;10(2):88. doi: 10.3390/toxins10020088
  • Agha SI, Jahan N, Azeem S, et al. Research article characterization of broad-spectrum biocontrol efficacy of Bacillus velezensis against Fusarium oxysporum in triticum aestivum L. Not Bot Horti Agrobo Cluj-Napoca. 2022;50(1):12590–12590. doi: 10.15835/nbha50112590
  • Jangir M, Sharma S, Sharma S. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in solanum lycopersicum. Biol Control. 2019;138:104069. doi: 10.1016/j.biocontrol.2019.104069
  • Parikh L, Eskelson M, Adesemoye A. Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Arch Phytopathol Plant Prot. 2018;51(3–4):156–169. doi: 10.1080/03235408.2018.1441098
  • Khalil MMR, Fierro-Coronado RA, Peñuelas-Rubio O, et al. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi J Biol Sci. 2021;28(12):7460–7471. doi: 10.1016/j.sjbs.2021.08.043
  • Ramzan M, Tabassum B, Nasir IA, et al. Identification and application of biocontrol agents against cotton leaf curl virus disease in gossypium hirsutum under greenhouse conditions. Biotechnol Biotechnol Equip. 2016;30(3):469–478. doi: 10.1080/13102818.2016.1148634
  • Awais M, Tariq M, Ali Q, et al. Isolation, characterization and association among phosphate solubilizing bacteria from sugarcane rhizosphere. Cytol Genet. 2019;53(1):86–95. doi: 10.3103/S0095452719010031
  • Haider E, Khan MA, Atiq M, et al. Phytoextracts as management tool against fungal diseases of vegetables. Int J Biosci. 2020;16:303–314.
  • Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170(1):265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x
  • Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl environ microbiol. 2002;68(8):3795–3801. doi: 10.1128/AEM.68.8.3795-3801.2002
  • Schwyn B, Neilands J. Siderophores from agronomically important species of the rhizobiacae. Comments Agric Food Chem. 1987;1:95–114.
  • Lorck H. Production of hydrocyanic acid by bacteria. Physiol Plant. 1948;1(2):142–146. doi: 10.1111/j.1399-3054.1948.tb07118.x
  • Kumar RS, Ayyadurai N, Pandiaraja P, et al. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad‐spectrum antifungal activity and biofertilizing traits. J Appl Microbiol. 2005;98(1):145–154. doi: 10.1111/j.1365-2672.2004.02435.x
  • Hussain AA, Abdel-Salam MS, Abo-Ghalia HH, et al. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment. J Genet Eng Biotechnol. 2017;15(1):77–85. doi: 10.1016/j.jgeb.2017.02.007
  • Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int j biol macromol. 2016;86:656–669. doi: 10.1016/j.ijbiomac.2015.10.090
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428. doi: 10.1021/ac60147a030
  • Fahsi N, Mahdi I, Mesfioui A, et al. Plant growth-promoting rhizobacteria isolated from the jujube (ziziphus lotus) plant enhance wheat growth, zn uptake, and heavy metal tolerance. Agriculture. 2021;11(4):316. doi: 10.3390/agriculture11040316
  • Chen X, Huang H, Zhang S, et al. Bacillus velezensis WZ-37, a New broad-spectrum biocontrol strain, promotes the growth of tomato seedlings. Agriculture. 2021;11(7):581. doi: 10.3390/agriculture11070581
  • Islam S, Akanda AM, Prova A, et al. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol. 2016;6:1360. doi: 10.3389/fmicb.2015.01360
  • Dyer P, Ingram D. An improved test for evaluating the pathogenicity of isolates of Fusarium solani f. sp. pisi on pea. Ann Appl Biol. 1990;117(2):469–472. doi: 10.1111/j.1744-7348.1990.tb04234.x
  • Hoagland R. The water culture methods for growing plants without soil. Cal Agric Exp St Circ. 1950;347:1–32.
  • Einloft TC, Hartke S, de Oliveira PB, et al. Selection of rhizobacteria for biocontrol of Fusarium verticillioides on non-rhizospheric soil and maize seedlings roots. Eur J Plant Pathol. 2021;160(3):503–518. doi: 10.1007/s10658-021-02259-y
  • Palazzini J, Alberione E, Torres A, et al. Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biol Control. 2016;94:56–61. doi: 10.1016/j.biocontrol.2015.12.009
  • Barik SR, Pandit E, Sanghamitra P, et al. Unraveling the genomic regions controlling the seed vigour index, root growth parameters and germination per cent in rice. PLoS One. 2022;17(7):e0267303. doi: 10.1371/journal.pone.0267303
  • Bebber DP, Gurr SJ. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet Biol. 2015;74:62–64. doi: 10.1016/j.fgb.2014.10.012
  • Hydrick A. Agricultural emergencies: factors and impacts in the spread of transboundary diseases in, and adjacent to, Agriculture. In: Global health security. Springer International Publishing; 2020. pp. 13–31. doi:10.1007/978-3-030-23491-1_2
  • Kamilova F, Leveau JH, Lugtenberg B. Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol. 2007;9(6):1597–1603. doi: 10.1111/j.1462-2920.2007.01263.x
  • Bektas I, Kusek M. Biological control of onion basal rot disease using phosphate solubilising rhizobacteria. Biocontrol Sci Technol. 2021;31(2):190–205. doi: 10.1080/09583157.2020.1839381
  • Senthilkumar M, Amaresan N, Sankaranarayanan A. Isolation of bacteria with biocontrol activity against phytopathogens: dual plate assay. In: Plant-microbe interactions. Springer US; 2021. pp. 167–169. doi:10.1007/978-1-0716-1080-0_44
  • Katiyar D, Hemantaranjan A, Singh B. Application of plant growth promoting rhizobacteria in promising Agriculture: an appraisal. J Plant Physiol Pathol. 2017;5(4):2. doi: 10.4172/2329-955X.1000168
  • Yuttavanichakul W, Lawongsa P, Wongkaew S, et al. Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control. 2012;63(2):87–97. doi: 10.1016/j.biocontrol.2012.06.008
  • Ali S, Hameed S, Shahid M, et al. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res. 2020;232:126389. doi: 10.1016/j.micres.2019.126389
  • Xia A, Xia Y, Farooq MA, et al. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem. 2020;151:640–649. doi: 10.1016/j.plaphy.2020.04.016
  • Zaim S, Belabid L, Bayaa B, et al. Biological control of chickpea Fusarium wilts using rhizobacteria “PGPR. In: Microbial-mediated induced systemic resistance in plants. Springer; 2016. pp. 147–162. doi:10.1007/978-981-10-0388-2_10
  • Nandi M, Selin C, Brawerman G, et al. Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control. 2017;108:47–54. doi: 10.1016/j.biocontrol.2017.02.008
  • Banani H, Spadaro D, Zhang D, et al. Biocontrol activity of an alkaline serine protease from aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. Int J Food Microbiol. 2014;182:1–8. doi: 10.1016/j.ijfoodmicro.2014.05.001
  • Novinscak A, Filion M. Long term comparison of talc-and peat-based phytobeneficial Pseudomonas fluorescens and Pseudomonas synxantha bioformulations for promoting plant growth. Front Sustain Food Syst. 2020;4:602911. doi: 10.3389/fsufs.2020.602911
  • Tamreihao K, Ningthoujam DS, Nimaichand S, et al. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res. 2016;192:260–270. doi: 10.1016/j.micres.2016.08.005
  • Mittal V, Singh O, Nayyar H, et al. Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem. 2008;40(3):718–727. doi: 10.1016/j.soilbio.2007.10.008
  • Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J, et al. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma. 2017;254(6):2201–2213. doi: 10.1007/s00709-017-1109-9
  • Mahdi I, Fahsi N, Hafidi M, et al. Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis QA1 and Enterobacter asburiae QF11 isolated from chenopodium quinoa willd. Microorganisms. 2020;8(6):948. doi: 10.3390/microorganisms8060948
  • Fallahzadeh-Mamaghani V, Golchin S, Shirzad A, et al. Characterization of Paenibacillus polymixa N179 as a robust and multifunctional biocontrol agent. Biol Control. 2021;154:104505. doi: 10.1016/j.biocontrol.2020.104505
  • Ramakrishna A, Desai S, Uma Devi GT, et al. Biocontrol activity and PGPR ability of different isolates of Pseudomonas and Bacillus on tomato. Int J Pure App Biosci. 2018;6(6):728–735. doi: 10.18782/2320-7051.6943
  • Maheshwari DK. Bacteria in agrobiology: plant growth responses. Springer Science & Business Media: 2011. doi: 10.1007/978-3-642-20332-9
  • Zhao Y, Selvaraj JN, Xing F, et al. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS One. 2014;9(3):e92486. doi: 10.1371/journal.pone.0092486