1,061
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance of Malaysian kenaf Hibiscus cannabinus callus biomass and exopolysaccharide production in a novel liquid culture

, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2262203 | Received 14 Apr 2023, Accepted 15 Sep 2023, Published online: 04 Oct 2023

References

  • Mohd H, Arifin A, Nasima J, et al. Journey of kenaf in Malaysia: a review. Sci Res Essays. 2014;9(11):458–17. doi: 10.5897/SRE12.471
  • Kamal IB. Kenaf for biocomposite: an overview. J Sci Technol. 2014;6(2):41–66.
  • Norhisham DA, Saad NM, Ahmad Usuldin SR, et al. Bioactivities of kenaf biomass extracts: a review. Processes. 2023;11(4):1178. doi: 10.3390/pr11041178
  • Ab Razak AF, Abidin MZ, OsmanMS, et al. The Effect of Storage Conditions on Pasteurised Kenaf Seeds Milk Mh8234 Physiochemical Properties. Math. Stat. Eng. Appl. 2022;71(3):1685–1698.
  • Ayadi R, Hanana M, Mzid R, et al. Hibiscus cannabinus L. – « kenaf »: a review paper. J Nat Fibers. 2017;14(4):1–19. doi: 10.1080/15440478.2016.1240639
  • Adnan M, Oh KK, Azad MOK, et al. Kenaf (Hibiscus cannabinus L.) leaves and seed as a potential source of the bioactive compounds: effects of various extraction solvents on biological properties. Life. 2020;10(10):1–16. doi: 10.3390/life10100223
  • Arulrajah B, Qoms MS, Muhialdin BJ, et al. Antibacterial and antifungal activity of kenaf seed peptides and their effect on microbiological safety and physicochemical properties of some food models. Food Control. 2022;140(December 2021):109119. doi: 10.1016/j.foodcont.2022.109119
  • Birhanie ZM, Xiao A, Yang D, et al. Polysaccharides, total phenolic, and flavonoid content from different kenaf (Hibiscus cannabinus l.) genotypes and their antioxidants and antibacterial properties. Plants. 2021;10(9):1900. doi: 10.3390/plants10091900
  • Kobaisy M, Tellez MR, Webber CL, et al. Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. J Agric Food Chem. 2001;49(8):3768–3771. doi: 10.1021/jf0101455
  • Sim YY, Tan CP, Cheong LZ, et al. Hibiscus cannabinus L. leaf and seed in cosmetic formulation: an integrated approach as antioxidant and melanogenesis inhibitor. Sustainable Mater Technol. 2022;33(1):e00457. doi: 10.1016/j.susmat.2022.e00457
  • Hanumegowda S, Srinivasa C, Shivaiah A, et al. Protein extract of kenaf seed exhibits anticoagulant, antiplatelet and antioxidant activities. Asian Pac J Tropical Biomedi. 2022;12(2):47–58. doi: 10.4103/2221-1691.335693
  • Ryu J, Kwon S-J, Ahn J-W, et al. Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.). J Plant Biotechnol. 2017;44(2):191–202. doi: 10.5010/JPB.2017.44.2.191
  • Zaharuddin ND, Hanafi MA, Chay SY, et al. Multifunctional hydrolysates from kenaf (Hibiscus cannabinus L.) seed protein with high antihypertensive activity in vitro and in vivo. J Food Meas Charact. 2020;15(1):652–663. doi: 10.1007/s11694-020-00663-2
  • Sim YY, Nyam KL. Hibiscus cannabinus L. (kenaf) studies: nutritional composition, phytochemistry, pharmacology, and potential applications. Food Chem. 2021;344(1):128582. doi: 10.1016/j.foodchem.2020.128582
  • Murtazina A, Ruiz Alcala G, Jimenez-Martinez Y, et al. Anti-cancerous potential of polysaccharides derived from wheat cell culture. Pharmaceutics. 2022;14(5. doi: 10.3390/pharmaceutics14051100
  • Winson KWS, Chew BL, Sathasivam K, et al. The establishment of callus and cell suspension cultures of hylocereus costaricensis for the production of betalain pigments with antioxidant potential. Ind Crops Prod. 2020;155(4):112750. doi: 10.1016/j.indcrop.2020.112750
  • Rahmann G, Azim K, Brányiková I, et al. Innovative, sustainable, and circular agricultural systems for the future. Org Agr. 2021;11(2):179–185. doi: 10.1007/s13165-021-00356-0
  • Wong YH, Tan WY, Tan CP, et al. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines. Asian Pac. J. Trop. Biomed. 2014;4:S510–S515.
  • Chawla HS. Introduction to plant Biotechnology. Enfield, NH, USA: Science Publisher, Inc; 2002.
  • Mustafa NR, de Winter W, van Iren F, et al. Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc. 2011;6(6):715–742. doi: 10.1038/nprot.2010.144
  • Sims IM, Middleton K, Lane AG, et al. Characterisation of extracellular polysaccharides from suspension cultures of members of the poaceae. Planta. 2000;210(2):261–268. doi: 10.1007/PL00008133
  • Ogita S. Callus and cell suspension culture of bamboo plant, phyllostachys nigra. Plant Biotechnol. 2005;22(2):119–125. doi: 10.5511/plantbiotechnology.22.119
  • Mamdouh D, Smetanska I. Optimization of callus and cell suspension cultures of lycium schweinfurthii for improved production of phenolics, flavonoids, and antioxidant activity. Horticulturae. 2022;8(5). doi: 10.3390/horticulturae8050394
  • Ghafar SAA, Ismail M, Saiful Yazan L, et al. Cytotoxic activity of kenaf seed oils from supercritical carbon dioxide fluid extraction towards human colorectal cancer (HT29) cell lines. evidence-based complementary and alternative medicine, 2013. Evid Based Complement Alternat Med. 2013;2013:1–8. doi: 10.1155/2013/549705
  • Odahara M, Horii Y, Kimura M, et al. Efficient callus induction and a temperature condition for flowering and seed setting in kenaf Hibiscus cannabinus. Plant Biotechnol. 2020;37(1):9–14. doi: 10.5511/plantbiotechnology.19.1120a
  • Ibrahim AM, Kayat FB, Susanto D, et al. Callus induction from ovules of kenaf (Hibiscus cannabinus L.). Biotechnology. 2015;14(2):72–78. doi: 10.3923/biotech.2015.72.78
  • Kumar SS, Manoj P, Giridhar P. Optimization of an in vitro protocol for the production of ascorbic acid in Hibiscus cannabinus leaf-derived normal root cultures. EurAsian J BioSci. 2015;9(5):38–45.
  • Klaus A, Wan-Mohtar WAAQI. Cultivation strategies of edible and medicinal mushrooms. In: Dhull SB, et al., editors. Wild mushrooms. Boca Raton: CRC Press; 2022. pp. 23–65. doi: 10.1201/9781003152583-3.
  • Wan-Mohtar WAAQI, Taufek NM, Yerima G, et al. Effect of bioreactor-grown biomass from Ganoderma lucidum mycelium on growth performance and physiological response of red hybrid tilapia (Oreochromis sp.) for sustainable aquaculture. Org Agr. 2021;11(2):327–335. doi: 10.1007/s13165-020-00303-5
  • Balamurugan JP, Supramani S, Ahmad Usuldin SR, et al. Efficient biomass-endopolysaccharide production from an identified wild-Serbian Ganoderma applanatum strain BGS6Ap mycelium in a controlled submerged fermentation. Biocatal Agric Biotechnol. 2021;37(2020):102166. doi: 10.1016/j.bcab.2021.102166
  • Usuldin SRA, Wan-Mohtar WAAQI, Ilham Z, et al. In vivo toxicity of bioreactor-grown biomass and exopolysaccharides from Malaysian tiger milk mushroom mycelium for potential future health applications. Sci Rep. 2021;11(1):1–13. doi: 10.1038/s41598-021-02486-7
  • Günter EA, Popeiko OV, Ovodov YS. Isolation of polysaccharides from the callus culture of Lemna minor L. Appl Biochem Microbiol. 2004;40(1):80–83. doi: 10.1023/B:ABIM.0000010359.68528.fe
  • Usuldin SRA, Ilham Z, Jamaludin AA, et al. Lignosus rhinocerus in a high-scale stirred-tank bioreactor and its potential lipid as bioenergy. Energies. 2023;16(5):16. doi: 10.3390/en16052330
  • Abdullah NR, Sharif F, Hafizah Azizan N, et al. Pellet diameter of Ganoderma lucidum in a repeated-batch fermentation for the trio total production of biomass-exopolysaccharide-endopolysaccharide and its anti-oral cancer beta-glucan response. Microbiology. 2020;6(4):379–400. doi: 10.3934/microbiol.2020023
  • Usuldin SRA, Mahmud N, Ilham Z, et al. In - depth spectral characterization of antioxidative (1, 3) - β - D - glucan from the mycelium of an identified tiger milk mushroom lignosus rhinocerus strain ABI in a stirred - tank bioreactor. Biocatal Agric Biotechnol. 2020;23:23. doi: 10.1016/j.bcab.2019.101455
  • Shaikh S, Shriram V, Vinay Kumar TKA, et al. Establishment of callus and cell suspension cultures of Helicteres isora L. Res Plant Biol. 2018;8:01–07. doi: 10.25081/ripb.2018.v8.3366
  • Honda Y, Itano M, Sugimura Y. Biosynthesis of extracellular polysaccharides by tuberose callus. J Plant Physiol. 1997;150(1–2):46–52. doi: 10.1016/S0176-1617(97)80179-4
  • Kim M-U, Cho Y-J, Lee S-Y. Production and optimization of extracellular polysaccharide by suspension cultivation of Aloe vera L. callus. 2012;16(3):233–241.
  • Webster JM, Oxley D, Pettolino FA, et al. Characterisation of secreted polysaccharides and (glyco)proteins from suspension cultures of pyrus communis. Phytochemistry. 2008;69(4):873–881. doi: 10.1016/j.phytochem.2007.10.009
  • Pavia DL, Lampman GM, Kriz GS, Introduction to spectroscopy. 2001, United States of America: Thomson Brooks/Cole
  • Hong T, Yin, JY, Nie, SP, Xie, MY. Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chemistry: X. 2021;12(November):100168. doi: 10.1016/j.fochx.2021.100168
  • Wang YX, Xin Y, Yin J-Y, et al. Revealing the architecture and solution properties of polysaccharide fractions from macrolepiota albuminosa (Berk.) Pegler. Food Chem. 2022;368(August 2021):130772. doi: 10.1016/j.foodchem.2021.130772
  • Buddana SK, Venkata Naga Varanasi Y, Reddy Shetty P. Fibrinolytic, anti-inflammatory and anti-microbial properties of α-(1-3)-glucans produced from streptococcus mutans (MTCC 497). Carbohydr Polym. 2015;115:152–159. doi: 10.1016/j.carbpol.2014.08.083
  • Huang X, Ma J, Wei L, et al. An antioxidant α-glucan from Cladina rangiferina (L.) Nyl. And its protective effect on alveolar epithelial cells from Pb2+-induced oxidative damage. Int j biol macromol. 2018;112:101–109. doi: 10.1016/j.ijbiomac.2018.01.154
  • Jafari Hajati R, Payamnoor V, Ghasemi Bezdi K, et al. Optimization of callus induction and cell suspension culture of Betula pendula Roth for improved production of betulin, betulinic acid, and antioxidant activity. Vitro Cell Deve Biol - Plant. 2016;52(4):400–407. doi: 10.1007/s11627-016-9773-6
  • Meftahizade H, Lotfi M, Moradkhani H. Optimization of micropropagation and establishment of cell suspension culture in Melissa officinalis L. Afr J Biotechnol. 2010;9(28):4314–4321.
  • Guo MQ, Hu X, Wang C, et al. Polysaccharides: structure and solubility. In: Solubility of polysaccharides. Xu Z editor. IntechOpen; 2017. 10.5772/intechopen.71570
  • Jayawardena B, Pandithavidana DR, Sameera W. Polysaccharides in solution: experimental and computational studies. In: Solubility of Polysaccharides. Xu Z, editor, 2017.
  • Vayabari DAG, Ilham Z, Md Saad N, et al. Cultivation strategies of kenaf (Hibiscus cannabinus L.) as a future approach in Malaysian agriculture industry. Horticulturae. 2023;9(8. doi: 10.3390/horticulturae9080925
  • Eibl R, Eibl D. Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev. 2008;7(3):593–598. doi: 10.1007/s11101-007-9083-z
  • Wan-Mohtar WAAQI, Ilham Z, Rowan NJ. Editorial: “the value of microbial bioreactors to meet challenges in the circular bioeconomy”. Front Bioeng Biotechnol. 2023;11:1181822. doi: 10.3389/fbioe.2023.1181822
  • Chan HY, Abdul Halim-Lim S, Tan TB, et al. Exploring the drivers and the interventions towards sustainable food security in the food supply chain. Sustainability. 2020;12(19. doi: 10.3390/su12197890