1,396
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy

, , , , , , , , & show all
Article: 2269328 | Received 24 Jun 2023, Accepted 03 Oct 2023, Published online: 18 Oct 2023

References

  • Amponsah NY, Troldborg M, Kington B, et al. Greenhouse gas emissions from renewable energy sources: a review of lifecycle considerations. Renew Sust Energ Rev. 2014;39:461–31. doi: 10.1016/j.rser.2014.07.087
  • Karan H, Funk C, Grabert M, et al. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 2019;24(3):237–249. doi: 10.1016/j.tplants.2018.11.010
  • Martinez-Hernandez E, Campbell G, Sadhukhan J. Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des. 2013;91(8):1418–1426. doi: 10.1016/j.cherd.2013.02.025
  • Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. Eng Microbiol. 2021;1:100005. doi: 10.1016/j.engmic.2021.100005
  • Santos VEN, Magrini A. Biorefining and industrial symbiosis: a proposal for regional development in Brazil. J Clean Prod. 2018;177:19–33. doi: 10.1016/j.jclepro.2017.12.107
  • Amin L, Hashim H, Mahadi Z, et al. Attitudes towards biodiesel. Biotechnol Biofuels. 2017;10(1):219. doi: 10.1186/s13068-017-0908-8
  • Moore RH, Thornhill KL, Weinzierl B, et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature. 2017;543(7645):411–415. doi: 10.1038/nature21420
  • Vendamme R, Behaghel de Bueren J, Gracia-Vitoria J, et al. Aldehyde-assisted lignocellulose fractionation provides unique lignin oligomers for the design of tunable polyurethane bioresins. Biomacromolecules. 2020;21(10):4135–4148. doi: 10.1021/acs.biomac.0c00927
  • Raj T, Chandrasekhar K, Naresh Kumar A, et al. Recent advances in commercial biorefineries for lignocellulosic ethanol production: current status, challenges and future perspectives. Bioresour Technol. 2022;344:126292. doi: 10.1016/j.biortech.2021.126292
  • Silveira MHL, Morais ARC, da Costa Lopes AM, et al. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSuschem. 2015;8(20):3366 3390. doi: 10.1002/cssc.201500282
  • Kumar K, Correia MAS, Pires VMR, et al. Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int j biol macromol. 2018;117:890–901. doi: 10.1016/j.ijbiomac.2018.06.003
  • Smit AT, van Zomeren A, Dussan K, et al. Biomass pre-extraction as a versatile strategy to improve biorefinery feedstock flexibility, sugar yields, and lignin purity.ACS sustain. 2022. ACS Sustainable Chem Eng. 2022;10(18):6012–6022. doi: 10.1021/acssuschemeng.2c00838
  • Asemoloye MD, Ahmad R, Jonathan SG. Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ Pollut. 2018;235:55–64. doi: 10.1016/j.envpol.2017.12.042
  • Brandt BA, García-Aparicio MDP, Görgens JF, et al. Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. Biotechnol Biofuels. 2021;14(1):173. doi: 10.1186/s13068-021-02021-w
  • Zhang M-M, Xiong L, Tang Y-J, et al. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. Biotechnol Biofuels. 2019;12(1):116. doi: 10.1186/s13068-019-1456-1
  • Ko JK, Lee JH, Jung JH, et al. Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production. Renew Sust Energ Rev. 2020;134:110390. doi: 10.1016/j.rser.2020.110390
  • Majidian P, Tabatabaei M, Zeinolabedini M, et al. Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev. 2018;82:3863–3885. doi: 10.1016/j.rser.2017.10.085
  • Spagnuolo M, Yaguchi A, Blenner M. Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol. 2019;57:73–81. doi: 10.1016/j.copbio.2019.02.011
  • Asemoloye MD, Marchisio MA. Synthetic Saccharomyces cerevisiae tolerate and degrade highly pollutant complex hydrocarbon mixture. Ecotoxicol Environ Saf. 2022;241:113768. doi: 10.1016/j.ecoenv.2022.113768
  • Rodrigues RC, Sene L, Matos GS, et al. Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol. 2006;53(1):53–59. doi: 10.1007/s00284-005-0242-4
  • Revuelta JL, Ledesma-Amaro R, Lozano-Martinez D, et al. Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol. 2017;44(4–5):659–665. doi: 10.1007/s10295-016-1842-7
  • Niehus X, Crutz-Le Coq AM, Sandoval G, et al. Engineering yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol Biofuels. 2018;11(1):11. doi: 10.1186/s13068-018-1010-6
  • Patinvoh RJ, Osadolor OA, Chandolias K, et al. Innovative pretreatment strategies for biogas production. Biores Technol. 2017;224:13–24. doi: 10.1016/j.biortech.2016.11.083
  • Zheng Y, Zhao J, Xu F, et al. Pretreatment of LCB for enhanced biogas production. Prog Energ Combust Sci. 2014;42(1):35–53. doi: 10.1016/j.pecs.2014.01.001
  • Titiladunayo IF, McDonald AG, Fapetu OP. Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valorization. 2012;3(3):311–318. doi: 10.1007/s12649-012-9118-6
  • Huang J, Fu S, Gan L. Lignin Chemistry and applications. Elsevier; 2019.
  • Rabemanolontsoa H, Ayada S, Saka S. Quantitative method applicable for various biomass species to determine their chemical composition. Biomass Bioenergy. 2011;35(11):4630–4635. doi: 10.1016/j.biombioe.2011.09.014
  • Komolwanich T, Tatijarern P, Prasertwasu S, et al. Comparative potentiality of Kans grass (saccharumspontaneum) and giant reed (arundodonax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellul. 2014;21(3):1327–1340. doi: 10.1007/s10570-013-0161-7
  • Scordia D, Cosentino SL, Jeffries TW. Second generation bioethanol production from Saccharum spontaneum L. ssp. Aegyptiacum (Willd.) hack. Biores Technol. 2010;101(14):5358–5365. doi: 10.1016/j.biortech.2010.02.036
  • Zhao X, Qi F, Liu D. Nanotechnology production and biofuel for Bioenergy. M. Rai, S. S. D S Eds. Springer; 2017. 10.1007/978-3-319-45459-7_13
  • Dhyani V, Bhaskar T. Chapter 9—pyrolysis of biomass. In: Pandey A, Larroche C, Dussap C-G, Gnansounou E, Khanal SK Ricke S, editors. Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Second Edition) ed. Vol. 2019. Academic Press. pp. 217–244. 10.1016/B978-0-12-816856-1.00009-9
  • Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006;22(1):53–78. doi: 10.1146/annurev.cellbio.22.022206.160206
  • Davison BH, Parks J, Davis MF, et al. Plant cell walls: basics of structure, Chemistry, accessibility and the Influence on conversion. In: Wyman CE, editor. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons, Ltd; 2013. pp. 23–38. DOI:10.1002/9780470975831.ch3.
  • Li C, Zhao X, Wang A, et al. Catalytic Transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015;115(21):11559–11624. doi: 10.1021/acs.chemrev.5b00155
  • Sharma HK, Xu C, Qin W. Biological pretreatment of LCB for Biofuels and bioproducts: an overview. Waste Biomass Valorization. 2019;10(2):235–251. doi: 10.1007/s12649-017-0059-y
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44(22):3358–3393. doi: 10.1002/anie.200460587
  • Ali N, Zhang Q, Liu ZY, et al. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl Microbiol Biotechnol. 2020;104(2):455–473. doi: 10.1007/s00253-019-10158-w
  • Hassan SS, Williams GA, Jaiswal AK. Lignocellulosic biorefineries in Europe: Current state and prospects. Trends Biotechnol. 2019;37(3):231–234. doi: 10.1016/j.tibtech.2018.07.002
  • Wang F, Ouyang D, Zhou Z, et al. LCB as sustainable feedstock and materials for power generation and energy storage. J Energy Chem. 2021;57:247–280. doi: 10.1016/j.jechem.2020.08.060
  • Isikgora FH, Becer CR. LCB: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem. 2010;1(1):13. doi: 10.1039/c000660m
  • Rowell R, Pettersen R, Tshabalala M. Handbook of wood Chemistry and wood composites. Handbook Of Wood Chemistry And Wood Composites, Second Edition. 2012. doi: 10.1201/b12487-5
  • Zakzeski J, Bruijnincx PCA, Jongerius AL, et al. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110(6):3552–3599. doi: 10.1021/cr900354u
  • Mielenz JR. Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol. 2001;4(3):324–329. doi: 10.1016/S1369-5274(00)00211-3
  • Banu J, Preethi Kavitha S, Tyagi VK, et al. LCB based biorefinery: a successful platform towards circular bioeconomy. Fuel. 2021;302(May):121086. doi: 10.1016/j.fuel.2021.121086
  • Chandra RP, Bura R, Mabee WE, et al. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol. 2007;108:67–93.
  • Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005;23(1):22 27. doi: 10.1016/j.tibtech.2004.11.002
  • Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 2015;5(4):337 353. doi: 10.1007/s13205-014-0246-5
  • Buranov AU, Mazza G. Lignin in straw of herbaceous crops. Ind Crops Prod. 2008b;28(3):237–259. doi: 10.1016/j.indcrop.2008.03.008
  • Yuan Z, Long J, Wang T, et al. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Convers Manag. 2015;101:481–488. doi: 10.1016/j.enconman.2015.05.057
  • Satpathy SK, Tabil LG, Meda V, et al. Torrefaction of wheat and barley straw after microwave heating. Fuel. 2014;124:269–278. doi: 10.1016/j.fuel.2014.01.102
  • Merali Z, Marjamaa K, Käsper A, et al. Chemical characterization of hydrothermally pretreated and enzyme-digested wheat straw: an evaluation of recalcitrance. Food Chem. 2016;198:132–140. doi: 10.1016/j.foodchem.2015.07.108
  • Cheng L, Adhikari S, Wang Z, et al. Characterization of bamboo species at different ages and bio-oil production. J Anal Appl Pyrolysis 2015b. 2015;116:215–222. doi: https://doi.org/10.1016/j.jaap.2015.09.008
  • Buranov AU, Mazza G. Lignin in straw of herbaceous crops. Ind Crops Prod. 2008a;28(3):237–259. doi: 10.1016/j.indcrop.2008.03.008
  • Si S, Chen Y, Fan C, et al. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich miscanthus species under various alkali and acid pretreatments. Biores Technol. 2015;183:248–254. doi: 10.1016/j.biortech.2015.02.031
  • Cheng L, Adhikari S, Wang Z, et al. Characterization of bamboo species at different ages and bio-oil production. J Anal Appl Pyrolysis 2015a. 2015;116:215–222. doi: https://doi.org/10.1016/j.jaap.2015.09.008
  • Bledzki AK, Mamun AA, Volk J. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos Part A Appl Sci Manuf. 2010;41(4):480–488. doi: 10.1016/j.compositesa.2009.12.004
  • Nanda S, Reddy SN, Vo DSB, et al. Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Science & Engineering. 2018;6(5):448–459. doi: 10.1002/ese3.219
  • Muh E, Tabet F, Amara S. Biomass conversion to fuels and value-added chemicals: a comprehensive review of the thermochemical processes. Curr Altern Energy. 2021;4(1):3–25. doi: 10.2174/2405463103666191022121648
  • Dahmen N, Abeln J, Eberhard M, et al. The bioliq process for producing synthetic transportation fuels. WIREs Energy Environ. 2017;6(3):e236. doi: 10.1002/wene.236
  • Antonetti C, Gori S, Licursi D, et al. One-Pot Alcoholysis of the lignocellulosic eucalyptus nitens biomass to n-butyl levulinate, a valuable additive for diesel motor fuel. Catalysts. 2020;10(5):509. doi: 10.3390/catal10050509
  • Adeleye AT, Odoh CK, Enudi OC, et al. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem. 2020;96:174–193. doi: 10.1016/j.procbio.2020.05.032
  • Jae J, Tompsett GA, Lin YC, et al. Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci. 2010;3(3):358–365. doi: 10.1039/B924621P
  • Carrillo-Nieves D, Ruiz HA, Aguilar CN, et al. Process alternatives for bioethanol production from mango stem bark residues. Biores Technol. 2017;239:430–436. doi: 10.1016/j.biortech.2017.04.131
  • Siebenhaller S, Kirchhoff J, Kirschhöfer F, et al. Integrated process for the enzymatic production of fatty acid sugar esters completely based on lignocellulosic substrates. Front Chem. 2018;6. doi: 10.3389/fchem.2018.00421. https://www.frontiersin.org/article/10.3389/fchem.2018.00421
  • Øverland M, Skrede A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture: yeast from lignocellulosic biomass as a feed in aquaculture. J Sci Food Agric. 2017;97(3):733–742. doi: 10.1002/jsfa.8007
  • Reshmy R, Philip E, Madhavan A, et al. Lignocellulose in future biorefineries: strategies for cost-effective production of biomaterials and bioenergy. Biores Technol. 2022;344:126241. doi: 10.1016/j.biortech.2021.126241
  • Feser J, Gupta A. Performance and emissions of drop-in aviation biofuels in a lab-scale gas turbine combustor. J Energy Resour Technol. 2021;143(4). doi: 10.1115/1.4048243
  • Zhou Z, Liu D, Zhao X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew Sust Energ Rev. 2021;146:111169. doi: 10.1016/j.rser.2021.111169
  • Ray MJ, Leak DJ, Spanu PD, et al. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy. 2010;34(8):1257–1262. doi: 10.1016/j.biombioe.2010.03.015
  • Singh T, Vaidya AA, Donaldson LA, et al. Improvement in the enzymatic hydrolysis of biofuel substrate by a combined thermochemical and fungal pretreatment. Wood Sci Technol. 2016;50(5):1003–1014. doi: 10.1007/s00226-016-0838-9
  • Huang J, Khan MT, Perecin D, et al. Sugarcane for bioethanol production: potential of bagasse in Chinese perspective. Renew Sust Energ Rev. 2020;133:110296. doi: 10.1016/j.rser.2020.110296
  • Food and Agriculture Organization of the United Nations. FAOSTAT statistical database. 2020. Retrieved 2022 May 17 https://www.fao.org/faostat/en/#data/QCL.
  • OECD/Food and Agriculture Organization of the United Nations. OECD-FAO agricultural outlook. Paris, France: OECD Publishing; 2015
  • Teoh YH, Yu KH, How HG, et al. Experimental investigation of performance, emission and combustion characteristics of a common-rail diesel engine fuelled with bioethanol as a fuel additive in coconut oil biodiesel blends. Energies. 2019;12(10):1954. doi: 10.3390/en12101954
  • Shekofteh M, Gundoshmian TM, Jahanbakhshi A, et al. Performance and emission characteristics of a diesel engine fueled with functionalized multi-wall carbon nanotubes (MWCNTs-OH) and diesel–biodiesel–bioethanol blends. Energy Rep. 2020;6:1438–1447. doi: 10.1016/j.egyr.2020.05.025
  • Niphadkar S, Bagade P, Ahmed S. Bioethanol production: insight into past, present and future perspectives. Biofuels. 2018;9(2):229–238. doi: 10.1080/17597269.2017.1334338
  • Tse TJ, Wiens DJ, Reaney MJT. Production of Bioethanol—A Review of Factors Affecting Ethanol Yield. Fermentation. 2021;7(4):268. doi: 10.3390/fermentation7040268
  • Sydney EB, Letti LAJ, Karp SG, et al. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresour Technol Rep. 2019;7:100234. doi: 10.1016/j.biteb.2019.100234
  • Boluk G, Koc AA. The implications of biofuel policy in Turkey. Int J Energy Econ Policy. 2013;3(4S):14–22.
  • Xia Q, Chen C, Yao Y, et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat Sustain. 2021;4(7):627–635. doi: https://doi.org/10.1038/s41893-021-00702-w
  • Bhatia SK, Gurav R, Choi TR, et al. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using ralstonia eutropha 5119. Biores Technol. 2019;271:306–315. doi: 10.1016/j.biortech.2018.09.122
  • Mostafa NA, Farag AA, Abo-Dief HM, et al. Production of biodegradable plastic from agricultural wastes. Arabian J Chem. 2018;11(4):546–553. doi: 10.1016/j.arabjc.2015.04.008
  • Fitzpatrick J, Kricka W, James TC, et al. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. J Appl Microbiol. 2014;117(1):96–108. doi: https://doi.org/10.1111/jam.12494
  • Su J, Qiu M, Shen F, et al. Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellul. 2018;25(1):17–22. doi: 10.1007/s10570-017-1603-4
  • Xu Y, Wang P, Xue S, et al. Green biorefinery—the ultra-high hydrolysis rate and behavior of populus tomentosa hemicellulose autohydrolysis under moderate subcritical water conditions. RSC Adv. 2020;10(32):18908–18917. doi: 10.1039/D0RA02350G
  • Soongprasit K, Sricharoenchaikul V, Atong D. Phenol-derived products from fast pyrolysis of organosolv lignin. Energy Rep. 2020;6:151–167. doi: 10.1016/j.egyr.2020.08.040
  • Ji XJ, Huang H, Nie ZK, et al. Fuels and chemicals from hemicellulose sugars. Adv Biochem Engin/Biotechnol. 2012;128:199–224.
  • Varanasi P, Singh P, Auer M, et al. Survey of renewable chemicals produced from LCB during ionic liquid pretreatment. Biotechnol Biofuels. 2013;6(1):14. doi: 10.1186/1754-6834-6-14
  • Mamaye M, Kiflie Z, Feleke S, et al. Valorization of Ethiopian sugarcane bagasse to assess its suitability for pulp and paper production. Sugar Tech. 2019;21(6):995–1002. doi: 10.1007/s12355-019-00724-x
  • Singh RS, Singh T, Pandey A. Chapter 1—microbial enzymes—an overview. In: Singh RS, Singhania RR, Pandey A Larroche C, editors. Advances in enzyme technology. Elsevier; 2019. pp. 1–40. DOI:10.1016/B978-0-444-64114-4.00001-7.
  • Mongkhonsiri G, Gani R, Malakul P, et al. Integration of the biorefinery concept for the development of sustainable processes for pulp and paper industry. Comput Chem Eng. 2018;119:70–84. doi: 10.1016/j.compchemeng.2018.07.019
  • Abid K, Jabri J, Yaich H, et al. In vitro study on the effects of exogenic fibrolytic enzymes produced from Trichoderma longibrachiatum on ruminal degradation of olive mill waste. Arch Anim Breed. 2022;65(1):79–88. doi: https://doi.org/10.5194/aab-65-79-2022
  • Jabri J, Ammar H, Abid K, et al. Effect of Exogenous fibrolytic enzymes Supplementation or functional feed additives on in vitro ruminal fermentation of chemically pre-treated sunflower heads. Agriculture. 2022;12(5):696. doi: 10.3390/agriculture12050696
  • Singh A, Bajar S, Devi A, et al. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresour Technol Rep. 2021;14:100652. doi: https://doi.org/10.1016/j.biteb.2021.100652
  • Singh P, Sulaiman O, Hashim R, et al. Using biomass residues from oil palm industry as a raw material for pulp and paper industry: potential benefits and threat to the environment. Environ Develop Sustainab. 2012;15(2):1–17. doi: 10.1007/s10668-012-9390-4
  • Yang H, Xie Y, Zheng X, et al. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process. Biores Technol. 2016;207:361–369. doi: 10.1016/j.biortech.2016.01.123
  • O’Dea RM, Pranda PA, Luo Y, et al. Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Sci Adv. 2022;8(3):eabj7523. doi: 10.1126/sciadv.abj7523
  • Zhu Y, Zhang J, Zhu L, et al. Minimize the xylitol production in Saccharomyces cerevisiae by balancing the xylose redox metabolic pathway. Front Bioeng Biotechnol. 2021;9. doi: 10.3389/fbioe.2021.639595. https://www.frontiersin.org/article/10.3389/fbioe.2021.639595
  • Gabhane J, Kumar S, Sarma AK. Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy. 2020;154:1304–1313. doi: 10.1016/j.renene.2020.03.035
  • Isikgor FH, Becer CR. LCB: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem. 2015;6(25):4497–4559. doi: 10.1039/C5PY00263J
  • Cebreiros F, Risso F, Cagno M, et al. Enhanced production of butanol and xylosaccharides from eucalyptus grandis wood using steam explosion in a semi-continuous pre-pilot reactor. Fuel. 2021;290:119818. doi: 10.1016/j.fuel.2020.119818
  • Zabihi S, Sharafi A, Motamedi H, et al. Environmentally friendly acetic acid/steam explosion/supercritical carbon dioxide system for the pre-treatment of wheat straw. Environ Sci Pollut Res. 2021;28(28):37867–37881. doi: 10.1007/s11356-021-13410-x
  • Martínez-Patiño JC, Ruiz E, Romero I, et al. Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production. Biores Technol. 2017;239:326–335. doi: 10.1016/j.biortech.2017.04.102
  • Noonari AA, Mahar RB, Sahito AR, et al. Effects of isolated fungal pretreatment on bio-methane production through the co-digestion of rice straw and buffalo dung. Energy. 2020;206:118107. doi: 10.1016/j.energy.2020.118107
  • Houfani AA, Anders N, Spiess AC, et al. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass Bioenergy. 2020;134:105481. doi: 10.1016/j.biombioe.2020.105481
  • Gao W, Li Z, Liu T, et al. Production of high-concentration fermentable sugars from lignocellulosic biomass by using high solids fed-batch enzymatic hydrolysis. Biochem Eng J. 2021;176:108186. doi: 10.1016/j.bej.2021.108186
  • Mazzoli R, Olson DG. Chapter three - Clostridium thermocellum: a microbial platform for high-value chemical production from lignocellulose. In: editors Gadd GM Sariaslani S. Advances in applied microbiology. Academic Press; 2020Vol. 113pp. 111–161. doi:10.1016/bs.aambs.2020.07.004
  • Thakur A, Sharma K, Mutreja R, et al. Thermostable enzymes from Clostridium thermocellum. In: Thatoi H, Mohapatra S Das SK, editors. Bioprospecting of enzymes in industry, Healthcare and sustainable environment. Springer; 2021. pp. 251–267. DOI:10.1007/978-981-33-4195-1_12.
  • Nhim S, Waeonukul R, Uke A, et al. Biological cellulose saccharification using a coculture of Clostridium thermocellum and thermobrachium celere strain A9. Appl Microbiol Biotechnol. 2022;106(5):2133–2145. doi: 10.1007/s00253-022-11818-0
  • Poudel S, Giannone RJ, Rodriguez M, et al. Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnol Biofuels. 2017;10(1):14. doi: https://doi.org/10.1186/s13068-016-0697-5
  • Rajulapati V, Goyal A. Molecular Cloning, expression and characterization of Pectin Methylesterase (CtPME) from Clostridium thermocellum. Mol Biotechnol. 2017;59(4):128–140. doi: 10.1007/s12033-017-9997-7
  • Berger E, Zhang D, Zverlov VV, et al. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett. 2007;268(2):194–201. doi: 10.1111/j.1574-6968.2006.00583.x
  • Furukawa K, Ichikawa S, Nigorikawa M, et al. Enhanced production of reducing sugars from transgenic rice expressing exo-glucanase under the control of a senescence-inducible promoter. Transgenic Res. 2014;23(3):531–537. doi: 10.1007/s11248-014-9786-z
  • Kiyoshi K, Furukawa M, Seyama T, et al. Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Biores Technol. 2015;186:325–328. doi: 10.1016/j.biortech.2015.03.061
  • Pluvinage B, Fillo A, Massel P, et al. Structural analysis of a family 81 glycoside hydrolase implicates its recognition of β-1,3-glucan quaternary structure. Structure. 2017;25(9):1348–1359.e3. doi: 10.1016/j.str.2017.06.019
  • Basit A, Liu J, Rahim K, et al. Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol. 2018;38(7):989–1002. doi: 10.1080/07388551.2018.1425662
  • Moraïs S, Heyman A, Barak Y, et al. Enhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanase. J Biotechnol. 2010;147(3):205–211. doi: 10.1016/j.jbiotec.2010.04.012
  • Stern J, Moraïs S, Lamed R, et al. Adaptor Scaffoldins: an original strategy for extended Designer cellulosomes, inspired from nature. MBio. 2016;7(2):e00083–16. doi: 10.1128/mBio.00083-16
  • Ahmad S, Sajjad M, Altayb HN, et al. Engineering processive cellulase of Clostridium thermocellum to divulge the role of the carbohydrate‐binding module. Biotech And App Biochem. 2022;70(1):290–305. bab.2352. doi: 10.1002/bab.2352.
  • Zheng Y, Tao L, Yang X, et al. Comparative study on pyrolysis and catalytic pyrolysis upgrading of biomass model compounds: thermochemical behaviors, kinetics, and aromatic hydrocarbon formation. J Energy Inst. 2019;92(5):1348–1363. doi: 10.1016/j.joei.2018.09.006
  • Sansaniwal SK, Rosen MA, Tyagi SK. Global challenges in the sustainable development of biomass gasification: an overview. Renew Sust Energ Rev. 2017;80:23–43. doi: 10.1016/j.rser.2017.05.215
  • Shetty D, Joshi A, Dagar SS, et al. Bioaugmentation of anaerobic fungus orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment. Biomass Bioenergy. 2020;138:105546. doi: 10.1016/j.biombioe.2020.105546
  • Braga Nan L, Trably E, Santa-Catalina G, et al. Biomethanation processes: new insights on the effect of a high H2 partial pressure on microbial communities. Biotechnol Biofuels. 2020;13(1):141. doi: https://doi.org/10.1186/s13068-020-01776-y
  • Dar RA, Parmar M, Dar EA, et al. Biomethanation of agricultural residues: potential, limitations and possible solutions. Renew Sust Energ Rev. 2021;135:110217. doi: 10.1016/j.rser.2020.110217
  • Perkins G, Batalha N, Kumar A, et al. Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renew Sust Energ Rev. 2019;115:109400. doi: 10.1016/j.rser.2019.109400
  • Li B, Yang T, Li R, et al. Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process. Energy. 2020;200:117524. doi: 10.1016/j.energy.2020.117524
  • Cheah WY, Sankaran R, Show PL, et al. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res J. 2020;7(1):1115–1127. doi: 10.18331/BRJ2020.7.1.4
  • Lo E, Brabo-Catala L, Dogaris I, et al. Biochemical conversion of sweet sorghum bagasse to succinic acid. J Biosci Bioeng. 2020;129(1):104–109. doi: 10.1016/j.jbiosc.2019.07.003
  • Mateo S, Mateo P, Barbanera M, et al. Acid hydrolysis of olive tree leaves: preliminary study towards biochemical conversion. Processes. 2020;8(8):886. doi: 10.3390/pr8080886
  • Meenakshisundaram S, Fayeulle A, Léonard E, et al. Combined biological and chemical/Physicochemical pretreatment methods of lignocellulosic biomass for bioethanol and Biomethane energy production—A review. Appl Microbiol. 2022;2(4):716–734. doi: 10.3390/applmicrobiol2040055
  • Oliva JM, Negro MJ, Álvarez C, et al. Fermentation strategies for the efficient use of olive tree pruning biomass from a flexible biorefinery approach. Fuel. 2020;277:118171. doi: 10.1016/j.fuel.2020.118171
  • Asemoloye MD, Ahmad R, Jonathan SG. Synergistic action of rhizospheric fungi with megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere. 2017;187:1–10. doi: 10.1016/j.chemosphere.2017.07.158
  • Prasad RK, Chatterjee S, Mazumder PB, et al. Study on cellulase (Β-1,4-endoglucanase) activity of gut bacteria of sitophilus oryzae in cellulosic waste biodegradation. Bioresour Technol Rep. 2019;7:100274. doi: 10.1016/j.biteb.2019.100274
  • Tsegaye B, Balomajumder C, Roy P. Icrobial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bull National Res Centre. 2019;43(1):51. doi: 10.1186/s42269-019-0094-x
  • Pérez J, Muñoz-Dorado J, De La Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002;5(2):53–63. doi: 10.1007/s10123-002-0062-3
  • Goodell B. Fungi involved in the biodeterioration and bioconversion of lignocellulose substrates. In: Benz JP Schipper K, editors. Genetics and biotechnology. Springer International Publishing; 2020. pp. 369–397. DOI:10.1007/978-3-030-49924-2_15.
  • Saadeddin A. The complexities of hydrolytic enzymes from the termite digestive system. Crit Rev Biotechnol. 2012;34(2):115–122. doi: 10.3109/07388551.2012.727379
  • Woo HL, Hazen TC, Simmons BA, et al. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol 2012. 2014;37(1):60–67. doi: 10.1016/j.syapm.2013.10.001
  • Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech. 2015;5(4):337–353. doi: 10.1007/s13205-014-0246-5
  • Hemmerle L, Maier BA, Bortfeld-Miller M, et al. Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ. Nat Commun. 2022;13(1):2836. doi: 10.1038/s41467-022-30469-3
  • Zang H, Du X, Wang J, et al. Insight into cold-active xylanase production and xylan degradation pathways in psychrotrophic Acinetobacter sp. HC4 from the cold region of China. Cellul. 2020;27(13):7575–7589. doi: 10.1007/s10570-020-03286-4
  • Blake AD, Beri NR, Guttman HS, et al. The complex physiology of cellvibrio japonicus xylan degradation relies on a single cytoplasmic β‐xylosidase for xylo‐oligosaccharide utilization. Mol Microbiol. 2018;107(5):610–622. doi: 10.1111/mmi.13903
  • Šuchová K, Fehér C, Ravn JL, et al. Cellulose- and xylan-degrading yeasts: enzymes, applications and biotechnological potential. Biotechnol Adv. 2022;59:107981. doi: 10.1016/j.biotechadv.2022.107981
  • Helal GA, Khalil RR, Galal YG, et al. Studies on cellulases of some cellulose-degrading soil fungi. Arch Microbiol. 2022;204(1):1–16. doi: 10.1007/s00203-021-02705-9
  • Lamilla C, Pavez M, Santos A, et al. Bioprospecting for extracellular enzymes from culturable actinobacteria from the South Shetland Islands, Antarctica. Polar Biology. 2017;40(3):719–726. doi: 10.1007/s00300-016-1977-z
  • Rajkumar J, Dilipan E, Ramachandran M, et al. Bioethanol production from seagrass waste, through fermentation process using cellulase enzyme isolated from marine actinobacteria. Vegetos. 2021;34(3):581–591. doi: 10.1007/s42535-021-00239-5
  • Arelli V, Mamindlapelli NK, Juntupally S, et al. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity. Biores Technol. 2021;340:125675. doi: 10.1016/j.biortech.2021.125675
  • Manni A, Filali-Maltouf A, Manni A, et al. Diversity and bioprospecting for industrial hydrolytic enzymes of microbial communities isolated from deserted areas of south-east Morocco. AIMS microbiol. 2022;8(1):5–25. doi: 10.3934/microbiol.2022002
  • Shi YL, Sun Y, Ruan ZY, et al. Cellulomonas telluris sp. Nov., an endoglucanase-producing actinobacterium isolated from Badain Jaran desert sand. Int J Syst Evol Microbiol. n.d;70(1):631–635. doi: 10.1099/ijsem.0.003806
  • Yang M, Zhao J, Yuan Y, et al. Comparative metagenomic discovery of the dynamic cellulose-degrading process from a synergistic cellulolytic microbiota. Cellul. 2021;28(4):2105–2123. doi: 10.1007/s10570-020-03671-z
  • Paul M, Nayak DP, Thatoi H. Optimization of xylanase from Pseudomonas mohnii isolated from simlipal biosphere reserve, Odisha, using response surface methodology. J Genet Eng Biotechnol. 2020;18(1):1–19. doi: 10.1186/s43141-020-00099-7
  • Ingle AP, Chandel AK, Silva SS. Biorefining of lignocellulose into valuable products. In: Ingle A, Chandel A Silva S editors. Lignocellulosic biorefining technologies 2020. 1st ed. Wiley. pp. 1–5. 10.1002/9781119568858.ch1.
  • Tushar MSHK, Dutta A. Efficiency analysis of crude versus pure cellulase in industry. In: Srivastava N, Srivastava M, Mishra P Gupta V, editors. Biofuel production technologies: critical analysis for sustainability. Springer; 2020. pp. 283–298. DOI:10.1007/978-981-13-8637-4_10.
  • Gavande PV, Nath P, Kumar K, et al. Highly efficient, processive and multifunctional recombinant endoglucanase RfGH5_4 from ruminococcus flavefaciens FD-1 v3 for recycling lignocellulosic plant biomasses. Int j biol macromol. 2022;209:801–813. doi: 10.1016/j.ijbiomac.2022.04.059
  • Chang H, Wohlschlager L, Csarman F, et al. Real-time measurement of cellobiose and glucose formation during enzymatic biomass hydrolysis. Anal Chem. 2021;93(21):7732–7738. doi: 10.1021/acs.analchem.1c01182
  • Huang C, Feng Y, Patel G, et al. Production, immobilization and characterization of beta-glucosidase for application in cellulose degradation from a novel Aspergillus versicolor. Int j biol macromol. 2021;177:437–446. doi: 10.1016/j.ijbiomac.2021.02.154
  • Nidetzky B, Zhong C. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials. Biotechnol Adv. 2021;51:107633. doi: 10.1016/j.biotechadv.2020.107633
  • Adebami GE, Kuila A, Ajunwa OM, et al. Genetics and metabolic engineering of yeast strains for efficient ethanol production. J Food Process Eng. 2022;45(7). doi: https://doi.org/10.1111/jfpe.13798
  • Lan Q, Duan Y, Wu P, et al. Coordinately express hemicellulolytic enzymes in Kluyveromyces marxianus to improve the saccharification and ethanol production from corncobs. Biotechnol Biofuels. 2021;14(1):220. doi: https://doi.org/10.1186/s13068-021-02070-1
  • Sun Y, Li X, Wu L, et al. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover. Biotechnol Biofuels. 2021;14(1):233. doi: https://doi.org/10.1186/s13068-021-02085-8
  • Gao M, Ploessl D, Shao Z. Enhancing the co-utilization of biomass-derived mixed sugars by yeasts. Front Microbiol. 2019;9. doi: 10.3389/fmicb.2018.03264
  • Adebami GE. Adebayo-tayo BC.Chapter 8—development of cellulolytic strain by genetic engineering approach for enhanced cellulase production. In: Kuila A Sharma V, editors. Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass. Elsevier; 2020. pp. 103–136. DOI:10.1016/B978-0-12-817953-6.00008-7.
  • Kim SR, Park YC, Jin YS, et al. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv. 2013;31(6):851–861. doi: 10.1016/j.biotechadv.2013.03.004
  • Chu BCH, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv. 2007;25(5):425–441. doi: 10.1016/j.biotechadv.2007.04.001
  • Peris D, Alexander WG, Fisher KJ, et al. Synthetic hybrids of six yeast species. Nat Commun. 2020;11(1):2085. doi: https://doi.org/10.1038/s41467-020-15559-4
  • Zhao Z, Xian M, Liu M, et al. Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnol Biofuels. 2020;13(1):21. doi: https://doi.org/10.1186/s13068-020-1662-x
  • Knychala MM, dos Santos AA, Kretzer LG, et al. Strategies for efficient expression of heterologous monosaccharide transporters in Saccharomyces cerevisiae. Journal Of Fungi. 2022;8(1):84. doi: 10.3390/jof8010084
  • Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J. 2012;7(1):34–46. doi: 10.1002/biot.201100053
  • Yang B, Sun Y, Fu S, et al. Improving the production of riboflavin by introducing a mutant ribulose 5-phosphate 3-epimerase gene in Bacillus subtilis. Front Bioeng Biotechnol. 2021;9. https://www.frontiersin.org/article/10.3389/fbioe.2021.704650
  • Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol. 2006;17(3):320–326. doi: 10.1016/j.copbio.2006.05.008
  • Ma M, Liu ZL, Moon J. Genetic engineering of inhibitor-tolerant Saccharomyces cerevisiae for improved xylose utilization in ethanol production. BioEnergy Res. 2012;5(2):459–469. doi: 10.1007/s12155-011-9176-9
  • Selim KA, El-Ghwas DE, Easa SM, et al. Bioethanol a microbial biofuel metabolite; new insights of yeasts metabolic engineering. Fermentation. 2018;4(1):16. doi: 10.3390/fermentation4010016
  • Li YJ, Wang MM, Chen YW, et al. Engineered yeast with a CO2-fixation pathway to improve the bioethanol production from xylose-mixed sugars. Sci Rep. 2017;7(1):43875. doi: 10.1038/srep43875
  • Favaro L, Jansen T, van Zyl WH. Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol. 2019;39(6):800–816. doi: 10.1080/07388551.2019.1619157
  • Zhang Y, Xie Z, Wang Z, et al. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions. Dalton Trans. 2016;45(32):12653–12660. doi: 10.1039/c6dt01827k
  • Scordia D, Cosentino SL, Lee JW, et al. Bioconversion of giant reed (arundo donax L.) hemicellulose hydrolysate to ethanol by Scheffersomyces stipitis CBS6054. Biomass Bioenergy. 2012;39:296–305. doi: 10.1016/j.biombioe.2012.01.023
  • Zuroff TR, Xiques SB, Curtis WR. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels. 2013;6(1):59. doi: https://doi.org/10.1186/1754-6834-6-59
  • Damayanti D, Supriyadi D, Amelia D, et al. Conversion of lignocellulose for bioethanol production, applied in bio-polyethylene terephthalate. Polymers. 2021;13(17):2886. doi: 10.3390/polym13172886
  • Mussatto SI, Yamakawa CK, van der Maas L, et al. New trends in bioprocesses for lignocellulosic biomass and CO2 utilization. Renew Sust Energ Rev. 2021;152:111620. doi: 10.1016/j.rser.2021.111620
  • Lee CR, Sung BH, Lim KM, et al. Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Sci Rep. 2017;7(1):4428. doi: 10.1038/s41598-017-04815-1
  • Nakatani Y, Yamada R, Ogino C, et al. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact. 2013;12(1):66. doi: https://doi.org/10.1186/1475-2859-12-66
  • Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol. 2014;5. doi: 10.3389/fmicb.2014.00174
  • Seok JY, Yang J, Choi SJ, et al. Directed evolution of the 3-hydroxypropionic acid production pathway by engineering aldehyde dehydrogenase using a synthetic selection device. Metab Eng. 2018;47:113–120. doi: 10.1016/j.ymben.2018.03.009
  • Roell GW, Zha J, Carr RR, et al. Engineering microbial consortia by division of labor. Microb Cell Fact. 2019;18(1):35. doi: https://doi.org/10.1186/s12934-019-1083-3
  • Yanase S, Yamada R, Kaneko S, et al. Ethanol production from cellulosic materials using cellulase-expressing yeast. Biotechnol J. 2010;5(5):449–455. doi: 10.1002/biot.200900291
  • Baek S-H, Kim S, Lee K, et al. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb Technol. 2012;51(6):366–372. doi: 10.1016/j.enzmictec.2012.08.005
  • Chen L, Du J-L, Zhan Y-J, et al. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol. 2018;48(7):653–661. doi: 10.1080/10826068.2018.1487846
  • Xiao W, Li H, Xia W, et al. Co-expression of cellulase and xylanase genes in Saccharomyces cerevisiae toward enhanced bioethanol production from corn stover. Bioengineered. 2019;10(1):513–521. doi: 10.1080/21655979.2019.1682213
  • Kwak S, Jin Y-S. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact. 2017;16(1):82. doi: https://doi.org/10.1186/s12934-017-0694-9
  • Robak K, Balcerek M. Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol. 2018;56(2):174–187. doi: 10.17113/ftb.56.02.18.5428
  • Mussatto SI, Machado EMS, Carneiro LM, et al. Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy. 2012;92:763–768. doi: 10.1016/j.apenergy.2011.08.020
  • Kumari R, Pramanik K. Bioethanol production from ipomoea carnea biomass using a potential hybrid yeast strain. Appl Biochem Biotechnol. 2013;171(3):771–785. doi: 10.1007/s12010-013-0398-5
  • Henningsen BM, Hon S, Covalla SF, et al. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Appl Environ Microbiol. 2015;81(23):8108–8117. doi: 10.1128/AEM.01689-15
  • Papapetridis I, van Dijk M, Dobbe AP, et al. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microb Cell Fact. 2016;15(1):67. doi: 10.1186/s12934-016-0465-z
  • Papapetridis I, Dijk M, Maris AJ, et al. Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae. Biotechnol Biofuels. 2017;10(1):107. doi: 10.1186/s13068-017-0791-3
  • Wei N, Quarterman J, Kim SR, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun. 2013;4(1):2580. doi: 10.1038/ncomms3580
  • Kang NK, Lee JW, Ort DR, et al. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Biotechnology Journal. 2021;2021(3):e2000431. doi: 10.1002/biot.202000431
  • Adeboye P, Bettiga M, Olsson L. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci Rep. 2017;7(1):42635. doi: https://doi.org/10.1038/srep42635
  • Wang C, Mas A, Esteve-Zarzoso B. The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during Alcoholic fermentation is species and strain specific. Front Microbiol. 7 2016 Apr 13: 502. PMID: 27148191; PMCID: PMC4829597. 10.3389/fmicb.2016.00502
  • Wang C, Bao X, Li Y, et al. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng. 2015;30:79–88. doi: 10.1016/j.ymben.2015.04.007
  • Shin HY, Nijland JG, de Waal PP, et al. An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels. 2015;8(1):176. doi: 10.1186/s13068-015-0360-6
  • Shin HY, Nijland JG, de Waal PP, et al. The amino-terminal tail of Hxt11 confers membrane stability to the Hxt2 sugar transporter and improves xylose fermentation in the presence of acetic acid. Biotechnol Bioeng. 2017;114(9):1937–1945. doi: 10.1002/bit.26322
  • Nijland JG, Shin HY, Boender LGM, et al. Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Appl Environ Microbiol. 2017;83(11):e00095–17. doi: 10.1128/AEM.00095-17
  • Wu R, Chen D, Cao S, et al. Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Adv. 2020;10(4):2267–2276. doi: 10.1039/C9RA08673K
  • Jagtap RS, Mahajan DM, Mistry SR, et al. Improving ethanol yields in sugarcane molasses fermentation by engineering the high osmolarity glycerol pathway while maintaining osmotolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2019;103(2):1031–1042. doi: https://doi.org/10.1007/s00253-018-9532-1
  • Swinnen S, Henriques SF, Shrestha R, et al. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact. 2017;16(1):7. doi: https://doi.org/10.1186/s12934-016-0621-5
  • Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol Biofuels. 2017;10(1):125. doi: https://doi.org/10.1186/s13068-017-0806-0
  • Hasunuma T, Sakamoto T, Kondo A. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids. Appl Microbiol Biotechnol. 2016;100(2):1027–1038. doi: 10.1007/s00253-015-7094-z
  • Hou J, Jiao C, Peng B, et al. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metab Eng. 2016;38:241–250. doi: 10.1016/j.ymben.2016.08.001
  • Xu H, Kim S, Sorek H, et al. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 2016a. 2016;34:88–96. doi: 10.1016/j.ymben.2015.12.007
  • Hoang P, Ko JK, Gong G, et al. Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnol Biofuels. 2018;11(1):268. doi: https://doi.org/10.1186/s13068-018-1269-7
  • Xia PF, et al. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae. ACS Synth Biol. 2016. doi: 10.1021/acssynbio.6b00167
  • Li H, Schmitz O, Alper HS. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl Microbiol Biotechnol. 2016;100(23):10215–10223. doi: 10.1007/s00253-016-7879-8
  • Ledesma-Amaro R, Nicaud JM. Metabolic engineering for expanding the substrate range of yarrowia lipolytica. Trends Biotechnol. 2016;34(10):798–809. doi: 10.1016/j.tibtech.2016.04.010
  • Yook SD, Kim J, Gong G, et al. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing yarrowia lipolytica. GCB Bioenergy. 2020;12(9):670–679. doi: https://doi.org/10.1111/gcbb.12699
  • Qiao K, Wasylenko T, Zhou K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol. 2017;35(2):173–177. doi: https://doi.org/10.1038/nbt.3763
  • Xu P, Qiao K, Ahn WS, et al. Engineering yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci, USA. 2016b;113(39):10848–10853. doi: 10.1073/pnas.1607295113
  • Yang K, Qiao Y, Li F, et al. Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica. Metab Eng. 2019;55:231–238. doi: 10.1016/j.ymben.2019.08.001
  • Kim JH, Ryu J, Huh IY, et al. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17. Bioproc biosyst eng. 2014;37(9):1871–1878. doi: 10.1007/s00449-014-1161-1
  • Tanimura A, Nakamura T, Watanabe I, et al. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Springerplus. 2012;1(1):27. doi: 10.1186/2193-1801-1-27
  • da Silva Filho EA, de Melo HF, Antunes DF, et al. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol. 2005;32(10):481–486. doi: 10.1007/s10295-005-0027-6
  • Wang C, Bao XLY, Jiao C, et al. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization. Metab Eng. 2015;30:79–88. doi: 10.1016/j.ymben.2015.04.007
  • Ko JK, Jung JH, Altpeter F, et al. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. Biores Technol. 2018;256:312–320. doi: 10.1016/j.biortech.2018.01.123
  • Ko JK, Lee SM. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotechnol. 2018;50:72–80. doi: 10.1016/j.copbio.2017.11.007
  • Tran HN, Ko P, Gong JK, et al. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. Biotechnol Biofuels. 2020;13(1):12. doi: 10.1186/s13068-019-1641-2