1,038
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Column-based removal of high concentration microplastics in synthetic wastewater using granular activated carbon

, , , , , & show all
Article: 2276391 | Received 18 Jun 2023, Accepted 31 Aug 2023, Published online: 09 Nov 2023

References

  • Lin L, Tang S, Wang X, et al. Hexabromocyclododecane alters malachite green and lead(II) adsorption behaviors onto polystyrene microplastics: interaction mechanism and competitive effect. Chemosphere. 2021;265:129079. doi:10.1016/j.chemosphere.2020.129079
  • Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460–11. doi:10.1016/j.envpol.2018.02.050
  • Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci. 2016;178:189–195. doi:10.1016/j.ecss.2015.12.003
  • Wang F, Yang W, Cheng P, et al. Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere. 2019;235:1073–1080. doi: 10.1016/j.chemosphere.2019.06.196
  • Wang T, Yu C, Chu Q, et al. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere. 2020;244:125491. doi:10.1016/j.chemosphere.2019.125491
  • Ganie ZA, Khandelwal N, Tiwari E, et al. Biochar-facilitated remediation of nanoplastic contaminated water: effect of pyrolysis temperature induced surface modifications. J Hazard Mater. 2021;417:126096. doi:10.1016/j.jhazmat.2021.126096
  • Borrelle SB, Ringma J, Law KL, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369(6510):1515–1518. doi: 10.1126/science.aba3656
  • van Wijnen J, Ragas AMJ, Kroeze C. Modelling global river export of microplastics to the marine environment: sources and future trends. Sci Total Environ. 2019;673:392–401. doi:10.1016/j.scitotenv.2019.04.078
  • Everaert G, Van Cauwenberghe L, De Rijcke M, et al. Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ Pollut. 2018;242:1930–1938. doi: 10.1016/j.envpol.2018.07.069
  • Rajala K, Grönfors O, Hesampour M, et al. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res. 2020;183:116045. doi:10.1016/j.watres.2020.116045
  • Reddy AS, Nair AT. The fate of microplastics in wastewater treatment plants: an overview of source and remediation technologies. Environ Technol Innov. 2022;28:102815. doi:10.1016/j.eti.2022.102815
  • Wang Z, Sedighi M, Lea-Langton A. Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Res. 2020;184:116165. doi:10.1016/j.watres.2020.116165
  • Gündoğdu S, Çevik C, Güzel E, et al. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ Monit Assess. 2018;190(11):626. doi: 10.1007/s10661-018-7010-y
  • Conley K, Clum A, Deepe J, et al. Wastewater treatment plants as a source of microplastics to an urban estuary: removal efficiencies and loading per capita over one year. Water Res X. 2019;3:100030. doi:10.1016/j.wroa.2019.100030
  • Bretas Alvim C, Mendoza-Roca JA, Bes-Piá A. Wastewater treatment plant as microplastics release source – quantification and identification techniques. J Environ Manage. 2020;255:109739. doi:10.1016/j.jenvman.2019.109739
  • Kay P, Hiscoe R, Moberley I, et al. Wastewater treatment plants as a source of microplastics in river catchments. Environ Sci Pollut Res. 2018;25(20):20264–20267. doi: 10.1007/s11356-018-2070-7
  • Iyare PU, Ouki SK, Bond T. Microplastics removal in wastewater treatment plants: a critical review. Environ Sci Water Res Technol. 2020;6(10):2664. doi: 10.1039/D0EW00397B
  • Silva MC, Spessato L, Silva TL, et al. H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: adsorption studies of methylene blue dye in batch and fixed bed systems. J Mol Liq. 2021;324:114771. doi: 10.1016/j.molliq.2020.114771
  • Feizi F, Sarmah AK, Rangsivek R. Adsorption of pharmaceuticals in a fixed-bed column using tyre-based activated carbon: experimental investigations and numerical modelling. J Hazard Mater. 2021;417:126010. doi:10.1016/j.jhazmat.2021.126010
  • Patel H. Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Sci Rep. 2020;10(1):16895. doi: 10.1038/s41598-020-72583-6
  • Ajmani A, Patra C, Subbiah S, et al. Packed bed column studies of hexavalent chromium adsorption by zinc chloride activated carbon synthesized from Phanera vahlii fruit biomass. J Environ Chem Eng. 2020;8(4):103825. doi: 10.1016/j.jece.2020.103825
  • Iheanacho OC, Nwabanne JT, Obi CC, et al. Packed bed column adsorption of phenol onto corn cob activated carbon: linear and nonlinear kinetics modeling. South Afr J Chem Eng. 2021;36:80–93. doi:10.1016/j.sajce.2021.02.003
  • Patel P, Gupta S, Mondal P. Modeling of continuous adsorption of greywater pollutants onto sawdust activated carbon bed integrated with sand column. J Environ Chem Eng. 2022;10(2):107155. doi: 10.1016/j.jece.2022.107155
  • Ranjan Rout D, Mohan Jena H. Synthesis of novel reduced graphene oxide decorated β-cyclodextrin epichlorohydrin composite and its application for Cr(VI) removal: batch and fixed-bed studies. Sep Purif Technol. 2022;278:119630. doi:10.1016/j.seppur.2021.119630
  • Siipola V, Pflugmacher S, Romar H, et al. Low-cost biochar adsorbents for water purification including microplastics removal. Appl Sci. 2020;10(3):788. doi: 10.3390/app10030788
  • Shen M, Hu T, Huang W, et al. Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: performance, mechanism and utilization. Chem Eng J. 2021;421:129918. doi:10.1016/j.cej.2021.129918
  • Tong M, He L, Rong H, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment. Water Res. 2020;169:115284. doi:10.1016/j.watres.2019.115284
  • Abdoul Magid ASI, Islam MS, Chen Y, et al. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature. Sci Total Environ. 2021;784:147115. doi: 10.1016/j.scitotenv.2021.147115
  • Zhang Y, Luo Y, Guo X, et al. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase. Water Res. 2020;178:115861. doi: 10.1016/j.watres.2020.115861
  • Kumarasiri A, Amarasinghe DAS, Attygalle D. Surface wettability Analysis of nichrome alloy based on the measurements of sessile droplet contact angles. MERCon 2020 - 6th International Multidisciplinary Moratuwa Engineering Research Conference, Proceedings, University of Moratuwa, Katubedda, 10400 Sri Lanka. 2020, pp. 160–164.
  • Rius-Ayra O, Biserova-Tahchieva A, LLorca-Isern N. Surface-functionalised materials for microplastic removal. Mar Pollut Bull. 2021;167:112335. doi:10.1016/j.marpolbul.2021.112335
  • Chen Y-J, Chen Y, Miao C, et al. Metal–organic framework-based foams for efficient microplastics removal. J Mater Chem A. 2020;8(29):14644–14652. doi: 10.1039/D0TA04891G
  • Yuan F, Yue L, Zhao H, et al. Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide. Water Sci Technol. 2020;81(10):2163–2175. doi:10.2166/wst.2020.269
  • Guo Z, Sun Z, Zhang N, et al. Mean porosity variations in packed bed of monosized spheres with small tube-to-particle diameter ratios. Powder Technol. 2019;354:842–853. doi:10.1016/j.powtec.2019.07.001
  • Zhang W, Thompson KE, Reed AH, et al. Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles. Chem Eng Sci. 2006;61(24):8060–8074. doi: 10.1016/j.ces.2006.09.036
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9–10):1051–1069. doi: 10.1515/pac-2014-1117
  • Wang Q, Hernández-Crespo C, Santoni M, et al. Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution? Sci Total Environ. 2020;721:137785. doi:10.1016/j.scitotenv.2020.137785
  • Wang Q, Hernández-Crespo C, Du B, et al. Fate and removal of microplastics in unplanted lab-scale vertical flow constructed wetlands. Sci Total Environ. 2021;778:146152. doi:10.1016/j.scitotenv.2021.146152
  • Na SH, Kim M-J, Kim J-T, et al. Microplastic removal in conventional drinking water treatment processes: performance, mechanism, and potential risk. Water Res. 2021;202:117417. doi: 10.1016/j.watres.2021.117417
  • Zhang Y, Diehl A, Lewandowski A, et al. Removal efficiency of micro- and nanoplastics (180 nm – 125 μm) during drinking water treatment. Sci Total Environ. 2020;720:137383. doi:10.1016/j.scitotenv.2020.137383
  • Kim KT, Park S. Enhancing microplastics removal from wastewater using electro-coagulation and granule-activated carbon with thermal regeneration. Processes. 2021;9(4):617. doi: 10.3390/pr9040617
  • Arenas LR, Gentile SR, Zimmermann S, et al. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci Total Environ. 2021;791:148175. doi:10.1016/j.scitotenv.2021.148175
  • Batool A, Valiyaveettil S. Surface functionalized cellulose fibers – a renewable adsorbent for removal of plastic nanoparticles from water. J Hazard Mater. 2021;413:125301. doi:10.1016/j.jhazmat.2021.125301
  • Wang Z, Sun C, Li F, et al. Fatigue resistance, re-usable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal. Chem Eng J. 2021;415:129006. doi:10.1016/j.cej.2021.129006
  • Umar M, Singdahl-Larsen C, Ranneklev SB. Microplastics removal from a plastic recycling industrial wastewater using sand filtration. Water (Switzerland). 2023;15(5):896. doi: 10.3390/w15050896
  • Funck M, Al-Azzawi MSM, Yildirim A, et al. Release of microplastic particles to the aquatic environment via wastewater treatment plants: the impact of sand filters as tertiary treatment. Chem Eng J. 2021;426:130933. doi: 10.1016/j.cej.2021.130933
  • Golgoli M, Khiadani M, Shafieian A, et al. Microplastics fouling and interaction with polymeric membranes: a review. Chemosphere. 2021;283:131185. doi: 10.1016/j.chemosphere.2021.131185
  • Akarsu C, Kumbur H, Kideys AE. Removal of microlasticsfrom wastewater throughelectrocoagulation-electroflotation and membrane filtration processes. Water Sci Technol. 2021;84(7):1648. doi:10.2166/wst.2021.356
  • Pramanik BK, Pramanik SK, Monira S. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere. 2021;282:131053. doi:10.1016/j.chemosphere.2021.131053
  • Ding H, Zhang J, He H, et al. Do membrane filtration systems in drinking water treatment plants release nano/microplastics? Sci Total Environ. 2021;755:142658. doi: 10.1016/j.scitotenv.2020.142658
  • Pizzichetti ARP, Pablos C, Álvarez-Fernández C, et al. Evaluation of membranes performance for microplastic removal in a simple and low-cost filtration system. Case Stud Chem Environ Eng. 2021;3:100075. doi:10.1016/j.cscee.2020.100075
  • Li Z, Wan J, Zhan H, et al. Particle size distribution on Forchheimer flow and transition of flow regimes in porous media. J Hydrol. 2019;574:1–11. doi:10.1016/j.jhydrol.2019.04.026
  • van Lopik JH, Sweijen T, Hartog N, et al. Contribuição a perda de carga hidráulica devido penetração parcial e preenchimento anelar de poços: implicações para rebaixamento de nível freático e poços de recarga artificial. Hydrogeol J. 2021;29(2):875–893. doi: 10.1007/s10040-020-02228-5