725
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermochemical behavior of agricultural and industrial sugarcane residues for bioenergy applications

, ORCID Icon, , , , & show all
Article: 2283264 | Received 05 Jul 2023, Accepted 09 Nov 2023, Published online: 20 Nov 2023

References

  • Wang F, Harindintwali J, Yuan Z. Technologies and perspectives for achieving carbon neutrality. Innovation. 2021;2(4):100180. doi: 10.1016/j.xinn.2021.100180
  • Freitas EN, Salgado JCS, Alnoch RC, et al. Challenges of biomass utilization for bioenergy in a climate change scenario. Biology. 2021;10(12):1277. doi: 10.3390/biology10121277
  • Rather RA, Wani AW, Mumtaz S, et al. Bioenergy: a foundation to environmental sustainability in a changing global climate scenario. J King Saud Univ Sci. 2022;34(1):101734. doi: 10.1016/j.jksus.2021.101734
  • Meza-Sepúlveda DC, Castro AM, Zamora A, et al. Bio-based value chains potential in the management of cacao pod waste in Colombia, a case study. Agronomy. 2021;11(4):1–15. doi: 10.3390/agronomy11040693
  • Eras JJC, Morejón MB, Gutiérrez AS, et al. A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int J Energy Econ Policy. 2019;9(1):15–25. doi: 10.32479/ijeep.7108
  • Gil NJ. La ruta del RAC - Cenicaña. Primer Simposio de Energía y Medio Ambiente, una relación de doble vía. Popayán, Cauca, Colombia: Cenicaña; 2022.
  • Carvalho JLN, Nogueirol RC, Menandro LMS, et al. Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy. 2016;9(7):1181–1195. doi: 10.1111/gcbb.12410
  • UPME. Actualización Plan Energético Nacional (PEN) 2022 – 2052. Bogotá: Unidad de Planeación Minero Energética, Ministerio de Minas y Energía; 2023.
  • Beagle E, Belmont E. Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy. 2019;128(January):267–275. doi: 10.1016/j.enpol.2019.01.006
  • Özüdoğru HMR, Nieder-Heitmann M, Haigh KF, et al. Techno-economic analysis of product biorefineries utilizing sugarcane lignocelluloses: xylitol, citric acid and glutamic acid scenarios annexed to sugar mills with electricity co-production. Ind Crops Prod. 2019;133(March):259–268. doi: 10.1016/j.indcrop.2019.03.015
  • Buriticá-Arboleda CI, Ramírez-Escobar CA, Martínez GAL, et al. Los Recursos Distribuidos De Bioenergía En Colombia. Bogotá: Universidad Distrital Francisco José de Caldas; 2020.
  • Tawfik A, Moanis R, Qyyum MA, et al. Sustainable fermentation approach for biogenic hydrogen productivity from delignified sugarcane bagasse. Int J Hydrogen Energy. 2022;47(88):37343–37358. doi: 10.1016/j.ijhydene.2021.09.200
  • Cevallos-Molina ER, Vélez-Vélez TV, Baquerizo-Crespo RJ, et al. Anaerobic treatment of sugarcane bagasse. An opportunity for sustainability in rural environments? Environ Adv. 2023;13:100427. doi: 10.1016/j.envadv.2023.100427
  • September LA, Kheswa N, Seroka NS, et al. Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash – a mini review. RSC Adv. 2023;13(2):1370–1380. doi: 10.1039/D2RA07490G
  • Fioranelli A, Bizzo WA. Generation of surplus electricity in sugarcane mills from sugarcane bagasse and straw: challenges, failures and opportunities. Renew Sust Energ Rev. 2023;186:113647. doi: 10.1016/j.rser.2023.113647
  • Colombo G, Ocampo-Duque W, Rinaldi F. Challenges in bioenergy production from sugarcane mills in developing countries: a case study. Energies. 2014;7(9):5874–5898. doi: 10.3390/en7095874
  • Go AW, Conag AT. Utilizing sugarcane leaves/straws as source of bioenergy in the Philippines: a case in the Visayas region. Renewable Energy. 2019;132:1230–1237. doi: 10.1016/j.renene.2018.09.029
  • Imran M, Anwar Khan AR. Characterization of agricultural waste sugarcane bagasse ash at 1100°C with various hours. Mater Today Proc. 2018;5(2):3346–3352. doi: 10.1016/j.matpr.2017.11.577
  • Kumar M, Sabbarwal S, Mishra PK, et al. Thermal degradation kinetics of sugarcane leaves (saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Biores Technol. 2019;279:262–270. doi: 10.1016/j.biortech.2019.01.137
  • Smithers J. Review of sugarcane trash recovery systems for energy cogeneration in South Africa. Renew Sust Energ Rev. 2014;32:915–925. doi: 10.1016/j.rser.2014.01.042
  • Zanatta ER, Reinehr TO, Awadallak JA. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125(1):437–445. doi: 10.1007/s10973-016-5378-x
  • BS EN ISO. Solid biofuels-determination of ash content. London: BSI standards publication; 2017a.
  • BS EN ISO. BSI Standards Publication Solid biofuels — Determination of the content of volatile matter. January. 2017b.
  • BS EN ISO. BSI standards publication Solid biofuels-determination of moisture content-oven dry method part 2: total moisture-simplified method. 2015a.
  • ASTM D5865-13. Standard test method for gross calorific value of coal and coke. 2013. doi: 10.1520/D5865-12
  • BS EN ISO. PD ISO/TS 16996: 2015 BSI Standards publication Solid biofuels—determination of elemental composition by X- ray fluorescence. 2015b.
  • Ayeni AO, Adeeyo OA, Oresegun OM, et al. Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res. 2015;44:2320–2847.
  • Debiagi PEA, Pecchi C, Gentile G, et al. Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy Fuels. 2015;29(10):6544–6555. doi: 10.1021/acs.energyfuels.5b01753
  • Guo F, He Y, Hassanpour A, et al. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal. Energy. 2020;197:117147. doi: 10.1016/j.energy.2020.117147
  • Alves JLF, da Silva JCG, Sellin N, et al. Upgrading of banana leaf waste to produce solid biofuel by torrefaction: physicochemical properties, combustion behaviors, and potential emissions. Environ Sci Pollut Res. 2022;29(17):25733–25747. doi: 10.1007/s11356-021-17381-x
  • Jayaraman K, Kok MV, Gokalp I. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy. 2017;101:293–300. doi: 10.1016/j.renene.2016.08.072
  • Protásio TDP, Guimarães Junior M, Mirmehdi S, et al. Combustion of biomass and charcoal made from babassu nutshell. Cerne. 2017;23(1):1–10. doi: 10.1590/01047760201723012202
  • Xie W, Wen S, Liu J, et al. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: thermal conversion characteristics, kinetics, and thermodynamics. Biores Technol. 2018;255:88–95. doi: 10.1016/j.biortech.2018.01.110
  • Lane DJ, Truong E, Larizza F, et al. Effect of hydrothermal carbonization on the combustion and gasification behavior of agricultural residues and macroalgae: devolatilization characteristics and Char Reactivity. Energy Fuels. 2018;32(4):4149–4159. doi: 10.1021/acs.energyfuels.7b03125
  • Bizzo WA, Lenço PC, Carvalho DJ, et al. The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sust Energ Rev. 2014;29:589–603. doi: 10.1016/j.rser.2013.08.056
  • Camargo JMO, Gallego-Ríos JM, Neto AMP, et al. Characterization of sugarcane straw and bagasse from dry cleaning system of sugarcane for cogeneration system. Renewable Energy. 2020;158:500–508. doi: 10.1016/j.renene.2020.05.107
  • BS EN ISO. Solid biofuels-fuel specifications and classes. London: BSI standards publication; 2014.
  • Kenney KL, Smith WA, Gresham GL, et al. Understanding biomass feedstock variability. Biofuels. 2013;4(1):111–127. doi: 10.4155/bfs.12.83
  • Mantelatto PE, Soares CCSP, Carvalho DJ, et al. Industrial processing. In: Project BRA/10/G31 SUCRE sugarcane renewable electricity. Campinas SP, Brasil: Brazilian Center for Research in Energy and Materials; 2020. p. 63–78.
  • Onwudili JA, Eke JE. Effects of ash removal by agitated aqueous washing and sedimentation on the physico-chemical characteristics and fast pyrolysis of trommel fines. J Energy Inst. 2020;93(1):312–323. doi: 10.1016/j.joei.2019.02.008
  • Vassilev SV, Vassileva CG, Vassilev VS. Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. In: Fuel. Vol. 158. Elsevier Ltd; 2015. pp. 330–350. doi: 10.1016/j.fuel.2015.05.050
  • Nhuchhen DR, Afzal MT. HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering. 2017;4(4):7. doi: https://doi.org/10.3390/bioengineering4010007
  • Niksa S. Quantitative interpretations of primary devolatilization behavior. Process Chem Coal Util. 2020;221–270. doi: 10.1016/B978-0-12-818713-5.00006-X
  • Nelson L, Park S, Hubbe MA. Thermal depolymerization of biomass with emphasis on gasifier design and best method for catalytic hot gas conditioning. BioRes. 2018;13(2):4630–4727. doi: 10.15376/BIORES.13.2.NELSON
  • Yang G, Liu Y, Gao L, et al. Investigation of the synergistic effect and kinetic behavior of anthracite and biochar during co-combustion process in pure oxygen atmosphere. J Energy Inst. 2022;101:1–18. doi: 10.1016/j.joei.2021.12.005
  • Basu P. Biomass gasification, pyrolysis and torrefaction: practical design and theory. 3rd ed. San Diego: Academic Press, Elsevier; 2018.
  • Verma M, Loha C, Sinha AN, et al. Drying of biomass for utilising in co-firing with coal and its impact on environment – a review. Renew Sust Energ Rev. 2017;71:732–741. doi: 10.1016/j.rser.2016.12.101
  • Marx S, Laubscher ANE, Bunt JR, et al. Evaluation of sugar cane bagasse hydrothermal liquefaction products for co-gasification with coal as green coal pellet production. Bioresour Technol Rep. 2023;22:101503. doi: 10.1016/j.biteb.2023.101503
  • Karimi K, Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Biores Technol. 2016;203:348–356. doi: 10.1016/j.biortech.2015.12.035
  • Sluiter A, Sluiter J, Wolfrum EJ. Methods for biomass compositional analysis. In: Behrens M, Datye AK, editors. Catalysis for the Conversion of Biomass and its derivatives. Berlin: Max-Planck-Gesellschaft zur Förderung der Wissenschaften; 2013. p. 223–225.
  • Rego F, Soares Dias AP, Casquilho M, et al. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass Bioenergy. 2019;122(January):375–380. doi: 10.1016/j.biombioe.2019.01.037
  • Waters CL, Janupala RR, Mallinson RG, et al. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J Anal Appl Pyrolysis. 2017;126:380–389. doi: 10.1016/j.jaap.2017.05.008
  • Cano Díaz GS, Rosas-Aburto A, Vivaldo-Lima E, et al. Determination of the composition of lignocellulosic biomasses from combined analyses of thermal, spectroscopic, and wet chemical methods. Ind Eng Chem Res. 2021;60(9):3502–3515. doi: 10.1021/acs.iecr.0c05243
  • Río C, Lino AG, Colodette JL, et al. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy. 2015;81:322–338. doi: 10.1016/j.biombioe.2015.07.006
  • Lima CS, Rabelo SC, Ciesielski PN, et al. Multiscale alterations in sugar cane bagasse and straw submitted to Alkaline Deacetylation. ACS Sustain Chem Eng. 2018;6(3):3796–3804. doi: 10.1021/acssuschemeng.7b04158
  • Ballesteros JI, Rueda-Ordóñez Y, Gelvez O, et al. (2018). Modelado y dimensionamiento de una hornilla de biomasa. Hal Open Science, Hal-01700614. HAL Id: hal-01700614 https://hal.archives-ouvertes.fr/hal-01700614
  • Cobo Barrera DF. Pirolisis de residuos de cosecha de caña de azúcar como alternativa de aprovechamiento en procesos de cogeneración. Cali: Universidad del Valle; 2012.
  • Toscano Morales LA, Barriga A. Análisis de los parámetros y Selección de hornos para la combustión de biomasa. (Aplicación a biomasas locales típicas). Revista Tecnológica ESPOL. 2009;1:1–9.
  • Alvarado Flores JJ, Rutiaga Quiñones JG. Estudio de cinética en procesos termogravimétricos de materiales lignocelulósicos. Maderas Cienc Tecnol. 2018;20(ahead):0–0. doi: 10.4067/S0718-221X2018005002601
  • Granados DA, Ruiz RA, Vega LY, et al. Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy. 2017;139:818–827. doi: 10.1016/j.energy.2017.08.013
  • De Aguiar J, Bondancia TJ, Claro PIC, et al. Enzymatic deconstruction of sugarcane bagasse and straw to obtain cellulose nanomaterials. ACS Sustain Chem Eng. 2020;8(5):2287–2299. doi: 10.1021/acssuschemeng.9b06806
  • Dang H, Xu R, Zhang J, et al. Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: experimental and DFT study. Energy. 2023;276:127436. doi: 10.1016/j.energy.2023.127436
  • Riaza J, Khatami R, Levendis YA, et al. Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass Bioenergy. 2014;64:162–174. doi: 10.1016/j.biombioe.2014.03.018
  • Yuan Y, He Y, Tan J, et al. Co-combustion characteristics of typical biomass and coal blends by Thermogravimetric Analysis. Front Energy Res. 2021;9:753622. doi: 10.3389/fenrg.2021.753622
  • Lu J-J, Chen W-H. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl Energy. 2015;160:49–57. doi: 10.1016/j.apenergy.2015.09.026
  • Toptas A, Yildirim Y, Duman G, et al. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Biores Technol. 2015;177:328–336. doi: 10.1016/j.biortech.2014.11.072
  • Buratti C, Barberena M, Bartocci P, et al. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Biores Technol. 2015;186:154–162. doi: 10.1016/j.biortech.2015.03.041
  • Tang L, Xiao J, Mao Q, et al. Thermogravimetric analysis of the combustion characteristics and combustion kinetics of Coals subjected to different chemical demineralization processes. ACS Omega. 2022;7(16):13998–14008. doi: 10.1021/acsomega.2c00522
  • Gouws SM, Carrier M, Bunt JR, et al. Co-pyrolysis of coal and raw/torrefied biomass: a review on chemistry, kinetics and implementation. Renew Sust Energ Rev. 2021;135:110189. doi: 10.1016/j.rser.2020.110189
  • Chen C, Qin S, Chen F, et al. Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis. J Energy Inst. 2018;8–13. doi: 10.1016/j.joei.2017.12.008
  • Galina NR, Romero Luna CM, Arce GLAF, et al. Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis. J Energy Inst. 2019;92(3):741–754. doi: 10.1016/j.joei.2018.02.008
  • Sandhu HS, Singh MP, Gilbert RA, et al. Sugarcane botany : a brief view. In: Sandhu HS editor. Florida sugarcane handbook. Agronomy department UF/IFAS extension; 2016. pp. 1–5. https://edis.ifas.ufl.edu/
  • Wang S, Dai G, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energ Combust Sci. 2017;83(4):37–41. doi: 10.1016/j.pecs.2017.05.004
  • Saetear P, Saechua N, Sereenonchai K. Sequential Injection System for analysis of Degree Brix, orthophosphate and pH in raw sugarcane juice applicable to sugar industry. Molecules. 2021;26(21):6484. doi: 10.3390/molecules26216484