512
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of exogenous polyamines on the secondary somatic embryogenesis of cork oak (Quercus suber L.)

ORCID Icon, , , , , ORCID Icon, , , & show all
Article: 2288354 | Received 22 Oct 2022, Accepted 16 Nov 2023, Published online: 29 Nov 2023

References

  • Lumaret R, Tryphon-Dionnet M, Michaud H, et al. Phylogeographical variation of chloroplast DNA in cork oak (Quercus suber). Ann Bot. 2005;96(5):853–11. doi: 10.1093/aob/mci237
  • Park Y-S, Beaulieu J, Bousquet J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga J, and Moon H-K, editors Vegetative propagation of forest trees. Seoul, Korea: National Institute of Forest Science (NiFos); 2016. pp. 302–322.
  • Ruiz-Galea M. Cork Oak Quercus suber L. Embryogenic Liquid Cultures. In: Jain S, Gupta P, et al., editors. Step wise protocols for somatic embryogenesis of important woody plants. DenmarkCham: Springer; 2018. pp. 243–254. doi: 10.1007/978-3-319-89483-6_18
  • Loyola-Vargas VM, Ochoa-Alejo N. Somatic embryogenesis: fundamental aspects and application. 1st ed. Basel, Switzerland: Springer International Publishing; 2016.
  • Stasolla C, Yeung EC. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult. 2003;74(1):15–35. doi: 10.1023/a:1023345803336
  • Jangra A, Chaturvedi S, Kumar N, et al. Polyamines: the gleam of next-generation Plant growth regulators for growth, development, stress mitigation, and hormonal crosstalk in plants—A systematic review. J Plant Growth Regul. 2023;42(8):5167–5191. doi: 10.1007/s00344-022-10846-4
  • Chambhare MR, Nikam TD. Influence of plant growth regulators on somatic embryogenesis in Niger (Guizotia abyssinica Cass.): an edible oilseed crop. J Crop Sci Biotechnol. 2022;25(2):225–232. doi: 10.1007/s12892-021-00125-1
  • Vengadesan G, Pijut PM. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tissue Organ Cult. 2009;97(2):141–149. doi: 10.1007/s11240-009-9508-z
  • Ben Ali N, Benkaddour R, Rahmouni S, et al. Secondary somatic embryogenesis in cork oak: influence of plant growth regulators. Forest Sci Technol. 2023;19(1):78–88. doi: 10.1080/21580103.2023.2172462
  • Chalupa V. Protocol of somatic embryogenesis: pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea Matt.Liebl.). In: Jain SM, and Gupta PK editors. Protocol for somatic embryogenesis in woody plants. Praha, Czech: Forestry Sciences; 2005. pp. 369–378. doi: 10.1007/1-4020-2985-3-29
  • Valladares S, Sánchez C, Martínez MT, et al. Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep. 2006;25(9):879–886. doi: 10.1007/s00299-005-0108-z
  • Fernández-Guijarro B, Celestino C, Toribio M. Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber L. Plant Cell Tissue Organ Culture. 1995;41(2):99–106. doi: 10.1007/bf00051578
  • Ben Ali N, Lamarti A. Effect of carbon source on secondary somatic embryogenesis of Moroccan cork oak (Quercus suber L.). ScienceLib. 2013;5:1–14.
  • Kapoor RT. Role of polyamines in plants under abiotic stresses: regulation of biochemical interactions. Plant Stress Mitigators. 2023;209–220. doi: 10.1016/B978-0-323-89871-3.00023-9.
  • Sundararajan S, Sivakumar HP, Nayeem S, et al. Influence of exogenous polyamines on somatic embryogenesis and regeneration of fresh and long-term cultures of three elite indica rice cultivars. Cereal Res Commun. 2021;49(2):245–253. doi: 10.1007/s42976-020-00098-x
  • De Moura LC, Xavier A, Cláudia A, et al. Effect of calcium, BAP and putrescine on somatic embryo induction in juvenile explants of eucalyptus grandis × E. urophylla hybrids. Aust J Crop Sci. 2019;13((04) 2019):513–519. doi: 10.21475/ajcs.19.13.04.p1345
  • Mustafavi SH, Naghdi Badi H, Sekara A, et al. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant. 2018;40(6):102. doi: 10.1007/s11738-018-2671-2
  • Rakesh B, Sudheer WN, Nagella P. Role of polyamines in plant tissue culture: an overview. Plant Cell Tiss Organ Cult. 2023;145(3):487–506. doi: 10.1007/s11240-021-02029-y
  • Jimenez VM. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul. 2005;47(2):91–110. doi: 10.1007/s10725-005-3478-x
  • Silveira V, Iochevet Segal Floh E, Handro W, et al. Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tissue Organ Cult. 2004;76(1):53–60. doi: 10.1023/a:1025847515435
  • Silveira V, Balbuena TS, Santa-Catarina C, et al. Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul. 2004b;44(2):147–156. doi: 10.1007/s10725-004-2601-8
  • Klimaszewska K, Noceda C, Pelletier G, et al. Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell Dev Biology-Plant. 2009;45(1):20–33. doi: 10.1007/s11627-008-9158-6
  • Sathish D, Theboral J, Vasudevan V, et al. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediated transformation efficiency in sugarcane (saccharum spp. hybrid). Vitro Cell Dev Biol Plant. 2020;56(1):29–40. doi: 10.1007/s11627-019-10022-6
  • Domínguez C, Martínez Ó, Nieto Ó, et al. Involvement of polyamines in the maturation of grapevine (Vitis vinifera L.‘Mencía’) somatic embryos over a semipermeable membrane. Sci Hortic. 2023;308:111537. doi: 10.1016/j.scienta.2022.111537
  • Dey A, Hazra AK, Nongdam P, et al. Enhanced bacoside content in polyamine treated in-vitro raised Bacopa monnieri (L.) Wettst. S Afr J Bot. 2019;123:259–269. doi: 10.1016/j.sajb.2019.03.012
  • Eren B, Türkoğlu A, Haliloğlu K, et al. Investigation of the Influence of polyamines on mature embryo culture and DNA methylation of wheat (Triticum aestivum L.) using the machine learning algorithm method. Plants. 2023;12(18):3261. doi: 10.3390/plants12183261
  • Setia N. SETIA RC polyamines: an overview and prospects in crop improvement. Crop Improv Strateg. 2018;21:376–393.
  • Niemi K, Sarjala T, Chen X, et al. Spermidine and methylglyoxal bis (guanylhydrazone) affect maturation and endogenous polyamine content of Scots pine embryogenic cultures. J Plant Physiol. 2002;159(10):1155–1158. doi: 10.1078/0176-1617-00634
  • Ajithan C, Vasudevan V. Sathish D et al. The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tissue Organ Cult. 2019;39:245–252.
  • Ebrahimzadeh H, Shariatpanahi ME, Ahmadi B, et al. Efficient parthenogenesis induction and in vitro haploid plant regeneration in cucumber (Cucumis sativus L.) using putrescine, spermidine, and cycocel. J. 2018;37(4):1127–1134. doi: 10.1007/s00344-018-9803-1
  • Hernandez I, Celestino C, Toribio M. Vegetative propagation of Quercus suber L. by somatic embryogenesis: I. Factors affecting the induction in leaves from mature cork oak tress. Plant Cell Rep. 2003;21(8):759–764. doi: 10.1007/s00299-003-0605-x
  • Margara J. Bases de la multiplication végétative. Versailles, Paris: INRA; 1984.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant. 1962;15(3):473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Schenk RU, Hildebrandt AC. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot. 1972;50(1):199–204. doi: 10.1139/b72-026
  • IBM Corp. Released. IBM SPSS statistics for windows, version 24.0. Armonk, NY: IBM Corp; 2016.
  • Chiancone B, Tassoni A, Bagni N, et al. Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult. 2006;87(2):145–153. doi: 10.1007/s11240-006-9149-4
  • Kevers C, Gaspar T, Dommes J. The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tissue Organ Cult. 2002;70(2):181–188. doi: 10.1023/a:1016399905620
  • Rajesh MK, Radha E, Karun A, et al. Plant regeneration from embryo-derived callus of oil palm - the effect of exogenous polyamines. Plant Cell Tissue Organ Cult. 2003;75(1):41–47. doi: 10.1023/A:1024679910085
  • Bertoldi D, Tassoni A, Martinelli L, et al. Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant. 2004;120(4):657–666. doi: 10.1111/j.0031-9317.2004.0282.x
  • Venkatachalam L, Bhagyalakshmi N. Spermine induced morphogenesis and effect of partial immersion system on the shoot cultures of banana. Appl Biochem Biotechnol. 2008;151(2–3):502–511. doi: 10.1007/s12010-008-8226-z
  • Steiner N, Santa-Catarina C, Silveira V, et al. Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult. 2007;89(1):55–62. doi: 10.1007/s11240-007-9216-5
  • Biasi R, Bagni N, Altamura MM. Identification of markers for sexual determination in Actinidia deliciosa. Acta Hortic. 1999;498(498):93–98. doi: 10.17660/ActaHortic.1999.498.10
  • Cheruvathur MK, Abraham J, Mani B, et al. Adventitious shoot induction from cultured internodal explants of malaxis acuminata D. Don, a valuable terrestrial medicinal orchid. Plant Cell Tissue Organ Cult. 2010;101(2):163–170. doi: 10.1007/s11240-010-9673-0
  • Petri C, Alburquerque N, Perez-Tornero O, et al. Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tissue Organ Cult. 2005;82(1):105–111. doi: 10.1007/s11240-004-7013-y
  • Astarita LV, Handro W, Floh EIS. Changes in polyamines content associated with zygotic embryogenesis in the Brazilian pine, Araucaria angustifolia (Bert.) O. Ktze. Braz J Bot. 2003b;26(2):163–168. doi: 10.1590/S0100-84042003000200003
  • Santa-Catarin AC, Silveira V, Balbuena TS, et al. IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul. 2006;49(2–3):237–247. doi: 10.1007/s10725-006-9129-z