2,118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Establishment and characterization of a highly metastatic hepatocellular carcinoma cell line

, , , , , , , , & ORCID Icon show all
Article: 2296775 | Received 30 Sep 2023, Accepted 13 Dec 2023, Published online: 07 Jan 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–17. doi: 10.3322/caac.21660
  • McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatol. 2021;73(Suppl S1):4–13. doi: 10.1002/hep.31288
  • Petrick JL, Florio AA, Znaor A, et al. International trends in hepatocellular carcinoma incidence, 1978-2012. Int J Cancer. 2020;147(2):317–330. doi: 10.1002/ijc.32723
  • Lin YL, Li Y. Study on the hepatocellular carcinoma model with metastasis. Genes Dis. 2020;7(3):336–50. doi: 10.1016/j.gendis.2019.12.008
  • Schlaeger C, Longerich T, Schiller C, et al. Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatol. 2008;47(2):511–520. doi: 10.1002/hep.22033
  • Low SS, Ji D, Chai WS, et al. Recent progress in nanomaterials modified electrochemical biosensors for the detection of MicroRNA. Micromachines (Basel). 2021;12(11):1409. doi: 10.3390/mi12111409
  • Feng Y, Liao Z, Li M, et al. Mesoporous Silica Nanoparticles-based Nanoplatforms: basic construction, Current state, and emerging applications in anticancer therapeutics. Adv Healthc Mater. 2023;12(16):e2201884. doi: 10.1002/adhm.202201884
  • Shinde S, Parjane S, Turakane H, et al. Bio-inspired synthesis and characterizations of groundnut shells-mediated Cu/CuO/Cu2O nanoparticles for anticancer, antioxidant, and DNA damage activities. J Sol-Gel Sci Tech. 2023;106(3):1–11. doi: 10.1007/s10971-023-06109-7
  • Ameen F, Al-Maary KS, Almansob A, et al. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl Nanosci. 2023;13(3):2233–40. doi: 10.1007/s13204-021-02047-4
  • Low SS, Pan Y, Ji D, et al. Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept. Sensors And Actuat B Chem. 2020;308:127718. doi: 10.1016/j.snb.2020.127718
  • Huang DQ, Tan DJH, Ng CH, et al. Hepatocellular carcinoma incidence in alcohol-associated cirrhosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2023;21(5):1169–77. doi: 10.1016/j.cgh.2022.06.032
  • Tagger A, Donato F, Ribero ML, et al. Case-control study on Hepatitis C Virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Brescia HCC study. Int J Cancer. 1999;81(5):695–9. doi: 10.1002/(SICI)1097-0215(19990531)81:5<695:AID-IJC4>3.0.CO;2-W
  • Marrero JA, Fontana RJ, Fu S, et al. Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma. J Hepatol. 2005;42(2):218–24. doi: 10.1016/j.jhep.2004.10.005
  • Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004;127(Suppl 5):S87–96. doi: 10.1053/j.gastro.2004.09.020
  • Nakabayashi H, Taketa K, Yamane T, et al. Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium. Gan. 1984;75(2):151–8.
  • Tian J, Tang ZY, Ye SL, et al. New Human Hepatocellular Carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer. 1999;81(5):814–21. doi: 10.1038/sj.bjc.6690769
  • Yan M, Li H, Zhao F, et al. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue. Chin J Cancer Res. 2013;25(3):289–98. doi: 10.3978/j.issn.1000-9604.2013.05.02
  • Huang J, Zhang L, Chen J, et al. The landscape of immune cells indicates prognosis and applicability of checkpoint therapy in hepatocellular carcinoma. Front Oncol. 2021;11:744951. doi: 10.3389/fonc.2021.744951
  • Lin X, Wang F, Chen J, et al. N(6)-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res. 2022;9(1):19. doi: 10.1186/s40779-022-00378-z
  • Varghese F, Bukhari AB, Malhotra R, et al. IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9(5):e96801. doi: 10.1371/journal.pone.0096801
  • Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–i90. doi: 10.1093/bioinformatics/bty560
  • Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformat. 2010;26(5):589–595. doi: 10.1093/bioinformatics/btp698
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/Map format and SAMtools. Bioinformat. 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352
  • McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a mapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. doi: 10.1101/gr.107524.110
  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: 10.1093/nar/gkq603
  • Talevich E, Shain AH, Botton T, et al. Cnvkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12(4):e1004873. doi: 10.1371/journal.pcbi.1004873
  • Layer RM, Chiang C, Quinlan AR, et al. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15(6):R84. doi: 10.1186/gb-2014-15-6-r84
  • Zhou J, Sun H, Wang Z, et al. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition). Liver Cancer. 2020;9(6):682–720. doi: 10.1159/000509424
  • Cleary SP, Jeck WR, Zhao X, et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatol. 2013;58(5):1693–702. doi: 10.1002/hep.26540
  • Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11. doi: 10.1038/ng.3252
  • Mohana Devi S, Balachandar V, Murugan PV, et al. Identification of chromosomal aberrations by using trypsin G-banding in Hepatocellular Carcinoma patients (HCC) in Tamil Nadu, India. Trop Life Sci Res. 2010;21(1):31–46.
  • Emi M, Fujiwara Y, Nakajima T, et al. Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer. Cancer Res. 1992;52(19):5368–72.
  • Kahng YS, Lee YS, Kim BK, et al. Loss of heterozygosity of chromosome 8p and 11p in the dysplastic nodule and hepatocellular carcinoma. J Gastroenterol Hepatol. 2003;18(4):430–6. doi: 10.1046/j.1440-1746.2003.02997.x
  • Becker SA, Zhou YZ, Slagle BL. Frequent loss of chromosome 8p in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res. 1996;56(21):5092–7.
  • Pineau P, Nagai H, Prigent S, et al. Identification of three distinct regions of allelic deletions on the short arm of chromosome 8 in hepatocellular carcinoma. Oncogene. 1999;18(20):3127–34. doi: 10.1038/sj.onc.1202648
  • Emi M, Fujiwara Y, Ohata H, et al. Allelic loss at chromosome band 8p21.3-p22 is associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer. 1993;7(3):152–7. doi: 10.1002/gcc.2870070307
  • Chan KL, Lee JM, Guan XY, et al. High-density allelotyping of chromosome 8p in hepatocellular carcinoma and clinicopathologic correlation. Cancer. 2002;94(12):3179–85. doi: 10.1002/cncr.10612
  • Qin LX, Tang ZY, Sham JS, et al. The association of chromosome 8p deletion and tumor metastasis in human hepatocellular carcinoma. Cancer Res. 1999;59(22):5662–5.
  • Roessler S, Long EL, Budhu A, et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterol. 2012;142(4):957–66 e12. doi: 10.1053/j.gastro.2011.12.039
  • Xue W, Krasnitz A, Lucito R, et al. DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes Dev. 2008;22(11):1439–44. doi: 10.1101/gad.1672608
  • Lei KF, Wang YF, Zhu XQ, et al. Identification of MSRA gene on chromosome 8p as a candidate metastasis suppressor for human hepatitis B virus-positive hepatocellular carcinoma. BMC Cancer. 2007;7(1):172. doi: 10.1186/1471-2407-7-172
  • Wu X, Jia HL, Wang YF, et al. HTPAP gene on chromosome 8p is a candidate metastasis suppressor for human hepatocellular carcinoma. Oncogene. 2006;25(12):1832–40. doi: 10.1038/sj.onc.1209191
  • Nahon P, Nault JC. Constitutional and functional genetics of human alcohol-related hepatocellular carcinoma. Liver Int. 2017;37(11):1591–601. doi: 10.1111/liv.13419
  • Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003;13(17):1549–56. doi: 10.1016/S0960-9822(03)00542-6
  • Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557–79. doi: 10.1152/physrev.00026.2007
  • Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):1267–73. doi: 10.1038/ng.3126
  • Pezzuto F, Buonaguro L, Buonaguro FM, et al. Frequency and geographic distribution of TERT promoter mutations in primary hepatocellular carcinoma. Infect Agent Cancer. 2017;12(1):27. doi: 10.1186/s13027-017-0138-5
  • Tornesello ML, Buonaguro L, Tatangelo F, et al. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics. 2013;102(2):74–83. doi: 10.1016/j.ygeno.2013.04.001
  • Sasaki M, Sato Y, Nakanuma Y. Mutational landscape of combined hepatocellular carcinoma and cholangiocarcinoma, and its clinicopathological significance. Histopathol. 2017;70(3):423–34. doi: 10.1111/his.13084
  • Zhao R, Choi BY, Lee MH, et al. Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine. 2016;8:30–39. doi: 10.1016/j.ebiom.2016.04.017
  • Li Y, Tang Z, Ye S, et al. Establishment of human hepatocellular carcinoma cell line with spontaneous pulmonary metastasis through in vivo selection. Zhonghua Yi Xue Za Zhi. 2002;82(9):601–605.
  • Lee JH, Ku JL, Park YJ, et al. Establishment and characterization of four human hepatocellular carcinoma cell lines containing hepatitis B virus DNA. World J Gastroenterol. 1999;5(4):289–295. doi: 10.3748/wjg.v5.i4.289
  • Cheung PF, Yip CW, Ng LW, et al. Establishment and characterization of a novel primary hepatocellular carcinoma cell line with metastatic ability in vivo. Cancer Cell Int. 2014;14(1):103. doi: 10.1186/s12935-014-0103-y
  • Lou CY, Feng YM, Qian AR, et al. Establishment and characterization of human hepatocellular carcinoma cell line FHCC-98. World J Gastroenterol. 2004;10(10):1462–1465. doi: 10.3748/wjg.v10.i10.1462
  • Park JG, Lee JH, Kang MS, et al. Characterization of cell lines established from human hepatocellular carcinoma. Int J Cancer. 1995;62(3):276–82. doi: 10.1002/ijc.2910620308
  • Li Y, Tang Y, Ye L, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol. 2003;129(1):43–51. doi: 10.1007/s00432-002-0396-4
  • Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76. doi: 10.1186/s13045-019-0760-3