1,043
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetically engineered IgG1 and nanobody oligomers acquire strong intrinsic CD40 agonism

, , , , , , ORCID Icon & show all
Article: 2302246 | Received 07 Jun 2023, Accepted 08 Dec 2023, Published online: 12 Jan 2024

References

  • Bullock TNJ. CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol. 2022;19(1):14–17. doi: 10.1038/s41423-021-00734-4
  • Li DK, Wang W. Characteristics and clinical trial results of agonistic anti‑CD40 antibodies in the treatment of malignancies (review). Oncol Lett. 2020;20(5):1–1. doi: 10.3892/ol.2020.12037
  • Vonderheide RH. CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 2020;71(1):47–58. doi: 10.1146/annurev-med-062518-045435
  • Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ. 2015;22(11):1727–41. doi: 10.1038/cdd.2015.109
  • Mangsbo SM, Broos S, Fletcher E, et al. The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell–Dependent tumor immunity. Clin Cancer Res. 2015;21(5):1115–1126. doi: 10.1158/1078-0432.CCR-14-0913
  • Filbert EL, Björck PK, Srivastava MK, et al. APX005M, a CD40 agonist antibody with unique epitope specificity and Fc receptor binding profile for optimal therapeutic application. Cancer Immunol Immunother. 2021;70(7):1853–1865. doi: 10.1007/s00262-020-02814-2
  • Grilley-Olson JE, Curti BD, Smith DC, et al. SEA-CD40, a non-fucosylated CD40 agonist: interim results from a phase 1 study in advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3093–. doi: 10.1200/JCO.2018.36.15_suppl.3093
  • Medler J, Nelke J, Weisenberger D, et al. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis. 2019;10(3):224. doi: 10.1038/s41419-019-1456-x
  • Chowdhury F, Johnson PW, Glennie MJ, et al. Ex vivo assays of dendritic cell activation and cytokine profiles as predictors of in vivo effects in an anti-human CD40 monoclonal antibody ChiLob 7/4 phase I trial. Cancer Immunol Res. 2014;2(3):229–40. doi: 10.1158/2326-6066.CIR-13-0070
  • Richman LP, Vonderheide RH. Anti-human CD40 monoclonal antibody therapy is potent without FcR crosslinking. Oncoimmunology. 2014;3(5):e28610. doi: 10.4161/onci.28610
  • Vitale LA, Thomas LJ, He LZ, et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol Immunother. 2019;68(2):233–45. doi: 10.1007/s00262-018-2267-0
  • White AL, Chan HT, French RR, et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell. 2015;27(1):138–48. doi: 10.1016/j.ccell.2014.11.001
  • Dillon TM, Ricci MS, Vezina C, et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem. 2008;283(23):16206–15. doi: 10.1074/jbc.M709988200
  • Martinez T, Guo A, Allen MJ, et al. Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry. 2008;47(28):7496–508. doi: 10.1021/bi800576c
  • Ryazantsev S, Tischenko V, Nguyen C, et al. Three-dimensional structure of the human myeloma IgG2. PLoS One. 2013;8(6):e64076. doi: 10.1371/journal.pone.0064076
  • Wypych J, Li M, Guo A, et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem. 2008;283(23):16194–205. doi: 10.1074/jbc.M709987200
  • Orr CM, Fisher H, Yu X, et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci Immunol. 2022;7(73):eabm3723. doi: 10.1126/sciimmunol.abm3723
  • Yu X, Chan HTC, Fisher H, et al. Isotype switching converts anti-CD40 antagonism to agonism to elicit potent antitumor activity. Cancer Cell. 2020;37(6):850–66.e7. doi: 10.1016/j.ccell.2020.04.013
  • Dahan R, Barnhart BC, Li F, et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell. 2016;29(6):820–31. doi: 10.1016/j.ccell.2016.05.001
  • Yu X, Chan HTC, Orr CM, et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell. 2018;33(4):664–75.e4. doi: 10.1016/j.ccell.2018.02.009
  • Bonnans C, Thomas G, He W, et al. CD40 agonist-induced IL-12p40 potentiates hepatotoxicity. J Immunother Cancer. 2020;8(1):8. doi: 10.1136/jitc-2020-000624
  • Medina-Echeverz J, Ma C, Duffy AG, et al. Systemic agonistic anti-CD40 treatment of tumor-bearing mice modulates hepatic myeloid-suppressive cells and causes immune-mediated liver damage. Cancer Immunol Res. 2015;3(5):557–66. doi: 10.1158/2326-6066.CIR-14-0182
  • Siwicki M, Gort-Freitas NA, Messemaker M, et al. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci Immunol. 2021;6(61):6. doi: 10.1126/sciimmunol.abi7083
  • Espié P, He Y, Koo P, et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am J Transplant. 2020;20(2):463–73. doi: 10.1111/ajt.15661
  • Harland RC, Klintmalm G, Jensik S, et al. Efficacy and safety of bleselumab in kidney transplant recipients: a phase 2, randomized, open-label, noninferiority study. Am J Transplant. 2020;20(1):159–71. doi: 10.1111/ajt.15591
  • Kahaly GJ, Stan MN, Frommer L, et al. A novel anti-CD40 monoclonal antibody, Iscalimab, for control of graves hyperthyroidism—A proof-of-concept trial. J Clin Endocrinol Metab. 2020;105(3):696–704. doi: 10.1210/clinem/dgz013
  • Vincenti F, Klintmalm G, Yang H, et al. A randomized, phase 1b study of the pharmacokinetics, pharmacodynamics, safety, and tolerability of bleselumab, a fully human, anti-CD40 monoclonal antibody, in kidney transplantation. Am J Transplant. 2020;20(1):172–80. doi: 10.1111/ajt.15560
  • Fransen MF, Sluijter M, Morreau H, et al. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res. 2011;17(8):2270–2280. doi: 10.1158/1078-0432.CCR-10-2888
  • Jackaman C, Lew AM, Zhan Y, et al. Deliberately provoking local inflammation drives tumors to become their own protective vaccine site. Int Immunol. 2008;20(11):1467–79. doi: 10.1093/intimm/dxn104
  • Knorr DA, Dahan R, Ravetch JV. Toxicity of an fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. Proc Natl Acad Sci USA. 2018;115(43):11048–53. doi: 10.1073/pnas.1810566115
  • Sandin LC, Orlova A, Gustafsson E, et al. Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer. Cancer Immunol Res. 2014;2(1):80–90. doi: 10.1158/2326-6066.CIR-13-0067
  • van Mierlo GJ, den Boer AT, Medema JP, et al. CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA. 2002;99:5561–5566.
  • Clark EA, Yip TC, Ledbetter JA, et al. CDw40 and BLCa-specific monoclonal antibodies detect two distinct molecules which transmit progression signals to human B lymphocytes. Eur J Immunol. 1988;18(3):451–457. doi: 10.1002/eji.1830180320
  • Vonderheide RH, Flaherty KT, Khalil M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–83. doi: 10.1200/JCO.2006.08.3311
  • Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(5):1035–43. doi: 10.1158/1078-0432.CCR-12-2064
  • Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9(1):63–73. doi: 10.1007/s13238-017-0473-8
  • Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203–34. doi: 10.1101/gad.183434.111
  • White AL, Chan HT, Roghanian A, et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol. 2011;187(4):1754–63. doi: 10.4049/jimmunol.1101135
  • Diebolder CA, Beurskens FJ, de Jong RN, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343(6176):1260–3. doi: 10.1126/science.1248943
  • de Weerdt I, Lameris R, Scheffer GL, et al. A bispecific antibody antagonizes prosurvival CD40 signaling and promotes Vγ9Vδ2 T cell–mediated antitumor responses in human B-cell malignancies. Cancer Immunol Res. 2021;9(1):50–61. doi: 10.1158/2326-6066.CIR-20-0138
  • Li F, Ravetch JV. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science. 2011;333(6045):1030–4. doi: 10.1126/science.1206954
  • Nelke J, Medler J, Weisenberger D, et al. CD40- and CD95-specific antibody single chain-Baff fusion proteins display BaffR-, TACI- and BCMA-restricted agonism. MAbs. 2020;12(1):1807721. doi: 10.1080/19420862.2020.1807721
  • Wilson NS, Yang B, Yang A, et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell. 2011;19(1):101–13. doi: 10.1016/j.ccr.2010.11.012
  • Lang I, Zaitseva O, Wajant H. FcγRs and their relevance for the activity of anti-CD40 antibodies. Int J Mol Sci. 2022;23(21):12869. doi: 10.3390/ijms232112869
  • Gupta S, Termini JM, Rivas Y, et al. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model. Vaccine. 2015;33(38):4798–806. doi: 10.1016/j.vaccine.2015.07.081
  • Haswell LE, Glennie MJ, Al-Shamkhani A. Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol. 2001;31(10):3094–100. doi: 10.1002/1521-4141(2001010)31:10<3094:AID-IMMU3094>3.0.CO;2-F
  • Lai N, Min Q, Xiong E, et al. A tetrameric form of CD40 ligand with potent biological activities in both mouse and human primary B cells. Mol Immunol. 2019;105:173–80. doi: 10.1016/j.molimm.2018.11.018
  • Merz C, Sykora J, Marschall V, et al. The hexavalent CD40 agonist HERA-CD40L induces T-Cell–mediated antitumor immune response through activation of antigen-presenting cells. J Immunother. 2018;41(9):385–398. doi: 10.1097/CJI.0000000000000246
  • Wyzgol A, Müller N, Fick A, et al. Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol. 2009;183(3):1851–61. doi: 10.4049/jimmunol.0802597
  • Yu X, James S, Felce JH, et al. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun Biol. 2021;4(1):772. doi: 10.1038/s42003-021-02309-5
  • Kums J, Nelke J, Rüth B, et al. Quantitative analysis of cell surface antigen-antibody interaction using gaussia princeps luciferase antibody fusion proteins. MAbs. 2017;9(3):506–20. doi: 10.1080/19420862.2016.1274844
  • Lang I, Füllsack S, Wyzgol A, et al. Binding studies of TNF receptor superfamily (TNFRSF) receptors on intact cells. J Biol Chem. 2016;291(10):5022–5037. doi: 10.1074/jbc.M115.683946