1,145
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Phenolic amides (avenanthramides) in oats – an update review

, , , , , , , & show all
Article: 2305029 | Received 28 Oct 2023, Accepted 07 Jan 2024, Published online: 23 Jan 2024

References

  • Erb M, Kliebenstein DJ. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional Trichotomy[OPEN]. Plant Physiol. 2020;184:39–19. doi: 10.1104/PP.20.00433
  • Salam U, Ullah S, Tang ZH, et al. Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors. Life. 2023;13(3):706–725. doi: 10.3390/life13030706
  • Anjali KS, Korra T, Thakur R, et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress. 2023;8:100154. doi: 10.1016/j.stress.2023.100154
  • El-Nashar HAS, Abbas H, Zewail M, et al. Neuroprotective effect of artichoke-based nanoformulation in sporadic alzheimer’s disease mouse model: focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceuticals. 2022;15(10):1202–1222. doi: 10.3390/ph15101202
  • Twaij BM, Hasan MN. Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Biol. 2022;13(1):4–14. doi: 10.3390/ijpb13010003
  • Mia MAR, Dey D, Sakib MR, et al. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res. 2023;37(12):5724–5754. doi: https://doi.org/10.1002/ptr.8017
  • Wari D, Aboshi T, Shinya T, et al. Integrated view of plant metabolic defense with particular focus on chewing herbivores. J Integr Plant Biol. 2022;64:449–475. doi: 10.1111/jipb.13204
  • El-Nashar HAS, Eldahshan OA, Fattah NFA, et al. HPLC-ESI/MS-MS characterization of compounds in dolomiaea costus extract and evaluation of cytotoxic and antiviral properties: molecular mechanisms underlying apoptosis-inducing effect on breast cancer. BMC Complement Med Ther. 2023;23:1–10. doi: 10.1186/s12906-023-04164-9
  • Murphy DJ. The domestication of cereal crops People, plants and genes. Oxford University Press; 2007. p. 78–95. doi: 10.1093/acprof:oso/9780199207145.003.0006
  • Clemens R, van Klinken B-W. Oats, more than just a whole grain: an introduction. Br J Nutr. 2014;112(S2):S1–3. doi: 10.1017/s0007114514002712
  • Tobiasz-Salach R, Pyrek-Bajcar E, Bobrecka-Jamro D. Assessing the possible use of hulled and naked oat grains as energy source. Econtechmod An Int Q J. 2016;5:35–40.
  • Bazzano LA, He J, Ogden LG, et al. Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the national health and nutrition examination survey epidemiologic follow-up study. Arch Intern Med. 2003;163:1897–1904. doi: 10.1001/archinte.163.16.1897
  • Meydani M. Potential health benefits of avenanthramides of oats. Nutr Rev. 2009;67:731–735. doi: 10.1111/j.1753-4887.2009.00256.x
  • Mexicanas V, Avena DEA. Avenanthramides and nutritional components of FOUR MEXICAN OAT (Avena sativa L.). Varieties. 2013;225–232.
  • Koenig R, Dickman JR, Kang C, et al. Avenanthramide supplementation attenuates exercise-induced inflammation in postmenopausal women. Nutr J. 2014;13:1–11. doi: 10.1186/1475-2891-13-21
  • Jamil M, Latif N, Mansoor M, et al. A review on multidimensional aspects of oat (Avena sativa) crop and its nutritional, medicinal and daily life importance. World Appl Sci J. 2016;34:1269–1275. doi: 10.5829/idosi.wasj.2016.1269.1275
  • Zhang T, Zhao T, Zhang Y, et al. Avenanthramide supplementation reduces eccentric exercise-induced inflammation in young men and women. J Int Soc Sports Nutr. 2020;17:1–12. doi: 10.1186/s12970-020-00368-3
  • Soycan G, Schär MY, Kristek A, et al. Composition and content of phenolic acids and avenanthramides in commercial oat products: are oats an important polyphenol source for consumers? Food Chem X. 2019;3:100047. doi: 10.1016/j.fochx.2019.100047
  • Chen CY, Milbury PE, Kwak HK, et al. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J Nutr. 2004;134(6):1459–1466. doi: 10.1093/jn/134.6.1459
  • Dimburg LH, Theander O, Lingnert H. Avenanthramides-A group of phenolic antioxidants in oats. Cereal Chem. 1993;70:637–641.
  • Lee-Manion AM, Price RK, Strain JJ, et al. In vitro antioxidant activity and antigenotoxic effects of avenanthramides and related compounds. J Agric Food Chem. 2009;57:10619–10624. doi: 10.1021/jf9024739
  • Wang W, Snooks HD, Sang S. The chemistry and health benefits of dietary phenolamides. J Agric Food Chem. 2020;68:6248–6267. doi: 10.1021/acs.jafc.0c02605
  • Yu Y, Zhou L, Li X, et al. The progress of nomenclature, structure, metabolism, and bioactivities of oat novel phytochemical: avenanthramides. J Agric Food Chem. 2022;70:446–457. doi: 10.1021/acs.jafc.1c05704
  • Wang J, Song K, Sun L, et al. Morphological and transcriptome analysis of wheat seedlings response to low nitrogen stress. Plants 2019;8. 10.3390/plants8040098.
  • Gou JY, Yu XH, Liu CJ. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in arabidopsis. Proc Natl Acad Sci U S A. 2009;106:18855–18860. doi: 10.1073/pnas.0905555106
  • Bello OA, Ayanda OI, Aworunse OS, et al. Avenanthramides of oats: medicinal importance and future perspectives. Pharmacogn Rev. 2018;1(23):66–71. doi: 10.4103/phrev.phrev
  • Boz H. Phenolic amides (avenanthramides) in oats - a review. Czech J Food Sci. 2015;33:399–404. doi: 10.17221/696/2014-CJFS
  • Ren Y, Wise M. Avenanthramide biosynthesis in oat cultivars treated with systemic acquired resistance elicitors. Cereal Res Commun. 2013;41(2):255–265. doi: 10.1556/CRC.2012.0035
  • Perrelli A, Goitre L, Salzano AM, et al. Biological activities, health benefits, and therapeutic properties of avenanthramides: from skin protection to prevention and treatment of cerebrovascular diseases. Oxid Med Cell Longev. 2018;2018:1–17. doi: 10.1155/2018/6015351
  • Turrini E, Maffei F, Milelli A, et al. Overview of the anticancer profile of avenanthramides from oat. IJMS. 2019;20(18):20. doi: https://doi.org/10.3390/ijms20184536
  • Peterson DM. Oat antioxidants. J Cereal Sci. 2001;33:115–129. doi: 10.1006/jcrs.2000.0349
  • Liu S, Yang N, Hou Z, et al. Antioxidant effects of oats avenanthramides on human serum. Agric Sci China. 2011;10(8):1301–1305. doi: 10.1016/S1671-2927(11)60122-3
  • Sur R, Nigam A, Grote D, et al. Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res. 2008;300:569–574. doi: 10.1007/s00403-008-0858-x
  • Peterson DM, Hahn MJ, Emmons CL. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 2002;79:473–478. doi: 10.1016/S0308-8146(02)00219-4
  • Collins FW. Oat phenolics: avenanthramides, novel substituted N-Cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem. 1989;37(1):60–66. doi: 10.1021/jf00085a015
  • Wise ML. Avenanthramides: Chemistry and Biosynthesis. Oats Nutrition and Technology. 2014;195–226. doi:10.1002/9781118354100.
  • Peterson DM, Dimberg LH. Avenanthramide concentrations and hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyltransferase activities in developing oats. J Cereal Sci. 2008;47:101–108. doi: 10.1016/j.jcs.2007.02.007
  • Beta T, Duodu KG. Bioactives: Antioxidants. Ref Modul Food Sci Elsevier. 2016. doi: 10.1016/b978-0-08-100596-5.00110-4
  • Pridal AA, Böttger W, Ross AB. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chem. 2018;253:93–100. doi: 10.1016/j.foodchem.2018.01.138
  • Wise ML. Tissue distribution of avenanthramides and gene expression of hydroxycinnamoyl-CoA: Hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) in benzothiadiazole-treated oat (Avena sativa). Can J Plant Sci. 2017;98:444–456. doi: 10.1139/cjps-2017-0108
  • Dvořáček V, Jágr M, Kozak AK, et al. Avenanthramides: unique bioactive substances of oat grain in the context of cultivar, cropping system, weather conditions and other grain parameters. Plants. 2021;10(11):10. doi: https://doi.org/10.3390/plants10112485
  • Dimberg LH, Molteberg EL, Solheim R, et al. Variation in oat groats due to variety, storage and heat treatment. I: phenolic compounds. J Cereal Sci. 1996;24:263–272. doi: 10.1006/jcrs.1996.0058
  • Bratt K, Sunnerheim K, Bryngelsson S, et al. Avenanthramides in oats (Avena sativa L.) and structure−Antioxidant activity relationships. J Agric Food Chem. 2003;51(3):594–600. doi: 10.1021/jf020544f
  • Dimberg LH, Gissén C, Nilsson J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. AMBIO A J Hum Environ. 2005;34(4):331. doi: 10.1639/0044-7447(2005)034[0331:pcioga]2.0.co;2
  • Dokuyucu T, Peterson DM, Akkaya A. Contents of antioxidant compounds in Turkish oats: simple phenolics and avenanthramide concentrations. Cereal Chem. 2003;80:542–543. doi: 10.1094/CCHEM.2003.80.5.542
  • Matsukawa T, Isobe T, Ishihara A, et al. Occurrence of avenanthramides and hydroxycinnamoyl-CoA: hydroxyanthranilate N-hydroxycinnamoyltransferase activity in oat seeds. Zeitschrift für Naturforschung C. 2000;55(1–2):30–36. doi: 10.1515/znc-2000-1-207
  • Brzozowski LJ, Hu H, Campbell MT, et al. Selection for seed size has uneven effects on specialized metabolite abundance in oat (Avena sativa L.). G3 Genes Genome Genet. 2022;12(3):12. doi: 10.1093/g3journal/jkab419
  • Nkhata Malunga L, Ames N, Mitchell Fetch J, et al. Genotypic and environmental variations in phenolic acid and avenanthramide content of Canadian oat (Avena sativa). Food Chem. 2022;388:132904. doi: 10.1016/j.foodchem.2022.132904
  • de Bruijn WJC, van Dinteren S, Gruppen H, et al. Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chem. 2019;277:682–690. doi: 10.1016/j.foodchem.2018.11.013
  • Multari S, Pihlava JM, Ollennu-Chuasam P, et al. Identification and quantification of avenanthramides and free and bound phenolic acids in eight cultivars of husked oat (Avena sativa L) from Finland. J Agric Food Chem. 2018;66:2900–2908. doi: 10.1021/acs.jafc.7b05726
  • Ji LL, Lay D, Chung E, et al. Effects of avenanthramides on oxidant generation and antioxidant enzyme activity in exercised rats. Nutr Res. 2003;23(11):1579–1590. doi: 10.1016/S0271-5317(03)00165-9
  • Chen CYO, Milbury PE, Collins FW, et al. Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J Nutr. 2007;137:1375–1382. doi: 10.1093/jn/137.6.1375
  • Ren Y, Yang X, Niu X, et al. Chemical characterization of the avenanthramide-rich extract from oat and its effect on d-galactose-induced oxidative stress in mice. J Agric Food Chem. 2011;59:206–211. doi: 10.1021/jf103938e
  • Landberg R, Sunnerheim K, Dimberg LH. Avenanthramides as lipoxygenase inhibitors. Heliyon. 2020;6:e04304. doi: 10.1016/j.heliyon.2020.e04304
  • Liu L, Zubik L, Collins FW, et al. The antiatherogenic potential of oat phenolic compounds. Atherosclerosis. 2004;175:39–49. doi: 10.1016/j.atherosclerosis.2004.01.044
  • Finetti F, Moglia A, Schiavo I, et al. Yeast-derived recombinant avenanthramides inhibit proliferation, migration and epithelial mesenchymal transition of colon cancer cells. Nutrients. 2018;10:1–16. doi: 10.3390/nu10091159
  • Koenig RT, Dickman JR, Kang CH, et al. Avenanthramide supplementation attenuates eccentric exercise-inflicted blood inflammatory markers in women. Eur J Appl Physiol. 2016;116:67–76. doi: 10.1007/s00421-015-3244-3
  • Hallstrom TC, Nevins JR. Balancing the decision of cell proliferation and cell fate. Cell Cycle. 2009;8:532–535. doi: 10.4161/cc.8.4.7609
  • Verardo V, Serea C, Segal R, et al. Free and bound minor polar compounds in oats: different extraction methods and analytical determinations. J Cereal Sci. 2011;54:211–217. doi: 10.1016/j.jcs.2011.05.005
  • Wang C, Eskiw CH. Cytoprotective effects of avenathramide C against oxidative and inflammatory stress in normal human dermal fibroblasts. Sci Rep. 2019;9:1–12. doi: 10.1038/s41598-019-39244-9
  • Rabinovitch A, Suarez-Pinzon WL. Cytokines and their roles in pancreatic islet β-Cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol. 1998;55(8):1139–1149. doi: 10.1016/S0006-2952(97)00492-9
  • Lv N, Song M-Y, Lee Y-R, et al. Dihydroavenanthramide D protects pancreatic β-cells from cytokine and streptozotocin toxicity. Biochem Biophys Res Commun. 2009;387(1):97–102. doi: 10.1016/j.bbrc.2009.06.133
  • Yang Q, Trinh HX, Imai S, et al. Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol Plant-Microbe Interact. 2004;17:81–89. doi: 10.1094/MPMI.2004.17.1.81
  • Nie L, Wise M, Peterson D, et al. Mechanism by which avenanthramide-C, a polyphenol of oats, blocks cell cycle progression in vascular smooth muscle cells. Free Radic Biol Med. 2006;41:702–708. doi: 10.1016/j.freeradbiomed.2006.04.020
  • Kim JM, Noh EM, Kwon KB, et al. Dihydroavenanthramide D prevents UV-irradiated generation of reactive oxygen species and expression of matrix metalloproteinase-1 and -3 in human dermal fibroblasts. Exp Dermatol. 2013;22:759–761. doi: 10.1111/exd.12243
  • Maliarova M, Mrazova V, Havrlentova M, et al. Optimization of parameters for extraction of avenanthramides from oat (Avena sativa L.) grain using response surface methodology (RSM). J Braz Chem Soc. 2015;26:2369–2378. doi: 10.5935/0103-5053.20150233
  • Zhou Y, Tian Y, Beltrame G, et al. Ultrasonication-assisted enzymatic bioprocessing as a green method for valorizing oat hulls. Food Chem. 2023;426:136658. doi: 10.1016/j.foodchem.2023.136658
  • Douglas CJ. Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci. 1996;1(6):171–178. doi: 10.1016/1360-1385(96)10019-4
  • Ishihara A, Matsukawa T, Miyagawa H, et al. Induction of hydroxycinnamoyl-CoA: hydroxyanthranilate N-Hydroxycinnamoyl-transferase (HHT) activity in oat leaves by Victorin C. Zeitschrift für Naturforschung C. 1997;52(11–12):756–760. doi: 10.1515/znc-1997-11-1206
  • Ishihara A, Ohtsu Y, Iwamura H. Expression of bifu nctiona I caffeoyl-CoA 3-0- methyltra nsferasein stress compensation and lignification. Phytochemistry. 1999;50(2):237–242. doi: 10.1016/S0031-9422(98)00535-4
  • Bryngelsson S, Ishihara A, Dimberg LH. Levels of avenanthramides and activity of hydroxycinnamoyl- CoA: Hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) in steeped or germinated oat samples. Cereal Chem. 2003;80:356–360. doi: 10.1094/CCHEM.2003.80.3.356
  • St-Pierre B, Luca VD. Chapter nine evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv Phytochem. 2000;34:285–315. doi: 10.1016/S0079-9920(00)80010-6
  • D’Auria JC. Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol. 2006;9(3):331–340. doi: 10.1016/j.pbi.2006.03.016
  • Andrea M, Cinzia C, Sergio L, et al. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast. Metab Eng. 2010;12(3):223–232. doi: 10.1016/j.ymben.2009.11.003
  • Sander M, Petersen M. Distinct substrate specificities and unusual substrate flexibilities of two hydroxycinnamoyltransferases, rosmarinic acid synthase and hydroxycinnamoyl-CoA: Shikimate hydroxycinnamoyl-transferase, from coleus blumei Benth. Planta. 2011;233:1157–1171. doi: 10.1007/s00425-011-1367-2
  • Eudes A, Pereira JH, Yogiswara S, et al. Exploiting the substrate promiscuity of hydroxycinnamoyl-CoA: Shikimate hydroxycinnamoyl transferase to reduce lignin. Plant Cell Physiol. 2016;57:568–579. doi: 10.1093/pcp/pcw016
  • Kriegshauser L, Knosp S, Grienenberger E, et al. Function of the hydroxycinnamoyl-Coa: shikimate hydroxycinnamoyl transferase is evolutionarily conserved in embryophytes. Plant Cell. 2021;33:1472–1491. doi: 10.1093/plcell/koab044
  • Raes J, Rohde A, Christensen JH, et al. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 2003;133:1051–1071. doi: 10.1104/pp.103.026484
  • Calabrese JC, Jordan DB, Boodhoo A, et al. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry. 2004;43:11403–11416. doi: 10.1021/bi049053+
  • Ritter H, Schulz GE. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell. 2004;16:3426–3436. doi: 10.1105/tpc.104.025288
  • Ehlting J, Provart NJ, Werck-Reichhart D. Functional annotation of the Arabidopsis P450 superfamily based on large-scale co-expression analysis. Biochem Soc Trans. 2006;34:1192–1198. doi: 10.1042/BST0341192
  • Khatri P, Chen L, Rajcan I, et al. Functional characterization of cinnamate 4-hydroxylase gene family in soybean (glycine max). PloS One. 2023;18(5):1–19. doi: 10.1371/journal.pone.0285698
  • Ishihara A, Ohtsu Y, Iwamura H. Induction of biosynthetic enzymes for avenanthramides in elicitor-treated oat leaves. Planta. 1999;81(4):512–518. doi: 10.1007/s004250050588
  • Neish AC. Formation of m- and p-coumaric acids by enzymatic deamination of the corresponding isomers of tyrosine. Phytochemistry. 1961;1:1–24. doi: 10.1016/S0031-9422(00)82806-X
  • Weissenböck G. Aktivitätsverlauf der phenylalanin-, tyrosin-ammonium-lyase (PAL, TAL) und chalkon-flavanon-isomerase im vergleich zur C-Glycosylflavon-Akkumulation im wachsenden hafersproß (Avena sativa L.) bei belichtung und dunkelheit. Zeitschrift Für Pflanzenphysiologie. 1975;74(3):226–254. doi: 10.1016/s0044-328x(75)80169-3
  • Lee D, Douglas CJ. Two divergent members of a tobacco 4-coumarate: coenzyme a ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins. Plant Physiol. 1996;112(1):193–205. doi: 10.1104/pp.112.1.193
  • Ehlting J, Büttner D, Wang Q, et al. Three 4-coumarate: coenzyme a ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 1999;19:9–20. doi: 10.1046/j.1365-313x.1999.00491.x
  • Costa MA, Bedgar DL, Moinuddin SGA, et al. Characterization in vitro and in vivo of the putative multigene 4-coumarate: CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochem. 2005;66:2072–2091. doi: 10.1016/j.phytochem.2005.06.022
  • Hamberger B, Hahlbrock K. The 4-coumarate: CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci U S A. 2004;101:2209–2214. doi: 10.1073/pnas.0307307101
  • Hu WJ, Kawaoka A, Tsai CJ, et al. Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (populus tremuloides). Proc Natl Acad Sci U S A. 1998;95:5407–5412. doi: 10.1073/pnas.95.9.5407
  • Cukovic D, Ehlting J, VanZiffle JA, et al. Structure and evolution of 4-coumarate: coenzyme a ligase (4CL) gene families. Biol Chem. 2001;382(4):645–654. doi: 10.1515/BC.2001.076
  • Collins FW. CHAPTER 10: oat phenolics: biochemistry and biological functionality. OATS Chem Technol. 2011;157–217. doi: 10.1094/9781891127649.010
  • Bassard JE, Richert L, Geerinck J, et al. Protein–Protein and Protein–Membrane Associations in the Lignin Pathway. Plant Cell. 2012;24(11):4465–4482. doi: 10.1105/tpc.112.102566
  • Mahesh V, Million-Rousseau R, Ullmann P, et al. Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol. 2007;64:145–159. doi: 10.1007/s11103-007-9141-3
  • Grimmig B, Kneusel RE, Junghanns KT, et al. Expression of bifunctional caffeoyl-CoA-3-O-methyltransferase in stress compensation and lignification. Plant Biol. 1999;1(3):299–310. doi: 10.1111/j.1438-8677.1999.tb00256.x
  • Humphreys JM, Hemm MR, Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci U S A. 1999;96:10045–10050. doi: 10.1073/pnas.96.18.10045
  • Ma QH, Xu Y. Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis. Biochimie. 2008;90:515–524. doi: 10.1016/j.biochi.2007.09.016
  • Yang G, Pan W, Zhang R, et al. Genome-wide identification and characterization of caffeoyl-coenzyme a O-methyltransferase genes related to the fusarium head blight response in wheat. BMC Genomics. 2021;22:1–16. doi: 10.1186/s12864-021-07849-y
  • Kahie MA, Wang Y, Fang P, et al. Evolution and expression analysis of the caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene family in jute (Corchorus L.). BMC Genomics. 2023;24:1–24. doi: 10.1186/s12864-023-09281-w
  • Li Z, Chen Y, Meesapyodsuk D, et al. The biosynthetic pathway of major avenanthramides in oat. Metabolites. 2019;9(8):9. doi: https://doi.org/10.3390/metabo9080163
  • Jágr M, Hofinger-Horvath A, Ergang P, et al. Comprehensive study of the effect of oat grain germination on the content of avenanthramides. Food Chem. 2024;437. doi: 10.1016/j.foodchem.2023.137807
  • Wu D, Shi Y, Zhang T, et al. The synergistic effect of ascorbic and abscisic acids on enriching AVC-dominated avenanthramides in oat germination process. Food Biosci. 2023;54. doi: 10.1016/j.fbio.2023.102850
  • Hu H, Gutierrez-Gonzalez JJ, Liu X, et al. Heritable temporal gene expression patterns correlate with metabolomic seed content in developing hexaploid oat seed. Plant Biotechnol J. 2020;18:1211–1222. doi: 10.1111/pbi.13286
  • Alfieri M, Redaelli R. Oat phenolic content and total antioxidant capacity during grain development. J Cereal Sci. 2015;65:39–42. doi: 10.1016/j.jcs.2015.05.013
  • Wise ML, Vinje MA, Conley SP. Field application of benzothiadiazole (BTH) to oats (Avena sativa): effects on crown rust resistance and avenanthramide production. Crop sci. 2016;56:1904–1913. doi: 10.2135/cropsci2015.11.0712
  • Kim S, Kim TH, Jeong YJ, et al. Synergistic effect of methyl jasmonate and abscisic acid co-treatment on avenanthramide production in germinating oats. IJMS. 2021;22(9):22. doi: https://doi.org/10.3390/ijms22094779
  • Ding J, Johnson J, Chu YF, et al. Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem. 2019;283:239–247. doi: 10.1016/j.foodchem.2018.12.136
  • Okazaki Y, Isobe T, Iwata Y, et al. Metabolism of avenanthramide phytoalexins in oats. Plant J. 2004;39:560–572. doi: 10.1111/j.1365-313X.2004.02163.x
  • Mayama S, Tani T, Ueno T, et al. The purification of victorin and its phytoalexin elicitor activity in oat leaves. Physiol Mol Plant Pathol. 1986;29:1–18. doi: 10.1016/S0048-4059(86)80033-9
  • Bordin APA, Mayama S, Tani T. Potential elicitors for avenalumin accumulation in oat leaves. Japanese J Phytopathol. 1991;57(5):688–695. doi: 10.3186/jjphytopath.57.688
  • Ishihara A, Miyagawa H, Kuwahara Y, et al. Involvement of Ca2+ ion in phytoalexin induction in oats. Plant Sci. 1996;115:9–16. doi: 10.1016/0168-9452(95)04322-5
  • Oraby HF, El-Tohamy MF, Kamel AM, et al. Changes in the concentration of avenanthramides in response to salinity stress in CBF3 transgenic oat. J Cereal Sci. 2017;76:263–270. doi: 10.1016/j.jcs.2017.06.010
  • Hernandez-Hernandez O, Pereira-Caro G, Borges G, et al. Characterization and antioxidant activity of avenanthramides from selected oat lines developed by mutagenesis technique. Food Chem. 2021;343:128408. doi: 10.1016/j.foodchem.2020.128408
  • Eudes A, Juminaga D, Baidoo EEK, et al. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb Cell Fact. 2013;12:1–10. doi: 10.1186/1475-2859-12-62
  • Moglia A, Goitre L, Gianoglio S, et al. Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. BioFactors. 2015;41:15–27. doi: 10.1002/biof.1197
  • Lee SJ, Sim GY, Kang H, et al. Synthesis of avenanthramides using engineered Escherichia coli. Microb Cell Fact. 2018;17:1–12. doi: 10.1186/s12934-018-0896-9