952
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring biorefinery alternatives for biowaste valorization: a techno-economic assessment of enzymatic hydrolysis coupled with anaerobic digestion or solid-state fermentation for high-value bioproducts

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2307668 | Received 27 Oct 2023, Accepted 15 Jan 2024, Published online: 24 Jan 2024

References

  • Budzianowski WM, Postawa K. Total chain integration of sustainable biorefinery systems. Appl Energy. 2016;184:1432–18. doi: 10.1016/j.apenergy.2016.06.050
  • Sánchez A, Artola A, Gea T, et al. A new paradigm for waste management of organic materials. Waste Manag. 2015;42:1–2. doi: 10.1016/j.wasman.2015.05.002
  • Mayer F, Bhandari R, Gäth SA, et al. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Sci Total Environ. 2020;721. doi: 10.1016/j.scitotenv.2020.137731
  • Moreno AD, Magdalena JA, Oliva JM, et al. Sequential bioethanol and methane production from municipal solid waste: an integrated biorefinery strategy towards cost-effectiveness, process saf. Environ Prot. 2021;146:424–431. doi: 10.1016/j.psep.2020.09.022
  • Molina-Peñate E, Artola A, Sánchez A. Organic municipal waste as feedstock for biorefineries: bioconversion technologies integration and challenges. Rev Environ Sci Bio/Technol. 2022;211(21):247–267. doi: 10.1007/S11157-021-09605-W
  • Font X, Sánchez A. Significance of anaerobic digestion in circular bioeconomy. Biomass, Biofuels, Biochem Circ Bioeconomy-Current Dev Futur Outlook. 2021;269–289. doi: 10.1016/B978-0-12-821878-5.00020-9
  • Fava F, Totaro G, Diels L, et al. Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnology. 2015;32(1):100–108. doi: 10.1016/j.nbt.2013.11.003
  • González D, Gabriel D, Sánchez A. Odors emitted from biological waste and wastewater treatment plants: a mini-review. Atmos. 2022;13(13):798. doi: 10.3390/ATMOS13050798
  • Geissdoerfer M, Savaget P, Bocken NMP, et al. The circular economy – a new sustainability paradigm? J Clean Prod. 2017;143:757–768. doi: 10.1016/j.jclepro.2016.12.048
  • Wang H, Tsang CW, To MH, et al. Techno-economic evaluation of a biorefinery applying food waste for sophorolipid production – a case study for Hong Kong. Bioresour Technol. 2020;303:122852. doi: 10.1016/j.biortech.2020.122852
  • Kwan TH, Ong KL, Haque MA, et al. Biorefinery of food and beverage waste valorisation for sugar syrups production: techno-economic assessment, process Saf. Environ Prot. 2019;121:194–208. doi: 10.1016/j.psep.2018.10.018
  • Meng F, Dornau A, Mcqueen Mason SJ, et al. Bioethanol from autoclaved municipal solid waste: assessment of environmental and financial viability under policy contexts, appl. Appl Energy. 2021;298:117118. doi: 10.1016/j.apenergy.2021.117118
  • Ladakis D, Stylianou E, Ioannidou SM, et al. Biorefinery development, techno-economic evaluation and environmental impact analysis for the conversion of the organic fraction of municipal solid waste into succinic acid and value-added fractions. Bioresour Technol. 2022;354:127172. doi: 10.1016/j.biortech.2022.127172
  • Demichelis F, Fiore S, Pleissner D, et al. Technical and economic assessment of food waste valorization through a biorefinery chain, renew. Sustain Energy Rev. 2018;94:38–48. doi: 10.1016/j.rser.2018.05.064
  • Angouria-Tsorochidou E, Teigiserova DA, Thomsen M. Environmental and economic assessment of decentralized bioenergy and biorefinery networks treating urban biowaste, Resour. Conserv Recycl. 2022;176:105898. doi: 10.1016/j.resconrec.2021.105898
  • Pleissner D, Peinemann JC. The challenges of using organic municipal solid waste as source of secondary raw materials, waste and biomass valorization. Waste Biomass Valorization. 2020;11(2):435–446. doi: https://doi.org/10.1007/s12649-018-0497-1
  • Molina-Peñate E, Del Carmen Vargas-García M, Artola A, et al. Filling in the gaps in biowaste biorefineries: the use of the solid residue after enzymatic hydrolysis for the production of biopesticides through solid-state fermentation. Waste Manag. 2023;161:92–103. doi: 10.1016/j.wasman.2023.02.029
  • Mejias L, Estrada M, Barrena R, et al. A novel two-stage aeration strategy for Bacillus thuringiensis biopesticide production from biowaste digestate through solid-state fermentation. Biochem Eng J. 2020;161:107644. doi: 10.1016/j.bej.2020.107644
  • Rodríguez P, Cerda A, Font X, et al. Valorisation of biowaste digestate through solid state fermentation to produce biopesticides from Bacillus thuringiensis. Waste Manag. 2019;93:63–71. doi: 10.1016/j.wasman.2019.05.026
  • Sala A, Barrena R, Artola A, et al. Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Crit Rev Environ Sci Technol. 2019;49(8):655–694. doi: 10.1080/10643389.2018.1557497
  • Thakur N, Kaur S, Tomar P, et al. Microbial biopesticides: Current status and advancement for sustainable agriculture and environment, New Futur. Dev Microb Biotechnol Bioeng Trends Microb Biotechnol Sustain Agric Biomed Syst Divers Funct Perspec. 2020;243–282. doi: 10.1016/b978-0-12-820526-6.00016-6
  • Biopesticides market size & share analysis - industry research report - growth trends. [cited 2023 Oct 12]. https://www.mordorintelligence.com/industry-reports/global-biopesticides-market-industry
  • Bravo A, Likitvivatanavong S, Gill SS, et al. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol. 2011;41(7):423–431. doi: 10.1016/j.ibmb.2011.02.006
  • Le Pera A, Sellaro M, Pellegrino C, et al. Improved full-scale anaerobic digestion of food waste: a core technology in the biorefinery approach. Bioresour Technol Reports. 2022;19:101126. doi: 10.1016/j.biteb.2022.101126
  • Guo H, Chang Y, Lee DJ. Enzymatic saccharification of lignocellulosic biorefinery: research focuses. Bioresour Technol. 2018;252:198–215. doi: 10.1016/j.biortech.2017.12.062
  • Biz A, Finkler ATJ, Pitol LO, et al. Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochem Eng J. 2016;111:54–62. doi: 10.1016/j.bej.2016.03.007
  • Cerda A, Mejías L, Gea T, et al. Cellulase and xylanase production at pilot scale by solid-state fermentation from coffee husk using specialized consortia: the consistency of the process and the microbial communities involved. Bioresour Technol. 2017;243:1059–1068. doi: 10.1016/j.biortech.2017.07.076
  • Llimós J, Martínez-Avila O, Marti E, et al. Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme, biomass convers. Biomass Conv Bioref. 2022;12(9):3921–3932. doi: 10.1007/S13399-020-00918-4/
  • Pranay K, Padmadeo SR, Prasad B. Production of amylase from Bacillus subtilis sp. strain KR1 under solid state fermentation on different agrowastes. Biocatal Agric Biotechnol. 2019;21:101300. doi: 10.1016/j.bcab.2019.101300
  • Residuos municipales. Agència de Residus de Catalunya. [cited 2023 Oct 6]. https://residus.gencat.cat/es/ambits_dactuacio/recollida_selectiva/residus_municipals/
  • Molina-Peñate E, Sánchez A, Artola A. Enzymatic hydrolysis of the organic fraction of municipal solid waste: optimization and valorization of the solid fraction for Bacillus thuringiensis biopesticide production through solid-state fermentation. Waste Manag. 2022;137:304–311. doi: 10.1016/j.wasman.2021.11.014
  • Molina-Peñate E, Arenòs N, Sánchez A, et al. Bacillus thuringiensis production through solid-state fermentation using organic fraction of municipal solid waste (OFMSW) enzymatic hydrolysate. Waste Biomass Valorization. 2023;14(5):1433–1445. doi: 10.1007/s12649-022-01978-5
  • López-Gómez JP, Latorre-Sánchez M, Unger P, et al. Assessing the organic fraction of municipal solid wastes for the production of lactic acid. Biochem Eng J. 2019;150. doi: 10.1016/j.bej.2019.107251
  • Kuo PC, Yu J. Process simulation and techno-economic analysis for production of industrial sugars from lignocellulosic biomass, Ind. Crops Prod. 2020;155:112783. doi: 10.1016/j.indcrop.2020.112783
  • Manjunatha GS, Chavan D, Lakshmikanthan P, et al. Specific heat and thermal conductivity of municipal solid waste and its effect on landfill fires. Waste Manag. 2020;116:120–130. doi: 10.1016/j.wasman.2020.07.033
  • Violidakis I, Drosatos P, Nikolopoulos N. Critical review of current industrial scale lignite drying technologies, low-rank coals power gener. Fuel Chem Prod. 2017;41–71. doi: 10.1016/B978-0-08-100895-9.00003-6
  • Puyuelo B, Gea T, Sánchez A. A new control strategy for the composting process based on the oxygen uptake rate. Chem Eng J. 2010;165:161–169. doi: 10.1016/j.cej.2010.09.011
  • Meyer H-P, Minas W, Schmidhalter D. Industrial-scale fermentation, Ind. Biotechnol. 2017;1–53. doi: 10.1002/9783527807833.ch1
  • Abad V, Avila R, Vicent T, et al. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: biogas production impact and economic factors. Bioresour Technol. 2019;283:10–17. doi: 10.1016/j.biortech.2019.03.064
  • Khoshnevisan B, Tsapekos P, Alvarado-Morales M, et al. Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. J Clean Prod. 2018;180:360–374. doi: 10.1016/j.jclepro.2018.01.198
  • Tampio E, Marttinen S, Rintala J. Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J Clean Prod. 2016;125:22–32. doi: 10.1016/j.jclepro.2016.03.127
  • Rajendran K, Kankanala HR, Martinsson R, et al. Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): a case study on an industrial process, appl. Appl Energy. 2014;125:84–92. doi: 10.1016/j.apenergy.2014.03.041
  • Lantz M. The economic performance of combined heat and power from biogas produced from manure in Sweden – a comparison of different CHP technologies, appl. Appl Energy. 2012;98:502–511. doi: 10.1016/j.apenergy.2012.04.015
  • Seruga P, Krzywonos M, Seruga A, et al. Anaerobic digestion performance: separate collected vs. mechanical segregated organic fractions of municipal solid waste as feedstock. Energies. 2020;13(15):3768. doi: https://doi.org/10.3390/en13153768
  • Rapport JL, Zhang R, Jenkins BM, et al. Modeling the performance of the anaerobic phased solids digester system for biogas energy production. Biomass Bioenergy. 2011;35(3):1263–1272. doi: https://doi.org/10.1016/j.biombioe.2010.12.021
  • Liu G, Zhang J, Bao J. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst Eng. 2016;39(1):133–140. doi: 10.1007/s00449-015-1497-1
  • Stylianou E, Pateraki C, Ladakis D, et al. Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnol Biofuels. 2020;13(1):1–16. doi: https://doi.org/10.1186/s13068-020-01708-w
  • Abdullah J, Greetham D. Optimizing cellulase production from municipal solid waste (MSW) using solid state fermentation (SSF). Artic J Fundam Renew Energy Appl. 2016 3;6(3). doi: 10.4172/2090-4541.1000206
  • Towler G, Sinnott R. Chemical engineering design: principles, practice and economics of plant and process design. Oxford: Butterworth-Heinemann; 2021.
  • Ulrich GD. A Guide to chemical engineering process design and economics. New York (NY): Wiley; 1984.
  • Woods DR. Rules of thumb in engineering practice, rules thumb eng. Pract. 2007;1–458. doi: 10.1002/9783527611119
  • Preus de l’energia. Institut Català d’Energia. [cited 2023 Oct 11]. https://icaen.gencat.cat/ca/energia/preus/
  • Precio por municipios y evolución. Agencia Catalana del Agua. [cited 2023 Oct 11]. https://aca.gencat.cat/es/laca/observatori-del-preu-de-laigua/Preu-per-municipis-i-evolucio/index.html
  • Zhang C, Bozileva E, van de Klis F, et al. Integration of galacturonic acid extraction with alkaline protein extraction from green tea leaf residue, Ind. Crops Prod. 2016;89:95–102. doi: 10.1016/j.indcrop.2016.04.074
  • ¿Qué es la FORM?. Agència de Residus de Catalunya. [cited 2023 Oct 11]. https://residus.gencat.cat/es/ambits_dactuacio/recollidaselectiva/residusmunicipals/materiaorganicaformfv/queeslaform/
  • Chen X, Shekiro J, Pschorn T, et al. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price. Biotechnol Biofuels. 2015;8(1):1–13. doi: https://doi.org/10.1186/S13068-015-0358-0
  • Andreola C, González-Camejo J, Tambone F, et al. Techno-economic assessment of biorefinery scenarios based on mollusc and fish residuals. Waste Manag. 2023;166:294–304. doi: 10.1016/j.wasman.2023.05.014
  • Panigrahi S, Dubey BK. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste, renew. Renewable Energy. 2019;143:779–797. doi: 10.1016/j.renene.2019.05.040
  • Kendir Çakmak E, Ugurlu A. Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment. Algal Res. 2020;50:101979. doi: 10.1016/j.algal.2020.101979
  • Johnson E. Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels, Bioprod Biorefining. 2016;10(2):164–174. doi: 10.1002/bbb.1634