45
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A compact antipodal vivaldi antenna for modern surveillance systems

&
Pages 119-130 | Received 02 Sep 2022, Accepted 18 Feb 2023, Published online: 20 Mar 2023

References

  • Abdulmjeed, A., Elwi, T. A., & Kurnaz, S. (2021). Metamaterial Vivaldi printed circuit antenna based solar panel for self-powered wireless systems. Progress in Electromagnetics Research M, 102, 181–192. https://doi.org/10.2528/PIERM21032406
  • Amiri, M., Tofigh, F., Yazdi, A. G., & Abolhasan, M. (2017). Exponential antipodal Vivaldi antenna with exponential dielectric lens. IEEE Antennas and Wireless Propagation Letters, 16, 1792–1795. https://doi.org/10.1109/LAWP.2017.2679125
  • A, M. S., Moosazadeh, M., Ranasinghe, D. C., & Fumeaux, C. (2017). Antipodal Vivaldi antenna for sum and difference radiation patterns with reduced grating lobes. IEEE Antennas and Wireless Propagation Letters, 16, 3139–3142. https://doi.org/10.1109/LAWP.2017.2764947
  • Biswas, B., Ghatak, R., & Poddar, D. R. (2017). A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Transactions on Antennas and Propagation, 65(11), 6126–6129. https://doi.org/10.1109/TAP.2017.2748361
  • Deng, J. Y., Cao, R., Sun, D., Zhang, Y., & Guo, L. -X. (2020). Bandwidth enhancement of an antipodal Vivaldi antenna facilitated by double-ridged substrate-integrated waveguide. IEEE Transactions on Antennas and Propagation, 68(12), 8192–8196. https://doi.org/10.1109/TAP.2020.2997474
  • Fei, P., Jiao, Y. C., Hu, W., & Zhang, F. S. (2011). A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 10, 127–130. https://doi.org/10.1109/LAWP.2011.2112329
  • Hanbay, E., Aydemir, M. E. High gain ultrawide band Vivaldi antenna design for mini/micro satellite synthetic aperture radar applications. IEEE International Conference on Recent advances in Space Technologies (RAST-2019); 2019 June; Istanbul, Turkey. p. 491–495. https://doi.org/10.1109/RAST.2019.8767888.
  • Li, X., Zhou, H., Gao, Z., Wang, H., & Lv, G. (2017). Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters, 16, 2943–2946. https://doi.org/10.1109/LAWP.2017.2754860
  • Lu, Y., Fang, C., Ye, X. Antipodal Vivaldi antenna designed for microwave imaging system. 2019 IEEE International Applied Computational Electromagnetic Society Symposium (ACES); 2019 August; Nanjing, China. p. 1–2. https://doi.org/10.23919/ACES48530.2019.9060467.
  • Mao, S. G., Yeh, J. C., & Chen, S. L. (2009). Ultrawideband circularly polarized spiral antenna using integrated balun with application to time-domain target detection. IEEE Transactions on Antennas and Propagation, 57(7), 1914–1920. https://doi.org/10.1109/TAP.2009.2021883
  • Moosazadeh, M., & Kharkovsky, S. (2015). A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas and Wireless Propagation Letters, 15, 552–555. https://doi.org/10.1109/lawp.2015.2457919
  • Natarajan, R., V, G. J., Kanagasabai, M., & Kumar Shrivastav, A. (2015). A compact antipodal Vivaldi antenna for uwb applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560. https://doi.org/10.1109/LAWP.2015.2412255
  • Oliveira, A. M. D., Neto, A. M. D. O., Perotoni, M. B., Nurhayati, N., Baudrand, H., de Carvalho, A., & Justo, J. F. (2021). A fern antipodal Vivaldi antenna for near-field microwave imaging medical applications. IEEE Transactions on Antennas and Propagation, 69(12), 8816–8829. https://doi.org/10.1109/TAP.2021.3096942
  • Oliveira, A. M. D., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 134–1337. https://doi.org/10.1109/LAWP.2015.2404875
  • Ravichandran, H., Jayakrishnan, V. M., Rao, S. N. A slotted compact antipodal Vivaldi antenna (CAVA) for UWB applications. 2019 IEEE International Conference on Communication and Electronics Systems (ICCES); 2019 July; Coimbatore, India. p. 1766–1770. https://doi.org/10.1109/ICCES45898.2019.9002422.
  • Shi, X., Cao, Y., Hu, Y., Luo, X., Yang, H., & Ye, L. H. (2021). A high-gain antipodal Vivaldi antenna with director and metamaterial at 1–28 GHz. IEEE Antennas and Wireless Propagation Letters, 20(12), 2432–2436. https://doi.org/10.1109/LAWP.2021.3114061
  • Sonnenberg, G. J. (2013). Radar and electronic navigation, Elsevier science, 6th
  • Teni, G., Zhang, N., Qiu, J., & Zhang, P. (2013). Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas and Wireless Propagation Letters, 12, 417–420. https://doi.org/10.1109/LAWP.2013.2253592
  • Thaiwirot, W., Kamoldej, D., Detchporn, P., Thongdit, P., & Tangwachirapan, S. (2022). Design of ultra-wideband and constant gain antipodal Vivaldi antenna with corrugations. 2022 IEEE International Electrical Engineering Congress (iEEC); March; Khon Kaen, Thailand. p. 1–4. https://doi.org/10.1109/iEECON53204.2022.9741613.
  • Zhang, Y., Li, E., Wang, C., & Guo, G. (2016). Radiation enhanced Vivaldi antenna with double antipodal structure. IEEE Antennas and Wireless Propagation Letters, 16, 561–564. https://doi.org/10.1109/LAWP.2016.2588882
  • Zhang, K., Tan, R., Jiang, Z. H., Huang, Y., Tang, L., & Hong, W. (2022). A compact ultrawideband dual-polarized Vivaldi antenna with radar cross section reduction. IEEE Antennas and Wireless Propagation Letters, 21(7), 1323–1327. https://doi.org/10.1109/LAWP.2022.3166821
  • Zhu, S., Liu, H., Chen, Z., & Wen, P. (2018). A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application. IEEE Antennas and Wireless Propagation Letters, 17(5), 776–779. https://doi.org/10.1109/LAWP.2018.2816038
  • Zhu, S., Liu, H., & Wen, P. (2019). A new method for achieving miniaturization and gain enhancement of Vivaldi antenna array based on anisotropic metasurface. IEEE Transactions on Antennas and Propagation, 67(3), 1952–1956. https://doi.org/10.1109/TAP.2019.2891220

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.