132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparative evaluation of memristor-based compact 4T2M SRAM with different memristor models

, , &
Pages 144-155 | Received 07 Aug 2022, Accepted 30 Mar 2023, Published online: 14 May 2023

References

  • Biolek, Z., & Biolek, D. (2009, June). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18 2.
  • Chang, M. -F., & Shen, S. -J. (2009). A process variation tolerant embedded split-gate flash memory using pre-stable current sensing scheme. IEEE Journal of Solid-State Circuits, 44(3), 987–994. https://doi.org/10.1109/JSSC.2009.2013763
  • Chiu, P. F., Chang, M. F., Wu, C. W., Chuang, C. H., Sheu, S. S., Chen, Y. S., & Tsai, M. J. (2012). Low store energy, low VDDmin, 8T2R nonvolatile latch and SRAM with vertical-stacked resistive memory (memristor) devices for low power mobile applications. IEEE Journal of Solid-State Circuits, 47(6), 1483–1496. https://doi.org/10.1109/JSSC.2012.2192661
  • Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337
  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223. https://doi.org/10.1109/PROC.1976.10092
  • Ho, P. W. C., Almurib, H. A. F., & Kumar, T. N. (2016). Memristive SRAM cell of seven transistors and one memristor. Journal of Semiconductors, 37(10), 104002. https://doi.org/10.1088/1674-4926/37/10/104002
  • Jadon, A., & Akashe, S. (2014). Hybrid CMOS-memristor 4T-NVSRAM cell for low power applications. 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH), 369–373. https://doi.org/10.1109/CIPECH.2014.7019108
  • Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 30(4), 661–675. https://doi.org/10.1088/0143-0807/30/4/001
  • Maruf, M. H., & Ali, S. I. (2020). Review and comparative study of I-V characteristics of different memristor models with sinusoidal input. International Journal of Electronics, 107(3), 349–375. https://doi.org/10.1080/00207217.2019.1661021
  • Maruf, M. H., Ashrafi, M. S. I., Shihavuddin, A. S. M., & Ali, S. I. (2021). Design and comparative analysis of memristor-based transistor-less combinational logic circuits. International Journal of Electronics, 109(8), 1291–1306. https://doi.org/10.1080/00207217.2021.1966672
  • Oğuz, Y. (2018). Mathematical modeling of memristors. Memristor and Memristive Neural Networks, April. https://doi.org/10.5772/intechopen.73921
  • Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105. https://doi.org/10.1109/TED.2011.2158004
  • Rohit, & Saini, G. (2015). A stable and power efficient SRAM cell. 2015 International Conference on Computer, Communication and Control (IC4), 1–5.
  • Sarwar, S. S., Saqueb, S. A. N., Quaiyum, F., & Rashid, A. B. M. H. U. (2013). Memristor-based nonvolatile random access memory: Hybrid architecture for low power compact memory design. Institute of Electrical and Electronics EngineersAccess, 1, 29–34. https://doi.org/10.1109/ACCESS.2013.2259891
  • Shaarawy, N., Ghoneima, M., & Radwan, A. G. (2015). 2T2M memristor-based memory cell for higher stability RRAM modules. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 1418–1421. https://doi.org/10.1109/ISCAS.2015.7168909
  • Sharif, K. F., Islam, R., Biswas, S. N., & Groza, V. (2017). 4 transistor and 2 memristor based memory. ISCAIE 2017 - 2017 IEEE Symposium on Computer Applications and Industrial Electronics, 37–40. https://doi.org/10.1109/ISCAIE.2017.8074946
  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83. https://doi.org/10.1038/nature06932
  • Yakopcic, C. (2014). Memristor Device Modeling and Circuit Design for Read Out Integrated Circuits, Memory Architectures, and Neuromorphic Systems [University of Dayton]. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1398725462

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.