1,725
Views
0
CrossRef citations to date
0
Altmetric
Review

A comprehensive overview of advanced dynamic in vitro intestinal and hepatic cell culture models

, , , & ORCID Icon
Article: 2163820 | Received 23 Aug 2022, Accepted 22 Dec 2022, Published online: 21 Jan 2023

References

  • Naidoo P, Bouharati C, Rambiritch V, Jose N, Karamchand S, Chilton R, Leisegang R. Real-world evidence and product development: opportunities, challenges and risk mitigation. Wien Klin Wochenschr. 2021;9:13–47. doi:10.1007/s00508-021-01851-w.
  • Mohs RC, Greig NH. Drug discovery and development: role of basic biological research. Alzheimer’s Dement Transl Res Clin Interv. 2017;3(4):651–657. doi:10.1016/j.trci.2017.10.005.
  • Seyhan AA. Lost in translation: the Valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Transl Med Commun. 2019;4(1):18. doi:10.1186/S41231-019-0050-7.
  • Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA - J Am Med Assoc. 2020;323(9):844–853. doi:10.1001/jama.2020.1166.
  • Cousins RPC. Medicines discovery for auditory disorders: challenges for industry. J Acoust Soc Am. 2019;146(5):3652–3667. doi:10.1121/1.5132706.
  • Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic to Transl Sci. 2019;4(7):845–854. doi:10.1016/j.jacbts.2019.10.008.
  • Shuler ML. Organ-, body- and disease-on-a-chip systems. Lab Chip. 2017;17(14):2345–2346. doi:10.1039/C7LC90068F.
  • Directive 2010/63/EU of the European parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes . Official Journal of the European Union. October 20, 2010:33–79.
  • Zuang V, Dura A, Worth A, David AB, Sofia BL, Elisabet BE, Stephanie BO, Donatella CA, Silvia CA, Sandra CO, Raffaella CO, Pierre DE. Non-animal methods in science and regulation-EURL ECVAM status report (2020. EUR 30553 EN. 2021. doi:10.2760/719755.
  • Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics. 2019;11(3):129. doi:10.3390/pharmaceutics11030129.
  • Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci. 2018;75(1):149–160. doi:10.1007/S00018-017-2693-8.
  • Jung SM, Kim S. In vitro models of the small intestine for studying intestinal diseases. Front Microbiol. 2022;12:767038. doi:10.3389/FMICB.2021.767038/BIBTEX.
  • Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. doi:10.3389/fphar.2020.00524.
  • Avvari RK. Biomechanics of the small intestinal contractions. In: Qi X, Koruth S, editors. Digestive system - recent advances. 1st. IntechOpen; 2019. p. 1–25. doi:10.5772/INTECHOPEN.86539.
  • Izumi K, Kato H, Feinberg SE. Tissue engineered oral Mucosa. In: Vishwakarma A, Sharpe P, Shi S, Ramalingam M, editors. Stem cell biology and tissue engineering in dental sciences. Vol 1. 1st. Elsevier Inc.; 2015. p. 721–731. doi:10.1016/B978-0-12-397157-9.00077-1.
  • Collins SD, Yuen G, Tu T. In vitro models of the liver: disease modeling, drug discovery and clinical applications. Tirnitz-Parker JEE, editor. Hepatocellular Carcinoma. 1st. Codon Publications; 2019. 47–67. 10.15586/hepatocellularcarcinoma.2019.ch3.
  • Lee SA, No DY, Kang E, Ju J, Kim DS, Lee SH. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip. 2013;13(18):3529–3537. doi:10.1039/c3lc50197c.
  • Tennant BC, Center SA. Hepatic Function. In: Kaneko J, Harvey J, Bruss M, editors. Clinical biochemistry of domestic animals. Vol 1. 6th. Elsevier Inc.; 2008. p. 379–412. doi:10.1016/B978-0-12-370491-7.00013-1.
  • Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell Press. 2013;154(2):274–284. doi:10.1016/j.cell.2013.07.004.
  • Furuya S, Furuya K. Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. G HB, J FD, K WJ, Friedlander M, Jarvik J, editors. International review of cell and molecular biology. Vol. 304. 1st. Elsevier Inc.; 2013. 133–189. 10.1016/B978-0-12-407696-9.00003-8
  • Lange K. Fundamental role of microvilli in the main functions of differentiated cells: outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol. 2011;226(4):896–927. doi:10.1002/jcp.22302.
  • Sicard JF, Bihan G, Le, Vogeleer P, Jacques M, Harel J. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387. doi:10.3389/fcimb.2017.00387.
  • X-G L, Chen M, Zhao S, Wang X. Intestinal models for personalized medicine: from conventional models to microfluidic primary intestine-on-a-chip. Stem Cell Rev Reports. 2022;18(6):2137–2151. doi:10.1007/S12015-021-10205-Y.
  • Aguilar-Rojas A, Olivo-Marin J-C, Guillen N. Human intestinal models to study interactions between intestine and microbes. Open Biol. 2020;10(10):200199. doi:10.1098/RSOB.200199.
  • Sekiguchi R, Yamada KM. Basement Membranes in Development and Disease. Curr Top Dev Biol. 2018;130:143–191. doi:10.1016/BS.CTDB.2018.02.005.
  • Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater. 2020;116:67–83. doi:10.1016/J.ACTBIO.2020.08.041.
  • Kmiec Z. Cooperation of liver cells in health and disease. Vol 161.1st,Beck F, Christ B, Kriz W, et al.eds. Springer-Verlag;Berlin Heidelberg;2001.10.1007/978-3-642-56553-3.
  • Török G, Erdei Z, Lilienberg J, Apáti Á, Homolya L, Laconi E. The importance of transporters and cell polarization for the evaluation of human stem cell-derived hepatic cells. PLoS One. 2020;15(1):e0227751. doi:10.1371/journal.pone.0227751.
  • Llewellyn SV, Niemeijer M, Nymark P, Moné MJ, van de Water B, Conway GE, Jenkins GJS, Doak SH. In vitro three-dimensional liver models for nanomaterial DNA damage assessment. Small . 2021;17(15):2006055. doi:10.1002/SMLL.202006055.
  • Ho CT, Lin RZ, Chen RJ, Chin C-K, Gong S-E, Chang H-Y, Peng H-L, Hsu L, Yew T-R, Chang S-F, et al. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip. 2013;13(18):3578–3587. doi:10.1039/c3lc50402f.
  • Lee SW, Jung DJ, Jeong GS. Gaining new biological and therapeutic applications into the liver with 3D in vitro liver models. Tissue Eng Regen Med. 2020;17(6):731–745. doi:10.1007/s13770-020-00245-9.
  • Kimura H, Sakai Y, Fujii T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet. 2018;33(1):43–48. doi:10.1016/j.dmpk.2017.11.003.
  • Zhang S, Chen W, Zhu C. Liver Structure. In: Li L, editor. Artificial Liver. 1st. Springer Singapore; 2021. p. 21–47. doi:10.1007/978-981-15-5984-6_2.
  • Agarwal T, Subramanian B, Maiti TK. Liver tissue engineering: challenges and opportunities. ACS Biomater Sci Eng. 2019;5(9):4167–4182. doi:10.1021/acsbiomaterials.9b00745.
  • Saji Joseph J, Tebogo Malindisa S, Ntwasa M. Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery. In: Mehanna RA, editor. Cell Culture. 1st. IntechOpen; 2019. p. 21–42. doi:10.5772/intechopen.81552.
  • Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910–919. doi:10.5114/aoms.2016.63743.
  • Huang RL, Liu K, Li Q. Bone regeneration following the in vivo bioreactor principle: is in vitro manipulation of exogenous elements still needed? Regen Med. 2016;11(5):475–481. doi:10.2217/RME-2016-0021.
  • Lee PJ, Gaige TA, Hung PJ. Dynamic cell culture: a microfluidic function generator for live cell microscopy. Lab Chip. 2009;9(1):164–166. doi:10.1039/b807682k.
  • Clementi A, Egger D, Charwat V, Kasper C. Cell culture conditions: cultivation of stem cells under dynamic conditions. In: J MG, Marolt Presen D, Oreffo R, Redl H, Wolbank S, editors. Cell engineering and regeneration. 1st. Springer International Publishing; 2018. p. 1–33. doi:10.1007/978-3-319-37076-7_58-1.
  • Frey LJ, Krull R. Microbioreactors for process development and cell-based screening studies. In: Bahnemann J, Grünberger A, editors. Microfluidics in biotechnology. Advances in biochemical engineering/biotechnology. Cham: Springer; 2020. p. 67–100. doi:10.1007/10_2020_130.
  • Grün C, Altmann B, Gottwald E. Advanced 3D cell culture techniques in micro-bioreactors, Part I: a systematic analysis of the literature published between 2000 and 2020. Processes. 2020;8(12):1656. doi:10.3390/PR8121656.
  • Altmann B, Grün C, Nies C, Gottwald E. Advanced 3D cell culture techniques in micro-bioreactors, Part II: systems and applications. Processes. 2020;9(1):21. doi:10.3390/PR9010021.
  • Freed LE, Guilak F. Engineering functional tissues. In: Lanza R, Langer R, Vacanti J, editors. Principles of Tissue Engineering. 3rd. Academic Press; 2007. p. 137–153. doi:10.1016/B978-012370615-7/50015-9.
  • Singh M, Kasper FK, Mikos AG. Tissue engineering scaffolds. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials: third edition. II.6.3. Academic Press;2013. p. 1138–1159. doi:10.1016/B978-0-08-087780-8.00110-8.
  • Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol. 2010;8(11):791–801. doi:10.1038/NRMICRO2423.
  • Mehrian M, Lambrechts T, Papantoniou I, Geris L. Computational modeling of human mesenchymal stromal cell proliferation and extra-cellular matrix production in 3D porous scaffolds in a perfusion bioreactor: the effect of growth factors. Front Bioeng Biotechnol. 2020;8:376. doi:10.3389/fbioe.2020.00376.
  • Nankervis B, Jones M, Vang B, Brent Rice R, Coeshott C, Beltzer J. Optimizing T cell expansion in a hollow-fiber bioreactor. Curr Stem Cell Reports. 2018;4(1):46–51. doi:10.1007/S40778-018-0116-X.
  • Storm MP, Sorrell I, Shipley R, Regan S, Luetchford KA, Sathish J, Webb S, Ellis MJ. Hollow fiber bioreactors for in vivo-like mammalian tissue culture. J Vis Exp. 2016;2016(111):53431. doi:10.3791/53431.
  • Stephenson M, Grayson W. Recent advances in bioreactors for cell-based therapies. F1000Research. 2018;7:517. doi:10.12688/f1000research.12533.1.
  • Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97(5):1340–1346. doi:10.1002/bit.21360.
  • van den BA, Mummery CL, Passier R, van der MAD. Personalised organs-on-chips: functional testing for precision medicine. Lab Chip. 2019;19(2):198–205. doi:10.1039/C8LC00827B.
  • Mandenius CF. Conceptual design of micro-bioreactors and organ-on-chips for studies of cell cultures. Bioengineering. 2018;5(3):56. doi:10.3390/bioengineering5030056.
  • Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi:10.3389/fmolb.2020.00033.
  • Wu X, Su J, Wei J, Jiang N, Ge X, Dias Da Silva VJ. Recent advances in three-dimensional stem cell culture systems and applications. Stem Cells Int. 2021;2021:9477332. doi:10.1155/2021/9477332.
  • Terrell JA, Jones CG, Keza G, Kabandana M, Chen C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J Mater Chem B. 2020;8:6667–6685. doi:10.1039/d0tb00718h.
  • Jun I, Han HS, Edwards JR, Jeon H. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci. 2018;19(3):745. doi:10.3390/IJMS19030745.
  • Grassart A, Malardé V, Gobba S, Sartori-Rupp A, Kerns J, Karalis K, Marteyn B, Sansonetti P, Sauvonnet N. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection. Cell Host Microbe. 2019;26(3):435–444. doi:10.1016/j.chom.2019.08.007.
  • Kim HJ, Ingber DE. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (United Kingdom). 2013;5(9):1130–1140. doi:10.1039/c3ib40126j.
  • Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ, Lanz HL, Nicolas A, Ng CP, Joore J, Kustermann S. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. 2017;8(1):262. doi:10.1038/s41467-017-00259-3.
  • Lee SY, Kim D, Lee SH, Sung JH. Microtechnology-based in vitro models: mimicking liver function and pathophysiology. APL Bioeng. 2021;5(4):041505. doi:10.1063/5.0061896.
  • Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: a systematic review. J Control Release. 2021;335:247–268. doi:10.1016/J.JCONREL.2021.05.028.
  • Temple J, Velliou E, Shehata M, Lévy R. Current strategies with implementation of three-dimensional cell culture: the challenge of quantification. Interface Focus. 2022;12(5):20220019. doi:10.1098/RSFS.2022.0019.
  • Alblawi A, Ranjani AS, Yasmin H, Gupta S, Bit A, Rahimi-Gorji M. Scaffold-free: a developing technique in field of tissue engineering. Comput Methods Programs Biomed. 2020;185:105148. doi:10.1016/J.CMPB.2019.105148.
  • Hynds RE, Giangreco A. The relevance of human stem cell-derived organoid models for epithelial translational medicine. Stem Cells. 2013;31(3):417–422. doi:10.1002/stem.1290.
  • Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–472. doi:10.1177/1087057117696795.
  • Moschouris K, Firoozi N, Kang Y. The application of cell sheet engineering in the vascularization of tissue regeneration. Regen Med. 2016;11(6):559–570. doi:10.2217/RME-2016-0059.
  • Yang J, Zhao S, Ji Y, Zhao L, Kong Q, Zhang Q. Cell sheet-based multilayered liver tumor models for anti-cancer drug screening. Biotechnol Lett. 2017;40(2):427–435. doi:10.1007/S10529-017-2476-1.
  • Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE. Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol. 2018;5(4):659–668. doi:10.1016/J.JCMGH.2017.12.010.
  • Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016;7(13):16948–16961. doi:10.18632/ONCOTARGET.7659.
  • Annunziato S, Tchorz JS. Liver zonation—a journey through space and time. Nat Metab. 2021;3(1):7–8. doi:10.1038/s42255-020-00333-z.
  • Garcia-Cortes M, Robles-Diaz M, Stephens C, Ortega-Alonso A, Lucena MI, Andrade RJ. Drug induced liver injury: an update. Arch Toxicol. 2020;94(10):3381–3407. doi:10.1007/s00204-020-02885-1.
  • Minerali E, Foil DH, Zorn KM, Lane TR, Ekins S. Comparing machine learning algorithms for predicting drug-induced liver injury (Dili). Mol Pharm. 2020;17(7):2628–2637. doi:10.1021/acs.molpharmaceut.0c00326.
  • Zeilinger K, Freyer N, Damm G, Seehofer D, Knöspel F. Cell sources for in vitro human liver cell culture models. Exp Biol Med. 2016;241(15):1684–1698. doi:10.1177/1535370216657448.
  • Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem. 2009;20(7):494–502. doi:10.1016/J.JNUTBIO.2008.05.006.
  • Costa J, Ahluwalia A. Advances and current challenges in intestinal in vitro model engineering: a digest. Front Bioeng Biotechnol. 2019;7:144. doi:10.3389/fbioe.2019.00144.
  • Lu Y, Qi J, Wu W. Lipid nanoparticles: in vitro and in vivo approaches in drug delivery and targeting. Grumezescu AM, editor. Drug targeting and stimuli sensitive drug delivery systems. 1st. William Andrew Publishing; 2018. 749–783. 10.1016/B978-0-12-813689-8.00020-3.
  • Sonia TA, Sharma CP. Experimental techniques involved in the development of oral insulin carriers. Oral delivery of insulin.1st.Woodhead Publishing;2014.169–217.10.1533/9781908818683.169.
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96(3):736–749. doi:10.1208/s12248-011-9283-8.
  • Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990;7(9):902–910. doi:10.1023/A:1015937605100.
  • Hoffmann P, Burmester M, Langeheine M, Brehm R, Empl MT, Seeger B, Breves G. Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells. PLoS One. 2021;16(10):e0257824. doi:10.1371/JOURNAL.PONE.0257824.
  • Gagnon M, Zihler Berner A, Chervet N, Chassard C, Lacroix C. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J Microbiol Methods. 2013;94(3):274–279. doi:10.1016/J.MIMET.2013.06.027.
  • Kleiveland CR. Co-cultivation of Caco-2 and HT-29MTX. Verhoeckx K, Cotter P, López-Expósito I, editors. The impact of food bioactives on health: in vitro and ex vivo models. 1st. Springer; 2015. 135–140. 10.1007/978-3-319-16104-4_13.
  • Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol . 2014;32(8):760–772. doi:10.1038/nbt.2989.
  • Maaser C, Schoeppner S, Kucharzik T, Kraft M, Schoenherr E, Domschke W, Luegering N. Colonic epithelial cells induce endothelial cell expression of ICAM-1 and VCAM-1 by a NF- κ B-dependent mechanism. Clin Exp Immunol. 2001;124(2):208–213. doi:10.1046/J.1365-2249.2001.01541.X.
  • Grootaert C, Kamiloglu S, Capanoglu E, Van Camp J. Cell systems to investigate the impact of polyphenols on cardiovascular health. Nutrients. 2015;7(11):9229–9255. doi:10.3390/NU7115462.
  • Butler M, Ng CY, van Heel DA, Lombardi G, Lechler R, Playford R, Ghosh S. Modulation of dendritic cell phenotype and function in an in vitro model of the intestinal epithelium. Eur J Immunol. 2006;36(4):864–874. doi:10.1002/EJI.200535497.
  • Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C. Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol. 2004;60(5):477–485. doi:10.1111/J.0300-9475.2004.01495.X.
  • Thuenauer R, Rodriguez-Boulan E, Rümer W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst. 2014;139(13):3206–3218. doi:10.1039/C4AN00056K.
  • Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW, Bein A, Swenor B, Nestor B, Cronce MJ, Tovaglieri A, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng. 2019;3(7):520–531. doi:10.1038/s41551-019-0397-0.
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–2174. doi:10.1039/c2lc40074j.
  • Pocock K, Delon L, Bala V, Rao S, Priest C, Prestidge C, Thierry B. Intestine-on-A-chip microfluidic model for efficient in vitro screening of oral chemotherapeutic uptake. ACS Biomater Sci Eng. 2017;3(6):951–959. doi:10.1021/acsbiomaterials.7b00023.
  • Shim KY, Lee D, Han J, Nguyen NT, Park S, Sung JH. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices. 2017;19(2):37. doi:10.1007/s10544-017-0179-y.
  • Chi M, Yi B, Oh S, Park DJ, Sung JH, Park S. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices. 2015;17(3):9966. doi:10.1007/s10544-015-9966-5.
  • De Gregorio V, Corrado B, Sbrescia S, Sibilio S, Urciuolo F, Netti PA, Imparato G. Intestine-on-chip device increases ECM remodeling inducing faster epithelial cell differentiation. Biotechnol Bioeng. 2020;117(2):556–566. doi:10.1002/bit.27186.
  • Gumuscu B, Albers HJ, Van Den Berg A, Eijkel JCT, Van Der Meer AD. Compartmentalized 3D tissue culture arrays under controlled microfluidic delivery. Sci Rep. 2017;7(1):3381. doi:10.1038/s41598-017-01944-5.
  • Marzorati M, Vanhoecke B, De Ryck T, Sadaghian Sadabad M, Pinheiro I, Possemiers S, Van den Abbeele P, Derycke L, Bracke M, Pieters J, et al. The HMITM module: a new tool to study the host-microbiota interaction in the human gastrointestinal tract in vitro. BMC Microbiol. 2014;14(1):133. doi:10.1186/1471-2180-14-133.
  • Maurer M, Gresnigt MS, Last A, Wollny T, Berlinghof F, Pospich R, Cseresnyes Z, Medyukhina A, Graf K, Gröger M, et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials. 2019;220:119396. doi:10.1016/j.biomaterials.2019.119396.
  • Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C, et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun. 2016;7(1):11535. doi:10.1038/ncomms11535.
  • Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep. 2018;8(1):2871. doi:10.1038/s41598-018-21201-7.
  • Smith ME, Morton DG. THE SMALL INTESTINE. In: Horne T, Stader L, editors. The digestive system. Vol 1. 2nd. Elsevier; 2010. p. 107–127. doi:10.1016/B978-0-7020-3367-4.00007-4.
  • Imura Y, Asano Y, Sato K, Yoshimura E. A microfluidic system to evaluate intestinal absorption. Anal Sci. 2009;25(12):1403–1407. doi:10.2116/analsci.25.1403.
  • Chang SY, Voellinger JL, Van Ness KP, Chapron B, Shaffer RM, Neumann T, White CC, Kavanagh TJ, Kelly EJ, Eaton DL, et al. Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity. Toxicol Vitr. 2017;40:170–183. doi:10.1016/j.tiv.2017.01.007.
  • Mondrinos MJ, Yi YS, Wu NK, Ding X, Huh D. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture. Lab Chip. 2017;17(18):3146–3158. doi:10.1039/c7lc00317j.
  • Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. doi:10.1038/s41422-020-0332-7.
  • Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69–75. doi:10.1097/MOG.0000000000000139.
  • Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. doi:10.1016/j.cell.2012.01.035.
  • Lim W, Park S. A microfluidic spheroid culture device with a concentration gradient generator for high-throughput screening of drug efficacy. Mol . 2018;23(12):3355. doi:10.3390/MOLECULES23123355.
  • Ayuso JM, Virumbrales-Muñoz M, Lacueva A, Lanuza PM, Checa-Chavarria E, Botella P, Fernández E, Doblare M, Allison SJ, Phillips RM, et al. Development and characterization of a microfluidic model of the tumour microenvironment. Sci Rep. 2016;6(1):36086. doi:10.1038/srep36086.
  • Toley BJ, Tropeano Lovatt ZG, Harrington JL, Forbes NS. Microfluidic technique to measure intratumoral transport and calculate drug efficacy shows that binding is essential for doxorubicin and release hampers Doxil. Integr Biol (Camb). 2013;5(9):1184–1196. doi:10.1039/C3IB40021B.
  • Donato MT, Tolosa L, Gómez-Lechón MJ. Culture and functional characterization of human hepatoma HepG2 Cells. Methods Mol Biol . 2015;1250:77–93. doi:10.1007/978-1-4939-2074-7_5.
  • Arzumanian VA, Kiseleva OI, Poverennaya EV. The curious case of the HepG2 cell line: 40 years of expertise. Int J Mol Sci. 2021;22(23):13135. doi:10.3390/IJMS222313135.
  • Gupta K, Song Z, Tang H, Fong ELS, Ng IC, Yu H. Liver tissue engineering. In: Ducheyne P, editor. Comprehensive biomaterials II. Vol 6. 1st. Elsevier; 2017. p. 491–512. doi:10.1016/B978-0-12-803581-8.10163-8.
  • Große-Segerath L, Lammert E. Role of vasodilation in liver regeneration and health. Biol Chem. 2021;402(9):1009–1019. doi:10.1515/HSZ-2021-0155/ASSET/GRAPHIC/J_HSZ-2021-0155_FIG_003.JPG.
  • Kang YBA, Sodunke TR, Lamontagne J, Cirillo J, Rajiv C, Bouchard MJ, Noh M. Liver sinusoid on a chip: long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng. 2015;112(12):2571–2582. doi:10.1002/bit.25659.
  • Yajima Y, Lee CN, Yamada M, Utoh R, Seki M. Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. J Biosci Bioeng. 2018;126(1):111–118. doi:10.1016/j.jbiosc.2018.01.022.
  • Prodanov L, Jindal R, Bale SS, Hegde M, McCarty WJ, Golberg I, Bhushan A, Yarmush ML, Usta OB. Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol Bioeng. 2016;113(1):241–246. doi:10.1002/bit.25700.
  • Lee-Montiel FT, George SM, Gough AH, Sharma AD, Wu J, DeBiasio R, Vernetti LA, Taylor DL. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med. 2017;242(16):1617–1632. doi:10.1177/1535370217703978.
  • Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Ying Shun T, Gough A, Taylor DL. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med. 2016;241(1):101–114. doi:10.1177/1535370215592121.
  • Deng J, Zhang X, Chen Z, Luo Y, Lu Y, Liu T, Wu Z, Jin Y, Zhao W, Lin B, et al. A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug-drug interaction. Biomicrofluidics. 2019;13(2):024101. doi:10.1063/1.5070088.
  • Rennert K, Steinborn S, Gröger M, Ungerböck B, Jank A-M, Ehgartner J, Nietzsche S, Dinger J, Kiehntopf M, Funke H, et al. A microfluidically perfused three dimensional human liver model. Biomaterials. 2015;71:119–131. doi:10.1016/j.biomaterials.2015.08.043.
  • Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S, et al. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther. 2021;12(1):84. doi:10.1186/S13287-021-02152-9.
  • Shih MC, Tseng SH, Weng YS, Chu IM, Liu CH. A microfluidic device mimicking acinar concentration gradients across the liver acinus. Biomed Microdevices. 2013;15(5):767–780. doi:10.1007/s10544-013-9762-z.
  • Wang Y, Wang H, Deng P, Chen W, Guo Y, Tao T, Qin J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip. 2018;18(23):3606–3616. doi:10.1039/c8lc00869h.
  • Allen JW, Bhatia SN. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng. 2003;82(3):253–262. doi:10.1002/bit.10569.
  • Zhu L, Xia H, Wang Z, Fong ELS, Fan J, Tong WH, Seah YPD, Zhang W, Li Q, Yu H, et al. A vertical-flow bioreactor array compacts hepatocytes for enhanced polarity and functions. Lab Chip. 2016;16(20):3898–3908. doi:10.1039/c6lc00811a.
  • McCarty WJ, Usta OB, Yarmush ML. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep. 2016;6(1):26868. doi:10.1038/srep26868.
  • Nakao Y, Kimura H, Sakai Y, Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics. 2011;5(2):022212. doi:10.1063/1.3580753.
  • Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep. 2018;8(1):8951. doi:10.1038/s41598-018-27179-6.
  • Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices. 2008;10(6):795–805. doi:10.1007/s10544-008-9194-3.
  • Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör M. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication. 2017;9(1):015014. doi:10.1088/1758-5090/9/1/015014.
  • Chao P, Maguire T, Novik E, Cheng KC, Yarmush ML. Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem Pharmacol. 2009;78(6):625–632. doi:10.1016/j.bcp.2009.05.013.
  • Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci. 2005;84(1):110–119. doi:10.1093/toxsci/kfi052.
  • Du Y, Li N, Yang H, Luo C, Gong Y, Tong C, Gao Y, Lü S, Long M. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip. 2017;17(5):782–794. doi:10.1039/c6lc01374k.
  • Jang KJ, Otieno MA, Ronxhi J, Lim H-K, Ewart L, Kodella KR, Petropolis DB, Kulkarni G, Rubins JE, Conegliano D, et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med. 2019;11(517):eaax5516. doi:10.1126/scitranslmed.aax5516.
  • Sarkar U, Ravindra KC, Large E, Young CL, Rivera-Burgos D, Yu J, Cirit M, Hughes DJ, Wishnok JS, Lauffenburger DA, Griffith LG. Integrated assessment of diclofenac biotransformation, pharmacokinetics, and omics-based toxicity in a three-dimensional human liver-immunocompetent coculture systems. Drug Metab Dispos. 2017;45(7):855–866. doi:10.1124/dmd.116.074005.
  • Ma LD, Wang YT, Wang JR, Wu J-L, Meng X-S, Hu P, Mu X, Liang Q-L, Luo G-A. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18(17):2547–2562. doi:10.1039/c8lc00333e.
  • Jang M, Neuzil P, Volk T, Manz A, Kleber A. On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. Biomicrofluidics. 2015;9(3):034113. doi:10.1063/1.4922863.
  • Schepers A, Li C, Chhabra A, Seney BT, Bhatia S. Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip. 2016;16(14):2644–2653. doi:10.1039/c6lc00598e.
  • Baudoin R, Prot JM, Nicolas G, Brocheton J, Brochot C, Legallais C, Benech H, Leclerc E. Evaluation of seven drug metabolisms and clearances by cryopreserved human primary hepatocytes cultivated in microfluidic biochips. Xenobiotica. 2013;43(2):140–152. doi:10.3109/00498254.2012.706725.
  • Baudoin R, Legendre A, Jacques S, Cotton J, Bois F, Leclerc E. Evaluation of a liver microfluidic biochip to predict in Vivo clearances of seven drugs in rats. J Pharm Sci. 2014;103(2):706–718. doi:10.1002/jps.23796.
  • Prot JM, Videau O, Brochot C, Legallais C, Bénech H, Leclerc E. A cocktail of metabolic probes demonstrates the relevance of primary human hepatocyte cultures in a microfluidic biochip for pharmaceutical drug screening. Int J Pharm. 2011;408(1–2):67–75. doi:10.1016/j.ijpharm.2011.01.054.
  • Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem Pharmacol. 2010;79(7):1036–1044. doi:10.1016/j.bcp.2009.11.010.
  • Toh YC, Lim TC, Tai D, Xiao G, Van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026–2035. doi:10.1039/b900912d.
  • Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A, Shun T, Vernetti LA, Gough A. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 2021;450:152667. doi:10.1016/j.tox.2020.152667.
  • Mi S, Yi X, Du Z, Xu Y, Sun W. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells. Biofabrication. 2018;10(2):025010. doi:10.1088/1758-5090/aaa97e.
  • Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1):014101. doi:10.1088/1758-5090/8/1/014101.
  • Yu F, Deng R, Hao Tong W, Huan L, Chan Way N, IslamBadhan A, Iliescu C, Yu H. A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Sci Rep. 2017;7(1):14528. doi:10.1038/s41598-017-13848-5.
  • Mazzei D, Guzzardi MA, Giusti S, Ahluwalia A. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnol Bioeng. 2010;106(1):127–137. doi:10.1002/bit.22671.
  • Hung PJ, Lee PJ, Sabounchi P, Aghdam N, Lin R, Lee LP. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip. 2005;5(1):44–48. doi:10.1039/b410743h.
  • Legendre A, Baudoin R, Alberto G, Paullier P, Naudot M, Bricks T, Brocheton J, Jacques S, Cotton J, Leclerc E, et al. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J Pharm Sci. 2013;102(9):3264–3276. doi:10.1002/jps.23466.
  • Baudoin R, Griscom L, Prot JM, Legallais C, Leclerc E. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem Eng J. 2011;53(2):172–181. doi:10.1016/j.bej.2010.10.007.
  • Meren H, Matsumura T, Kauffman FC, Thurman RG. Relationship between oxygen tension and oxygen uptake in the perfused rat liver. Adv Exp Med Biol. 1986;200:467–476. doi:10.1007/978-1-4684-5188-7_58.
  • Matsumura T, Kauffman FC, Meren H, Thurman RG. O2 uptake in periportal and pericentral regions of liver lobule in perfused liver. Am J Physiol - Gastrointest Liver Physiol. 1986;250(6):G800–G805. doi:10.1152/ajpgi.1986.250.6.g800.
  • Deng J, Wei W, Chen Z, Lin B, Zhao W, Luo Y, Zhang X. Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines. 2019;10(10):676. doi:10.3390/mi10100676.
  • Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR. Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol. 2009;5:1159–1174.
  • Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354. doi:10.1016/0163-7258(92)90055-5.
  • Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3(3):1035–1078. doi:10.1002/cphy.c120027.
  • Dash A, Simmers MB, Deering TG, Berry DJ, Feaver RE, Hastings NE, Pruett TL, LeCluyse EL, Blackman BR, Wamhoff BR, et al. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro. Am J Physiol - Cell Physiol. 2013;304(11):C1053–C1063. doi:10.1152/ajpcell.00331.2012.
  • Guo R, Xu X, Lu Y, Xie X. Physiological oxygen tension reduces hepatocyte dedifferentiation in in vitro culture. Sci Rep. 2017;7(1):5923. doi:10.1038/s41598-017-06433-3.
  • Tostões RM, Leite SB, Serra M, Jensen J, Björquist P, Carrondo MJT, Brito C, Alves PM. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology. 2012;55(4):1227–1236. doi:10.1002/hep.24760.
  • Esch MB, Ueno H, Applegate DR, Shuler ML. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip. 2016;16(14):2719–2729. doi:10.1039/C6LC00461J.
  • Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M, McLamb W, Platt V, Bridges R, Cai Y, Santhanam N, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6(1):20030. doi:10.1038/srep20030.
  • Bovard D, Sandoz A, Luettich K, Frentzel S, Iskandar A, Marescotti D, Trivedi K, Guedj E, Dutertre Q, Peitsch MC, Hoeng J. A lung/liver-on-a-chip platform for acute and chronic toxicity studies. Lab Chip. 2018;18(24):3814–3829. doi:10.1039/c8lc01029c.
  • Rogal J, Probst C, Loskill P. Integration concepts for multi-organ chips: how to maintain flexibility?! Futur Sci OA. 2017;3(2):180. doi:10.4155/FSOA-2016-0092.
  • Oliveira JM, Reis RL. eds. Biomaterials- and microfluidics-based tissue engineered 3D models. Vol 1230. 1st. Springer International Publishing; 2020. 10.1007/978-3-030-36588-2
  • Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 2017;19(5):1499–1512. doi:10.1208/s12248-017-0122-4.
  • Marin TM, de Carvalho Indolfo N, Rocco SA, Basei FL, de Carvalho M, de Almeida Gonçalves K, Pagani E. Acetaminophen absorption and metabolism in an intestine/liver microphysiological system. Chem Biol Interact. 2019;299:59–76. doi:10.1016/J.CBI.2018.11.010.
  • Milani N, Parrott N, Franyuti DO, Godoy P, Galetin A, Gertz M, Fowler S. Application of a gut–liver-on-a-chip device and mechanistic modelling to the quantitative in vitro pharmacokinetic study of mycophenolate mofetil. Lab Chip. 2022;22(15):2853–2868. doi:10.1039/D2LC00276K.
  • Mahler GJ, Esch MB, Glahn RP, Shuler ML. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng. 2009;104(1):193–205. doi:10.1002/BIT.22366.
  • Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The microbiome and the gut-liver-brain axis for central nervous system clinical pharmacology: challenges in specifying and integrating in vitro and in silico models. Clin Pharmacol Ther. 2020;108(5):929–948. doi:10.1002/CPT.1870.
  • Lee DW, Ha SK, Choi I, Sung JH. 3D gut-liver chip with a PK model for prediction of first-pass metabolism. Biomed Microdevices. 2017;19(4):100. doi:10.1007/S10544-017-0242-8.
  • Zu Bentrup K H, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson JW, Richter EG, Goodwin TJ, Alexander JS, Pierson DL, et al. Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect. 2006;8(7):1813–1825. doi:10.1016/j.micinf.2006.02.020.
  • Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater . 2020;5(7):539–551. doi:10.1038/s41578-020-0199-8.
  • Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013;218(3):37–47. doi:10.1530/JOE-13-0131.
  • Boeri L, Izzo L, Sardelli L, Tunesi M, Albani D, Giordano C. Advanced organ-on-a-chip devices to investigate liver multi-organ communication: focus on gut, microbiota and brain. Bioengineering. 2019;6(4):91. doi:10.3390/BIOENGINEERING6040091.
  • Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12(1):31–40. doi:10.1517/17425255.2016.1121234.
  • Walsh J, Griffin BT, Clarke G, Hyland NP. Drug–gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol. 2018;175(24):4429. doi:10.1111/BPH.14366.
  • Green CJ, Charlton CA, Wang LM, Silva M, Morten KJ, Hodson L. The isolation of primary hepatocytes from human tissue: optimising the use of small non-encapsulated liver resection surplus. Cell Tissue Bank. 2017;18(4):597–604. doi:10.1007/S10561-017-9641-6.
  • Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A. 2016;113(8):2206–2211. doi:10.1073/pnas.1524510113.
  • Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, Cho D-W. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication. 2019;11(2):025001. doi:10.1088/1758-5090/aaf9fa.
  • Kim W, Kim G. Intestinal villi model with blood capillaries fabricated using collagen-based bioink and dual-cell-printing process. ACS Appl Mater Interfaces. 2018;10(48):41185–41196. doi:10.1021/ACSAMI.8B17410.
  • Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2020;20(1):22–29. doi:10.1038/s41563-020-00803-5.
  • Kim WJ, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics. 2020;10(6):2495–2508. doi:10.7150/THNO.41225.
  • Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev. 2018;132:235–251. doi:10.1016/j.addr.2018.06.011.
  • Rothbauer M, Eilenberger C, Spitz S, Bachmann BEM, Kratz SRA, Reihs EI, Windhager R, Toegel S, Ertl P. Recent advances in additive manufacturing and 3d bioprinting for organs-on-a-chip and microphysiological systems. Front Bioeng Biotechnol. 2022;10:837087. doi:10.3389/FBIOE.2022.837087.
  • Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng - Part C Methods. 2008;14(2):157–166. doi:10.1089/ten.tec.2007.0392.
  • Massa S, Sakr MA, Seo J, Bandaru P, Arneri A, Bersini S, Zare-Eelanjegh E, Jalilian E, Cha B-H, Antona S, et al. Bioprinted 3D vascularized tissue model for drug toxicity analysis. Biomicrofluidics. 2017;11(4):044109. doi:10.1063/1.4994708.
  • Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems — a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139–168. doi:10.1016/j.addr.2018.05.006.
  • Wu JJ, Huang LM, Zhao Q, Xie T. 4D printing: history and recent progress. Chinese J Polym Sci. 2018;36(5):563–575. doi:10.1007/s10118-018-2089-8.
  • van Meer BJ, de Vries H, Firth KSA, van Weerd J, Tertoolen LGJ, Karperien HBJ, Jonkheijm P, Denning C, IJzerman AP, Mummery CL, et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun. 2017;482(2):323–328. doi:10.1016/j.bbrc.2016.11.062.
  • Sarkar U, Rivera-Burgos D, Large EM, Hughes DJ, Ravindra KC, Dyer RL, Ebrahimkhani MR, Wishnok JS, Griffith LG, Tannenbaum SR, et al. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab Dispos. 2015;43(7):1091–1099. doi:10.1124/dmd.115.063495.
  • Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015;63:218–231. doi:10.1016/j.bios.2014.07.029.
  • Oliveira M, Conceição P, Kant K, Ainla A, Diéguez L. Electrochemical sensing in 3d cell culture models: new tools for developing better cancer diagnostics and treatments. Cancers (Basel). 2021;13(6):1381. doi:10.3390/cancers13061381.
  • 2030 agenda - global compact. Accessed June 8, 2022. https://globalcompact.pt/index.php/en/2030-agenda
  • Dekker S, Buesink W, Blom M, Alessio M, Verplanck N, Hihoud M, Dehan C, César W, Le Nel A, van den Berg A, et al. Standardized and modular microfluidic platform for fast lab on chip system development. Sensors Actuators B Chem. 2018;272:468–478. doi:10.1016/J.SNB.2018.04.005.
  • Cong H, Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics. 2022;16(2):021301. doi:10.1063/5.0079045.
  • Mansouri M, Ahmed A, Ahmad SD, McCloskey MC, Joshi IM, Gaborski TR, Waugh RE, McGrath JL, Day SW, Abhyankar VV, et al. The modular µSiM reconfigured: integration of microfluidic capabilities to study in vitro barrier tissue models under flow. Adv Healthc Mater. 2022;11(21):2200802. doi:10.1002/ADHM.202200802.
  • Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32(7):347–350. doi:10.1016/J.TIBTECH.2014.04.010.
  • Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, et al. Recent advances of organ-on-a-chip in cancer modeling research. Biosensors. 2022;12(11):1045. doi:10.3390/BIOS12111045.
  • Paguirigan AL, Beebe DJ. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays. 2008;30(9):811–821. doi:10.1002/BIES.20804.
  • Piergiovanni M, Leite SB, Corvi R, Whelan M. Standardisation needs for organ on chip devices. Lab Chip. 2021;21(15):2857–2868. doi:10.1039/D1LC00241D.
  • Frey N, Sönmez UM, Minden J, LeDuc P. Microfluidics for understanding model organisms. Nat Commun. 2022;13(1):3195. doi:10.1038/s41467-022-30814-6.
  • Chiu DT, Demello AJ, Di CD, Doyle PS, Hansen C, Maceiczyk RM, Wootton RCR. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem. 2017;2(2):201–223. doi:10.1016/j.chempr.2017.01.009.
  • Chen X, Mo D, Gong M. 3D printed reconfigurable modular microfluidic system for generating gel microspheres. Micromachines. 2020;11(2):1–9. doi:10.3390/MI11020224.
  • Gardiner LJ, Carrieri AP, Wilshaw J, Checkley S, Pyzer-Knapp EO, Krishna R. Using human in vitro transcriptome analysis to build trustworthy machine learning models for prediction of animal drug toxicity. Sci Rep. 2020;10(1):9522. doi:10.1038/s41598-020-66481-0.
  • Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance. 2018;1(6):e201800098. doi:10.26508/lsa.201800098.
  • Zhang H, Mao J, Qi H-Z, Ding L. In silico prediction of drug-induced developmental toxicity by using machine learning approaches. Mol Divers. 2020;24(4):1281–1290. doi:10.1007/s11030-019-09991-y.
  • Hammann F, Schöning V, Drewe J. Prediction of clinically relevant drug-induced liver injury from structure using machine learning. J Appl Toxicol. 2019;39(3):412–419. doi:10.1002/jat.3741.
  • Su R, Wu H, Liu X, Wei L. Predicting drug-induced hepatotoxicity based on biological feature maps and diverse classification strategies. Brief Bioinform. 2021;22(1):428–437. doi:10.1093/bib/bbz165.
  • Yang H, Sun L, Li W, Liu G, Tang Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front Chem. 2018;6:30. doi:10.3389/fchem.2018.00030.
  • Klak M, Bryniarski T, Kowalska P, Gomolka M, Tymicki G, Kosowska K, Cywoniuk P, Dobrzanski T, Turowski P, Wszola M, et al. Novel strategies in artificial organ development: what is the future of medicine? Micromachines. 2020;11(7):646. doi:10.3390/MI11070646.
  • Ingber DE. Developmentally inspired human “organs on chips. Development. 2018;145(16):dev156125. doi:10.1242/DEV.156125.
  • Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, Arefin A, Moulin CM, Dame K, Hartman N, Volpe DA, et al. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. Clin Transl Sci. 2021;14(3):1049–1061. doi:10.1111/CTS.12969.
  • Schweinlin M, Wilhelm S, Schwedhelm I, Hansmann J, Rietscher R, Jurowich C, Walles H, Metzger M. Development of an advanced primary human in vitro model of the small intestine. Tissue Eng Part C Methods. 2016;22(9):873–883. doi:10.1089/TEN.TEC.2016.0101.