264
Views
0
CrossRef citations to date
0
Altmetric
Review

Tight junction and kidney stone disease

, , , & ORCID Icon
Article: 2210051 | Received 20 Mar 2023, Accepted 30 Apr 2023, Published online: 10 May 2023

References

  • Otani T, Furuse M. Tight junction structure and function revisited. Trends Cell Biol. 2020;30(10):48–63. doi:10.1016/j.tcb.2020.08.004.
  • Liang GH, Weber CR. Molecular aspects of tight junction barrier function. Curr Opin Pharmacol. 2014;19:84–89. doi:10.1016/j.coph.2014.07.017.
  • Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17(9):564–580. doi:10.1038/nrm.2016.80.
  • Odenwald MA, Choi W, Buckley A, Shashikanth N, Joseph NE, Wang Y, Warren MH, Buschmann MM, Pavlyuk R, Hildebrand J, et al. ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci. 2017;130:243–259. doi:10.1242/jcs.188185.
  • Glotfelty LG, Zahs A, Iancu C, Shen L, Hecht GA. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. Am J Physiol Cell Physiol. 2014;307(3):C245–54. doi:10.1152/ajpcell.00336.2013.
  • Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv Urol. 2018;2018:3068365. doi:10.1155/2018/3068365.
  • Viljoen A, Chaudhry R, Bycroft J. Renal stones. Ann Clin Biochem. 2019;56(1):15–27. doi:10.1177/0004563218781672.
  • Thongprayoon C, Krambeck AE, Rule AD. Determining the true burden of kidney stone disease. Nat Rev Nephrol. 2020;16(12):736–746. doi:10.1038/s41581-020-0320-7.
  • Lang J, Narendrula A, El-Zawahry A, Sindhwani P, Ekwenna O. Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of global burden of disease study data. Eur Urol Open Sci. 2022;35:37–46. doi:10.1016/j.euros.2021.10.008.
  • Wang K, Ge J, Han W, Wang D, Zhao Y, Shen Y, Chen J, Chen D, Wu J, Shen N, et al. Risk factors for kidney stone disease recurrence: a comprehensive meta-analysis. BMC Urol. 2022;22(1):62. doi:10.1186/s12894-022-01017-4.
  • Moftakhar L, Jafari F, Ghoddusi Johari M, Rezaeianzadeh R, Hosseini SV, Rezaianzadeh A. Prevalence and risk factors of kidney stone disease in population aged 40–70 years old in Kharameh cohort study: a cross-sectional population-based study in southern Iran. BMC Urol. 2022;22(1):205. doi:10.1186/s12894-022-01161-x.
  • Zeng J, Wang S, Zhong L, Huang Z, Zeng Y, Zheng D, Zou W, Lai H. A retrospective study of kidney stone recurrence in adults. J Clin Med Res. 2019;11(3):208–212. doi:10.14740/jocmr3753.
  • Singh P, Harris PC, Sas DJ, Lieske JC. The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol. 2022;18(4):224–240. doi:10.1038/s41581-021-00513-4.
  • Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y. Epidemiology of stone disease across the world. World J Urol. 2017;35(9):1301–1320. doi:10.1007/s00345-017-2008-6.
  • Palsson R, Indridason OS, Edvardsson VO, Oddsson A. Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis. 2019;47(1):11–21. doi:10.1007/s00240-018-1094-2.
  • Peerapen P, Thongboonkerd V. Kidney stone prevention. Adv Nutr. 2023. doi:10.1016/j.advnut.2023.03.002.
  • Jones P, Karim Sulaiman S, Gamage KN, Tokas T, Jamnadass E, Somani BK. Do lifestyle factors including smoking, alcohol, and exercise impact your risk of developing kidney stone disease? outcomes of a systematic review. J Endourol. 2021;35(1):1–7. doi:10.1089/end.2020.0378.
  • Khan A. Prevalence, pathophysiological mechanisms and factors affecting urolithiasis. Int Urol Nephrol. 2018;50(5):799–806. doi:10.1007/s11255-018-1849-2.
  • Aizezi X, Xie L, Xie H, Li J, Shang Z, Liu C. Epidemiological and clinical characteristics of stone composition: a single-center retrospective study. Urolithiasis. 2022;50(1):37–46. doi:10.1007/s00240-021-01274-2.
  • Grant C, Guzman G, Stainback RP, Amdur RL, Mufarrij P. Variation in kidney stone composition within the United States. J Endourol. 2018;32(10):973–977. doi:10.1089/end.2018.0304.
  • Singh P, Enders FT, Vaughan LE, Bergstralh EJ, Knoedler JJ, Krambeck AE, Lieske JC, Rule AD. Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin Proc. 2015;90(10):1356–1365. doi:10.1016/j.mayocp.2015.07.016.
  • Bird VY, Khan SR. How do stones form? Is unification of theories on stone formation possible? Arch Esp Urol. 2017;70:12–27.
  • Yoodee S, Thongboonkerd V. Bioinformatics and computational analyses of kidney stone modulatory proteins lead to solid experimental evidence and therapeutic potential. Biomed Pharmacother. 2023;159:114217. doi:10.1016/j.biopha.2023.114217.
  • Sassanarakkit S, Peerapen P, Thongboonkerd V. StoneMod: a database for kidney stone modulatory proteins with experimental evidence. Sci Rep. 2020;10(1):15109. doi:10.1038/s41598-020-71730-3.
  • Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V. Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep. 2017;7(1):1798. doi:10.1038/s41598-017-01953-4.
  • Chutipongtanate S, Fong-Ngern K, Peerapen P, Thongboonkerd V. High calcium enhances calcium oxalate crystal binding capacity of renal tubular cells via increased surface annexin A1 but impairs their proliferation and healing. J Proteome Res. 2012;11(7):3650–3663. doi:10.1021/pr3000738.
  • Kanlaya R, Fong-Ngern K, Thongboonkerd V. Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion. J Proteomics. 2013;80:55–65. doi:10.1016/j.jprot.2013.01.001.
  • Sutthimethakorn S, Thongboonkerd V. Effects of high-dose uric acid on cellular proteome, intracellular ATP, tissue repairing capability and calcium oxalate crystal-binding capability of renal tubular cells: implications to hyperuricosuria-induced kidney stone disease. Chem Biol Interact. 2020;331:109270. doi:10.1016/j.cbi.2020.109270.
  • Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013;2013:292953. doi:10.1155/2013/292953.
  • Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol. 2021;17(6):417–433. doi:10.1038/s41581-020-00392-1.
  • Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol. 2013;189(3):803–811. doi:10.1016/j.juro.2012.05.078.
  • Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol. 2014;3(3):256–276. doi:10.3978/j.issn.2223-4683.2014.06.04.
  • Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius H-G. Kidney stones. Nat Rev Dis Primers. 2016;2(1):16008. doi:10.1038/nrdp.2016.8.
  • Wiener SV, Ho SP, Stoller ML. Beginnings of nephrolithiasis: insights into the past, present and future of Randall’s plaque formation research. Curr Opin Nephrol Hypertens. 2018;27(4):236–242. doi:10.1097/MNH.0000000000000414.
  • Rule AD, Lieske JC, Pais VM Jr. Management of Kidney Stones in 2020. JAMA. 2020;323(19):1961–1962. doi:10.1001/jama.2020.0662.
  • Fontenelle LF, Sarti TD. Kidney stones: treatment and prevention. Am Fam Physician. 2019;99:490–496.
  • Turk C, Petrik A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol. 2016;69(3):468–474. doi:10.1016/j.eururo.2015.07.040.
  • Serrell EC, Best SL. Imaging in stone diagnosis and surgical planning. Curr Opin Urol. 2022;32(4):397–404. doi:10.1097/MOU.0000000000001002.
  • Quhal F, Seitz C. Guideline of the guidelines: urolithiasis. Curr Opin Urol. 2021;31(2):125–129. doi:10.1097/MOU.0000000000000855.
  • Kozyrakis D, Zarkadas A, Katsaros I, Mourkas V, Kratiras Z. Feasibility of a single session retrograde endoscopic laser lithotripsy of two large stones located in a bifid urinary tract. Presentation of a rare case. Arch Ital Urol Androl. 2020;92(2). doi:10.4081/aiua.2020.2.117.
  • Sabler IM, Katafigiotis I, Gofrit ON, Duvdevani M. Present indications and techniques of percutaneous nephrolithotomy: what the future holds? Asian J Urol. 2018;5(4):287–294. doi:10.1016/j.ajur.2018.08.004.
  • Diaz-Coranguez M, Liu X, Antonetti DA. Tight junctions in cell proliferation. Int J Mol Sci. 2019;20(23):5972. doi:10.3390/ijms20235972.
  • Chang J, Yan J, Li X, Liu N, Zheng R, Zhong Y. Update on the mechanisms of tubular cell injury in diabetic kidney disease. Front Med (Lausanne). 2021;8:661076. doi:10.3389/fmed.2021.661076.
  • Okubo K, Kurosawa M, Kamiya M, Urano Y, Suzuki A, Yamamoto K, Hase K, Homma K, Sasaki J, Miyauchi H, et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat Med. 2018;24(2):232–238. doi:10.1038/nm.4462.
  • An L, Wu W, Li S, Lai Y, Chen D, He Z, Chang Z, Xu P, Huang Y, Lei M, et al. Escherichia coli aggravates calcium oxalate stone formation via PPK1/Flagellin-mediated renal oxidative injury and inflammation. Oxid Med Cell Longev. 2021;2021:9949697. doi:10.1155/2021/9949697.
  • Dong F, Jiang S, Tang C, Wang X, Ren X, Wei Q, Tian J, Hu W, Guo J, Fu X, et al. Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radical Biol Med. 2022;179:288–300. doi:10.1016/j.freeradbiomed.2021.11.010.
  • Vinaiphat A, Aluksanasuwan S, Manissorn J, Sutthimethakorn S, Thongboonkerd V. Response of renal tubular cells to differential types and doses of calcium oxalate crystals: integrative proteome network analysis and functional investigations. Proteomics. 2017;17:1700192. doi:10.1002/pmic.201700192.
  • Peerapen P, Thongboonkerd V. Effects of calcium oxalate monohydrate crystals on expression and function of tight junction of renal tubular epithelial cells. Lab Invest. 2011;91(1):97–105. doi:10.1038/labinvest.2010.167.
  • Peerapen P, Thongboonkerd V. P38 MAPK mediates calcium oxalate crystal-induced tight junction disruption in distal renal tubular epithelial cells. Sci Rep. 2013;3(1):1041. doi:10.1038/srep01041.
  • Yu L, Gan X, Liu X, An R. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway. Ren Fail. 2017;39(1):440–451. doi:10.1080/0886022X.2017.1305968.
  • Liu Y, Tang J, Yuan J, Yao C, Hosoi K, Han Y, Yu S, Wei H, Chen G. Arsenite-induced downregulation of occludin in mouse lungs and BEAS-2B cells via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways. Toxicol Lett. 2020;332:146–154. doi:10.1016/j.toxlet.2020.07.010.
  • Liu JF, Chen PC, Ling TY, Hou CH. Hyperthermia increases HSP production in human PDMCs by stimulating ROS formation, p38 MAPK and Akt signaling, and increasing HSF1 activity. Stem Cell Res Ther. 2022;13(1):236. doi:10.1186/s13287-022-02885-1.
  • Lee SO, Joo SH, Kwak AW, Lee MH, Seo JH, Cho SS, Yoon G, Chae J-I, Shim J-H. Podophyllotoxin Induces ROS-Mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling. Biomol Ther (Seoul). 2021;29(6):658–666. doi:10.4062/biomolther.2021.143.
  • He BF, Wu YX, Hu WP, Hua JL, Han Y, Zhang J. ROS induced the Rab26 promoter hypermethylation to promote cigarette smoking-induced airway epithelial inflammation of COPD through activation of MAPK signaling. Free Radical Biol Med. 2023;195:359–370. doi:10.1016/j.freeradbiomed.2023.01.001.
  • Davidson PM, Cadot B. Actin on and around the nucleus. Trends Cell Biol. 2021;31(3):211–223. doi:10.1016/j.tcb.2020.11.009.
  • Williams TD, Rousseau A. Actin dynamics in protein homeostasis. Biosci Rep. 2022;42(9):BSR20210848. doi:10.1042/BSR20210848.
  • Lappalainen P, Kotila T, Jegou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol. 2022;23(12):836–852. doi:10.1038/s41580-022-00508-4.
  • Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci. 2018;131(20):jcs221853. doi:10.1242/jcs.221853.
  • Svitkina TM. Actin cell cortex: structure and molecular organization. Trends Cell Biol. 2020;30(7):556–565. doi:10.1016/j.tcb.2020.03.005.
  • Peerapen P, Thongboonkerd V. Calcium oxalate monohydrate crystal disrupts tight junction via F-actin reorganization. Chem Biol Interact. 2021;345:109557. doi:10.1016/j.cbi.2021.109557.
  • Hadpech S, Peerapen P, Thongboonkerd V. Alpha-tubulin relocalization is involved in calcium oxalate-induced tight junction disruption in renal epithelial cells. Chem Biol Interact. 2022;368:110236. doi:10.1016/j.cbi.2022.110236.
  • Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 2018;10(6):a022608. doi:10.1101/cshperspect.a022608.
  • Akhmanova A, Kapitein LC. Mechanisms of microtubule organization in differentiated animal cells. Nat Rev Mol Cell Biol. 2022;23(8):541–558. doi:10.1038/s41580-022-00473-y.
  • Yano T, Matsui T, Tamura A, Uji M, Tsukita S. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol. 2013;203(4):605–614. doi:10.1083/jcb.201304194.
  • Yu AS. Claudins and the kidney. J Am Soc Nephrol. 2015;26(1):11–19. doi:10.1681/ASN.2014030284.
  • Plain A, Alexander RT. Claudins and nephrolithiasis. Curr Opin Nephrol Hypertens. 2018;27(4):268–276. doi:10.1097/MNH.0000000000000426.
  • Negri AL, Del Valle EE. Role of claudins in idiopathic hypercalciuria and renal lithiasis. Int Urol Nephrol. 2022;54(9):2197–2204. doi:10.1007/s11255-022-03119-2.
  • Hou J. Claudins and mineral metabolism. Curr Opin Nephrol Hypertens. 2016;25(4):308–313. doi:10.1097/MNH.0000000000000239.
  • Hou J. The yin and yang of claudin-14 function in human diseases. Ann N Y Acad Sci. 2012;1258(1):185–190. doi:10.1111/j.1749-6632.2012.06529.x.
  • Ullah I, Murtaza K, Ammara H, Misbah BM, Riaz A, Riaz A, Shehzad W, Zahoor MY. Association study of CLDN14 variations in patients with kidney stones. Open Life Sci. 2022;17(1):81–92. doi:10.1515/biol-2021-0134.
  • Piedra M, Berja A, Garcia-Unzueta MT, Ramos L, Valero C, Amado JA. Rs219780 SNP of claudin 14 gene is not related to clinical expression in primary hyperparathyroidism. Clin Lab. 2015;61(09/2015):1197–1203. doi:10.7754/Clin.Lab.2015.150201.
  • Frische S, Alexander RT, Ferreira P, Tan RSG, Wang W, Svenningsen P, Skjødt K, Dimke H. Localization and regulation of claudin-14 in experimental models of hypercalcemia. Am J Physiol Renal Physiol. 2021;320(1):F74–86. doi:10.1152/ajprenal.00397.2020.
  • Arteaga ME, Hunziker W, Teo AS, Hillmer AM, Mutchinick OM. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: variable phenotypic expression in three affected sisters from Mexican ancestry. Ren Fail. 2015;37(1):180–183. doi:10.3109/0886022X.2014.977141.
  • Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, BONZEL KE, SEEMAN T, SULÁKOVÁ T, KUWERTZ-BRöking E, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12(9):1872–1881. doi:10.1681/ASN.V1291872.
  • Sanjad SA, Hariri A, Habbal ZM, Lifton RP. A novel PCLN-1 gene mutation in familial hypomagnesemia with hypercalciuria and atypical phenotype. Pediatr Nephrol. 2007;22(4):503–508. doi:10.1007/s00467-006-0354-5.
  • Muller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, Hunziker W. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet. 2003;73(6):1293–1301. doi:10.1086/380418.
  • Naeem M, Hussain S, Akhtar N. Mutation in the tight-junction gene claudin 19 (CLDN19) and familial hypomagnesemia, hypercalciuria, nephrocalcinosis (FHHNC) and severe ocular disease. Am J Nephrol. 2011;34(3):241–248. doi:10.1159/000330854.
  • Curry JN, Saurette M, Askari M, Pei L, Filla MB, Beggs MR, Rowe PSN, Fields T, Sommer AJ, Tanikawa C, et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest. 2020;130(4):1948–1960. doi:10.1172/JCI127750.
  • Milatz S, Breiderhoff T. One gene, two paracellular ion channels—claudin-10 in the kidney. Pflügers Archiv - Eur J Physiol. 2017;469(1):115–121. doi:10.1007/s00424-016-1921-7.
  • Klar J, Piontek J, Milatz S, Tariq M, Jameel M, Breiderhoff T, Schuster J, Fatima A, Asif M, Sher M, et al. Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage. PLoS Genet. 2017;13(7):e1006897. doi:10.1371/journal.pgen.1006897.
  • Liu Y, Jin X, Ma Y, Sun Q, Li H, Wang K. Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats. Int Urol Nephrol. 2022;54(10):2485–2495. doi:10.1007/s11255-022-03259-5.
  • Gamero-Estevez E, Andonian S, Jean-Claude B, Gupta I, Ryan AK. Temporal effects of quercetin on tight junction barrier properties and claudin expression and localization in MDCK II cells. Int J Mol Sci. 2019;20(19):20. doi:10.3390/ijms20194889.
  • Park HK, Jeong BC, Sung MK, Park MY, Choi EY, Kim BS, Kim HH, Kim JI. Reduction of oxidative stress in cultured renal tubular cells and preventive effects on renal stone formation by the bioflavonoid quercetin. J Urol. 2008;179(4):1620–1626. doi:10.1016/j.juro.2007.11.039.
  • Zhu W, Xu YF, Feng Y, Peng B, Che JP, Liu M, Zheng J-H. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model. Urolithiasis. 2014;42(6):519–526. doi:10.1007/s00240-014-0695-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.