192
Views
2
CrossRef citations to date
0
Altmetric
Review

(Zebra)fishing for nephrogenesis genes

, , , & ORCID Icon
Article: 2219605 | Received 10 Mar 2023, Accepted 14 May 2023, Published online: 31 May 2023

References

  • Preuss HG. Basics of renal anatomy and physiology. Clin Lab Med. 1993;13(1):1–29. doi:10.1016/S0272-2712(18)30456-6.
  • van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning physiology from inherited kidney disorders. Physiol Rev. 2019;99(3):1575–1653. doi:10.1152/physrev.00008.2018.
  • Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol. 2011;26(9):1529–1533. doi:10.1007/s00467-011-1843-8.
  • Balzer MS, Rohacs T, Susztak K. How many cell types are in the kidney and what do they do?Annu. Annu Rev Physiol. 2022;84(1):507–531. doi:10.1146/annurev-physiol-052521-121841.
  • Little MH, Howden SE, Lawlor KT, Vanslambrouck JM. Determining lineage relationships in kidney development and disease. Nat Rev Nephrol. 2022;18(1):8–21. doi:10.1038/s41581-021-00485-5.
  • Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD. The glomerulus: the sphere of influence. Clin J Am Soc Nephrol. 2014;9(8):1461–1469. doi:10.2215/CJN.09400913.
  • Garg P. A review of podocyte biology. Am J Nephrol. 2018;47(Suppl 1):3–13. doi:10.1159/000481633.
  • Kitching AR, Hutton HL. The players: cells involved in glomerular disease. Clin J Am Soc Nephrol. 2016;11(9):1664–1674. doi:10.2215/CJN.13791215.
  • Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ. Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol. 2009;20(2):333–343. doi:10.1681/ASN.2008070795.
  • Lasagni L, Angelotti ML, Ronconi E, Lombardi D, Nardi S, Peired A, Becherucci F, Mazzinghi B, Sisti A, Romoli S, et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. null. 2015;5(2):248–263. doi:10.1016/j.stemcr.2015.07.003.
  • Kaverina NV, Eng DG, Freedman BS, Kutz JN, Chozinski TJ, Vaughan JC, Miner JH, Pippin JW, Shankland SJ. Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int. 2019;96(3):597–611. doi:10.1016/j.kint.2019.03.014.
  • Kaverina NV, Eng DG, Miner JH, Pippin JW, Shankland SJ. Parietal epithelial cell differentiation to a podocyte fate in the aged mouse kidney. Aging (Albany NY). 2020;12(17):17601–17624. doi:10.18632/aging.103788.
  • Ni L, Yuan C, Wu X. The recruitment mechanisms and potential therapeutic targets of podocytes from parietal epithelial cells. J Transl Med. 2021;19(1):441. doi:10.1186/s12967-021-03101-z.
  • Desgrange A, Cereghini S. Nephron patterning: lessons from Xenopus, zebrafish, and mouse studies. Cells. 2015;4(3):483–499. doi:10.3390/cells4030483.
  • Hoenig MP, Zeidel ML. Homeostasis, the milieu intérieur, and the wisdom of the nephron. Clin J Am Soc Nephrol. 2014;9(7):1272–1281. doi:10.2215/CJN.08860813.
  • Zhuo JL, Li XC. Proximal nephron. Compr Physiol. 2013;3(3):1079–1123. doi:10.1002/cphy.c110061.
  • Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol. 2014;9(9):1627–1638. doi:10.2215/CJN.10391012.
  • Wright EM. Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol. 2001;280(1):F10–F18. doi:10.1152/ajprenal.2001.280.1.F10.
  • Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol. 2011 Jan;300(1):C14–21. doi:10.1152/ajpcell.00388.2010.
  • Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22(1):104–112. doi:10.1681/ASN.2010030246.
  • Layton AT, Layton HE, Beard DA. A computational model of epithelial solute and water transport along a human nephron. PLoS Comput Biol. 2019;15(2):e1006108. doi:10.1371/journal.pcbi.1006108.
  • Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clin J Am Soc Nephrol. 2014;9(10):1781–1789. doi:10.2215/CJN.08750812.
  • Mount DB. Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol. 2014;9(11):1974–1986. doi:10.2215/CJN.04480413.
  • Imai M, Taniguchi J, Tabei K. Function of thin loops of Henle. Kidney Int. 1987;31(2):565–579. doi:10.1038/ki.1987.37.
  • Subramanya AR, Ellison DH. Distal convoluted tubule. Clin J Am Soc Nephrol. 2014;9(12):2147–2163. doi:10.2215/CJN.05920613.
  • Roy A, Al-Bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol. 2015;10(2):305–324. doi:10.2215/CJN.08880914.
  • Klussmann E, Maric K, Rosenthal W. The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol. 2000;141:33–95. doi:10.1007/BFb0119577.
  • Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol. 2015;10(1):135–146. doi:10.2215/CJN.05760513.
  • Schedl A. Renal abnormalities and their developmental origin. Nat Rev Genet. 2007;8(10):791–802. doi:10.1038/nrg2205.
  • Song R, Yosypiv IV. Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2011;26(3):353–364. doi:10.1007/s00467-010-1629-4.
  • Murugapoopathy V, Gupta IR. A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin J Am Soc Nephrol. 2020;15(5):723–731. doi:10.2215/CJN.12581019.
  • Connaughton DM, Hildebrandt F. Disease mechanisms of monogenic congenital anomalies of the kidney and urinary tract. American Journal Of Medical Genetics Part C Am J Med Genet C Semin Med Genet. 2022;190(3):325–343. doi:10.1002/ajmg.c.32006.
  • Costigan CS, Rosenblum ND. Anatomy and embryology of congenital surgical anomalies: congenital anomalies of the kidney and urinary tract. Semin Pediatr Surg. 2022;31(6):151232. doi:10.1016/j.sempedsurg.2022.151232.
  • Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Innocenti ML, Somenzi D, Trivelli A, Caridi G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76(5):528–533. doi:10.1038/ki.2009.220.
  • Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, Reutter HM, Soliman NA, Bogdanovic R, Kehinde EO, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–1433. doi:10.1038/ki.2013.508.
  • Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers. 2020;8(4):1832844. doi:10.1080/21688370.2020.1832844.
  • Little MH. Returning to kidney development to deliver synthetic kidneys. Dev Biol. 2021;474:22–36. doi:10.1016/j.ydbio.2020.12.009.
  • Vivante A, Kohl S, Hwang DY, Dworschak GC, Hildebrandt F. Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Pediatr Nephrol. 2014;29(4):695–704. doi:10.1007/s00467-013-2684-4.
  • Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, Mitrotti A, Fasel DA, Batourina E, Sampson MG, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet. 2019;51(1):117–127. doi:10.1038/s41588-018-0281-y.
  • Kagan M, Pleniceanu O, Vivante A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2022;37(10):2231–2243. doi:10.1007/s00467-021-05420-1.
  • Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genom Hum Genet. 2009;10(1):451–481. doi:10.1146/annurev.genom.9.081307.164217.
  • Cai M, Lin N, Su L, Wu X, Xie X, Li Y, Chen X, Dai Y, Lin Y, Huang H, et al. Detection of copy number disorders associated with congenital anomalies of the kidney and urinary tract in fetuses via single nucleotide polymorphism arrays. J Clin Lab Anal. 2020;34(1):e23025. doi:10.1002/jcla.23025.
  • Nicolaou N, Renkema KY, Bongers EM, Giles RH, Knoers NV. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11(12):720–731. doi:10.1038/nrneph.2015.140.
  • Ebarasi L, Oddsson A, Hultenby K, Betsholtz C, Tryggvason K. Zebrafish: a model system for the study of vertebrate renal development, function, and pathophysiology. Curr Opin Nephrol Hypertens. 2011;20(4):416–424. doi:10.1097/MNH.0b013e3283477797.
  • Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. Wiley Interdiscip Rev Dev Biol. 2013;2(5):559–585. doi:10.1002/wdev.92.
  • Kroeger PT Jr, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis. 2014;52(9):771–792. doi:10.1002/dvg.22798.
  • McCampbell KK, Springer KN, Wingert RA. Analysis of nephron composition and function in the adult zebrafish kidney. J Vis Exp. 2014;90(90)e51644. 10.3791/51644.
  • McKee RA, Wingert RA. Zebrafish renal pathology: emerging models of acute kidney injury. Curr Pathobiol Rep. 2015;3(2):171–181. doi:10.1007/s40139-015-0082-2.
  • Drummond BE, Wingert RA. Insights into kidney stem cell development and regeneration using zebrafish. World J Stem Cells. 2016;8(2):22–31. doi:10.4252/wjsc.v8.i2.22.
  • Drummond IA, Davidson AJ. Zebrafish kidney development. Methods Cell Biol. 2016;134:391–429. doi:10.1016/bs.mcb.2016.03.041.
  • Poureetezadi SJ, Wingert RA. Little fish, big catch: zebrafish as a model for kidney disease. Kidney Int. 2016;89(6):1204–1210. doi:10.1016/j.kint.2016.01.031.
  • Chambers BE, Wingert RA. Renal progenitors: roles in kidney disease and regeneration. World J Stem Cells. 2016;8(11):367–375. doi:10.4252/wjsc.v8.i11.367.
  • Jerman S, Sun Z. Using zebrafish to study kidney development and disease. Curr Top Dev Biol. 2017;124:41–79. doi:10.1016/bs.ctdb.2016.11.008.
  • Morales EE, Wingert RA. Zebrafish as a model of kidney disease. Results Probl Cell Differ. 2017;60:55–75. doi:10.1007/978-3-319-51436-9_3.
  • Elmonem MA, Berlingerio SP, van den Heuvel LP, de Witte PA, Lowe M, Levtchenko EN. Genetic renal diseases: the emerging role of zebrafish models. Cells. 2018;7(9):130. doi:10.3390/cells7090130.
  • Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol. 2019;34(5):751–762. doi:10.1007/s00467-018-3921-7.
  • Fatma S, Nayak U, Swain RK. Methods to generate and evaluate zebrafish models of human kidney diseases. Int J Dev Biol. 2021;65(7–8–9):475–485. doi:10.1387/ijdb.210041rs.
  • Sopel N, Müller-Deile J. The zebrafish model to understand epigenetics in renal diseases. Int J Mol Sci. 2021;22(17):9152. doi:10.3390/ijms22179152.
  • Lim S, Kang H, Kwon B, Lee JP, Lee J, Choi K. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. Ecotoxicol Environ Saf. 2022;242:113842. doi:10.1016/j.ecoenv.2022.113842.
  • Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int. 2022;101(3):473–484. doi:10.1016/j.kint.2021.09.034.
  • Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development. 1998;125(23):4655–4667. doi:10.1242/dev.125.23.4655.
  • Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development. 1990;108(4):581–594. doi:10.1242/dev.108.4.581.
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. doi:10.1002/aja.1002030302.
  • Davidson AJ. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr Nephrol. 2011;26(9):1435–1443. doi:10.1007/s00467-011-1795-z.
  • Irion U, Nüsslein-Volhard C. Developmental genetics with model organisms. Proc Natl Acad Sci U S A. 2022;119(30):e2122148119.doi:10.1073/pnas.2122148119.
  • Gerlach GF, Wingert RA. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev Biol. 2014;396(2):183–200. doi:10.1016/j.ydbio.2014.08.038.
  • McKee R, Gerlach GF, Jou J, Cheng CN, Wingert RA. Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene Expr Patterns. 2014;16(2):104–113. doi:10.1016/j.gep.2014.11.001.
  • Majumdar A, Drummond IA. The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol. 2000;222(1):147–157. doi:10.1006/dbio.2000.9642.
  • Serluca FC, Drummond IA, Fishman MC. Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol. 2002;12(6):492–497. doi:10.1016/s0960-9822(02)00694-2.
  • Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development. 2005;132(8):1907–1921. doi:10.1242/dev.01772.
  • Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA. Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol. 2005;285(2):316–329. doi:10.1016/j.ydbio.2005.06.038.
  • O’Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Wt1a DA. Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol. 2011;358(2):318–330. doi:10.1016/j.ydbio.2011.08.005.
  • PT K Jr, Drummond BE, Miceli R, McKernan M, Gerlach GF, Marra AN, Fox A, McCampbell KK, Leshchiner I, Rodriguez-Mari A, et al. The zebrafish kidney mutant zeppelin reveals that brca2/fancd1 is essential for pronephros development. Dev Biol. 2017;428(1):148–163. doi:10.1016/j.ydbio.2017.05.025.
  • Djenoune L, Tomar R, Dorison A, Ghobrial I, Schenk H, Hegermann J, Beverly-Staggs L, Hidalgo-Gonzalez A, Little MH, Drummond IA. Autonomous calcium signaling in human and zebrafish podocytes controls kidney filtration barrier morphogenesis. J Am Soc Nephrol. 2021;32(7):1697–1712. doi:10.1681/ASN.2020101525.
  • Drummond BE, Ercanbrack WS, Wingert RA. Modeling podocyte ontogeny and podocytopathies with the zebrafish. J Dev Biol. 2023;11(1):9. doi:10.3390/jdb11010009.
  • Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, et al. Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol. 2009;7(1):e9. doi:10.1371/journal.pbio.1000009.
  • Vasilyev A, Liu Y, Hellman N, Pathak N, Drummond IA. Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros. PLos One. 2012;7(7):e39992. doi:10.1371/journal.pone.0039992.
  • Naylor RW, Davidson AJ. Pronephric tubule formation in zebrafish: morphogenesis and migration. Pediatr Nephrol. 2017;32(2):211–216. doi:10.1007/s00467-016-3353-1.
  • Nguyen TK, Petrikas M, Chambers BE, Wingert RA. Principles of Zebrafish Nephron Segment Development. J Dev Biol. 2023;11(1):14. doi:10.3390/jdb11010014.
  • Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, et al. The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet. 2007;3(10):1922–1938. doi:10.1371/journal.pgen.0030189.
  • Wingert RA, Davidson AJ. Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn. 2011;240(8):2011–2027. doi:10.1002/dvdy.22691.
  • Ma M, Jiang YJ. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet. 2007;3(1):e18. doi:10.1371/journal.pgen.0030018.
  • Liu Y, Pathak N, Kramer-Zucker A, Drummond IA. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development. 2007;134(6):1111–1122. doi:10.1242/dev.02806.
  • Marra AN, Li Y, Wingert RA. Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development. Genesis. 2016;54(9):457–469. doi:10.1002/dvg.22957.
  • Wesselman HM, Nguyen TK, Chambers JM, Drummond BE, Wingert RA. Advances in understanding the genetic mechanisms of zebrafish renal multiciliated cell development. J Dev Biol. 2022;11(1):1. doi:10.3390/jdb11010001.
  • Anzenberger U, Bit-Avragim N, Rohr S, Rudolph F, Dehmel B, Willnow TE, Abdelilah-Seyfried S. Elucidation of megalin/LRP2-dependent endocytic transport processes in the larval zebrafish pronephros. J Cell Sci. 2006;119(Pt 10):2127–2137. doi:10.1242/jcs.02954.
  • Nichane M, Van Campenhout C, Pendeville H, Voz ML, Bellefroid EJ. The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos. Gene Expr Patterns. 2006;6(7):667–672. doi:10.1016/j.modgep.2006.01.005.
  • Kur E, Christa A, Veth KN, Gajera CR, Andrade-Navarro MA, Zhang J, Willer JR, Gregg RG, Abdelilah-Seyfried S, Bachmann S, et al. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development. Dev Dyn. 2011;240(6):1567–1577. doi:10.1002/dvdy.22624.
  • Morgan J, Yarwood R, Starborg T, Yan G, Lowe M. Pacsin2 is required for endocytosis in the zebrafish pronephric tubule. Biol Open. 2022;11(6):bio059150. doi:10.1242/bio.059150.
  • Naylor RW, Qubisi SS, Davidson AJ. Zebrafish pronephros development. Results Probl Cell Differ. 2017;60:27–53. doi:10.1007/978-3-319-51436-9_2.
  • Sander V, Salleh L, Naylor RW, Schierding W, Sontam D, O’Sullivan JM, Davidson AJ. Transcriptional profiling of the zebrafish proximal tubule. Am J Physiol Renal Physiol. 2019;317(2):F478–F488. doi:10.1152/ajprenal.00174.2019.
  • Schoels M, Zhuang M, Fahrner A, Küchlin S, Sagar, Franz H, Schmitt A, Walz G, TA Y. Single-cell mRNA profiling reveals changes in solute carrier expression and suggests a metabolic switch during zebrafish pronephros development. Am J Physiol Renal Physiol. 2021;320(5):F826–F837. doi:10.1152/ajprenal.00610.2020.
  • Long KR, Rbaibi Y, Bondi CD, Ford BR, Poholek AC, Boyd-Shiwarski CR, Tan RJ, Locker JD, Weisz OA. Cubilin-, megalin-, and Dab2-dependent transcription revealed by CRISPR/Cas9 knockout in kidney proximal tubule cells. Am J Physiol Renal Physiol. 2022;322(1):F14–F26. doi:10.1152/ajprenal.00259.2021.
  • Thisse B, Thisse C. Fast release clones: a high throughput expression analysis. ZFIN direct data submission; 2004. [accessed 2023 Jan 1]. ZDB-PUB-080220-1
  • Schäffers OJM, Hoenderop JGJ, Bindels RJM, de Baaij JHF. The rise and fall of novel renal magnesium transporters. Am J Physiol Renal Physiol. 2018;314(6):F1027–F1033. doi:10.1152/ajprenal.00634.2017.
  • Pyati UJ, Cooper MS, Davidson AJ, Nechiporuk A, Kimelman D. Sustained Bmp signaling is essential for cloaca development in zebrafish. Development. 2006;133(11):2275–2284. doi:10.1242/dev.02388.
  • Slanchev K, Pütz M, Schmitt A, Kramer-Zucker A, Walz G. Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum Mol Genet. 2011;20(16):3119–3128. doi:10.1093/hmg/ddr214.
  • Bubenshchikova E, Ichimura K, Fukuyo Y, Powell R, Hsu C, Morrical SO, Sedor JR, Sakai T, Obara T. Wtip and Vangl2 are required for mitotic spindle orientation and cloaca morphogenesis. Biol Open. 2012;1(6):588–596. doi:10.1242/bio.20121016.
  • Baranowska Körberg I, Hofmeister W, Markljung E, Cao J, Nilsson D, Ludwig M, Draaken M, Holmdahl G, Barker G, Reutter H, et al. WNT3 involvement in human bladder exstrophy and cloaca development in zebrafish. Hum Mol Genet. 2015;24(18):5069–5078. doi:10.1093/hmg/ddv225.
  • Denker BM, Sabath E. The biology of epithelial cell tight junctions in the kidney. J Am Soc Nephrol. 2011;22(4):622–625. doi:10.1681/ASN.2010090922.
  • Leiz J, Schmidt-Ott KM. Claudins in the renal collecting duct. Int J Mol Sci. 2019;21(1):221. doi:10.3390/ijms21010221.
  • Lei L, Wang W, Jia Y, Su L, Zhou H, Verkman AS, Yang B. Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury. Biochim Biophys Acta, Mol Basis Dis. 2017;1863(6):1231–1241. doi:10.1016/j.bbadis.2017.03.012.
  • Tseng DY, Chou MY, Tseng YC, Hsiao CD, Huang CJ, Kaneko T, Hwang PP. Effects of stanniocalcin 1 on calcium uptake in zebrafish (Danio rerio) embryo. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R549–R557. doi:10.1152/ajpregu.90742.2008.
  • Greenwood MP, Flik G, Wagner GF, Balment RJ. The corpuscles of Stannius, calcium-sensing receptor, and stanniocalcin: responses to calcimimetics and physiological challenges. Endocrinology. 2009;150(7):3002–3010. doi:10.1210/en.2008-1758.
  • Naylor RW, Chang HG, Qubisi S, Davidson AJ. A novel mechanism of gland formation in zebrafish involving transdifferentiation of renal epithelial cells and live cell extrusion. Elife. 2018;7:e38911. doi:10.7554/eLife.38911.
  • Klingbeil K, Nguyen TQ, Fahrner A, Guthmann C, Wang H, Schoels M, Lilienkamp M, Franz H, Eckert P, Walz G, et al. Corpuscles of Stannius development requires FGF signaling. Dev Biol. 2022;481:160–171. doi:10.1016/j.ydbio.2021.10.005.
  • Zhou F, Narasimhan V, Shboul M, Chong YL, Reversade B, Roy S. Gmnc is a master regulator of the multiciliated cell differentiation program. Curr Biol. 2015;25(24):3267–3273. doi:10.1016/j.cub.2015.10.062.
  • Marra AN, Wingert RA. Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development. Dev Biol. 2016;411(2):231–245. doi:10.1016/j.ydbio.2016.01.035.
  • Barrodia P, Patra C, Swain RK. EF-hand domain containing 2 (Efhc2) is crucial for distal segmentation of pronephros in zebrafish. Cell & Bioscience. 2018;8:53. doi:10.1186/s13578-018-0253-z.
  • Chong YL, Zhang Y, Zhou F, Roy S. Distinct requirements of E2f4 versus E2f5 activity for multiciliated cell development in the zebrafish embryo. Dev Biol. 2018;443(2):165–172. doi:10.1016/j.ydbio.2018.09.013.
  • Marra AN, Adeeb BD, Chambers BE, Drummond BE, Ulrich M, Addiego A, Springer M, Poureetezadi SJ, Chambers JM, Ronshaugen M, et al. Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proc Natl Acad Sci U S A. 2019;116(17):8409–8418. doi:10.1073/pnas.1813492116.
  • Marra AN, Cheng CN, Adeeb B, Addiego A, Wesselman HM, Chambers BE, Chambers JM, Wingert RA. Iroquois transcription factor irx2a is required for multiciliated and transporter cell fate decisions during zebrafish pronephros development. null. 2019;9(1):6454. doi:10.1038/s41598-019-42943-y.
  • Xie H, Kang Y, Wang S, Zheng P, Chen Z, Roy S, Zhao C. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet. 2020;16(3):e1008655. doi:10.1371/journal.pgen.1008655.
  • Chambers JM, Addiego A, Flores-Mireles AL, Wingert RA. Ppargc1a controls ciliated cell development by regulating prostaglandin biosynthesis. Cell Rep. 2020;33(6):108370. doi:10.1016/j.celrep.2020.108370.
  • Zhou F, Rayamajhi D, Ravi V, Narasimhan V, Chong YL, Lu H, Venkatesh B, Roy S. Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates. Dev Biol. 2020;465(2):168–177. doi:10.1016/j.ydbio.2020.07.005.
  • Wesselman HM, Flores-Mireles AL, Bauer A, Pei L, Wingert, RA. Esrrγa regulates nephron and ciliary development by controlling prostaglandin synthesis. Development. 2023;150(10):dev201411. doi:10.1242/dev.201411. 37232416
  • Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353–367. doi:10.1038/nrg2091.
  • Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell. 2011;21(1):48–64. doi:10.1016/j.devcel.2011.06.007.
  • Lawson ND, Li R, Shin M, Grosse A, Yukselen O, Stone OA, Kucukural A, Zhu L. An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes. Elife. 2020;9:e55792. doi:10.7554/eLife.55792.
  • Choi TY, Choi TI, Lee YR, Choe SK, Kim CH. Zebrafish as an animal model for biomedical research. Experimental & Molecular Medicine. 2021;53(3):310–317. doi:10.1038/s12276-021-00571-5.
  • Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611–628. doi:10.1038/s41573-021-00210-8.
  • Larijani B, Hamidpour SK, Tayanloo-Beik A, Shahbazbadr A, Yavari H, Namazi N, Biglar M, Arjmand B. An overview of zebrafish modeling methods in drug discovery and development. Adv Exp Med Biol. 2022;1387:145–169. doi:10.1007/5584_2021_684.
  • Peterson RT, Link BA, Dowling JE, Schreiber SL. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A. 2000;97(24):12965–12869. doi:10.1073/pnas.97.24.12965.
  • Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol. 2015;24:58–70. doi:10.1016/j.cbpa.2014.10.025.
  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. doi:10.1038/nature12111.
  • Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996;123:1–36. doi:10.1242/dev.123.1.1.
  • Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development. 1996;123:37–46. doi:10.1242/dev.123.1.37.
  • Patton EE, Zon LI. The art and design of genetic screens: zebrafish. Nat Rev Genet. 2001;2(12):956–966. doi:10.1038/35103567.
  • PT K Jr, Poureetezadi SJ, McKee R, Jou J, Miceli R, Wingert RA. Production of haploid zebrafish embryos by in vitro fertilization. J Vis Exp. 2014;89:51708. doi:10.3791/51708.
  • Cheng CN, Li Y, Marra AN, Verdun V, Wingert RA. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization. J Vis Exp. 2014;89:51604. doi:10.3791/51604.
  • Marra AN, Ulrich M, White A, Springer M, Wingert RA. Visualizing multiciliated cells in the zebrafish through a combined protocol of whole mount fluorescent in situ hybridization and immunofluorescence. J Vis Exp. 2017;129:56261. doi:10.3791/56261.
  • Marra AN, Chambers BE, Chambers JM, Drummond BE, Adeeb BD, Wesselman HM, Morales EE, Handa N, Pettini T, Ronshaugen M, et al. Visualizing gene expression during zebrafish pronephros development and regeneration. Methods Cell Biol. 2019;154:183–215. doi:10.1016/bs.mcb.2019.06.003.
  • Wesselman HM, Gatz A, Wingert RA. Visualizing multiciliated cells in the zebrafish. Methods Cell Biol. 2022. doi:10.1016/bs.mcb.2022.09.008.
  • Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development. 2004;131(16):4085–4093. doi:10.1242/dev.01240.
  • Hong SK, Haldin CE, Lawson ND, Weinstein BM, Dawid IB, Hukriede NA. The zebrafish kohtalo/trap230 gene is required for the development of the brain, neural crest, and pronephric kidney. Proc Natl Acad Sci U S A. 2005;102(51):18473–18478. doi:10.1073/pnas.0509457102.
  • Ryan S, Willer J, Marjoram L, Bagwell J, Mankiewicz J, Leshchiner I, Goessling W, Bagnat M, Katsanis N. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish. Development. 2013;140(21):4445–4451. doi:10.1242/dev.101170.
  • Poureetezadi SJ, Donahue EK, Wingert RA. A manual small molecule screen approaching high-throughput using zebrafish embryos. J Vis Exp. 2014;93:e52063. doi:10.3791/52063.
  • Westhoff JH, Giselbrecht S, Schmidts M, Schindler S, Beales PL, Tönshoff B, Liebel U, Gehrig J. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLos One. 2013;8(12):e82137. doi:10.1371/journal.pone.0082137.
  • Gehrig J, Pandey G, Westhoff JH. Zebrafish as a model for drug screening in genetic kidney diseases. Front Pediatr. 2018;6:183. doi:10.3389/fped.2018.00183.
  • Pandey G, Westhoff JH, Schaefer F, Gehrig J. A smart imaging workflow for organ-specific screening in a cystic kidney zebrafish disease model. Int J Mol Sci. 2019;20(6):1290. doi:10.3390/ijms20061290.
  • Steenbergen PJ, Heigwer J, Pandey G, Tönshoff B, Gehrig J, Westhoff JH. A multiparametric assay platform for simultaneous in vivo assessment of pronephric morphology, renal function and heart rate in larval zebrafish. Cells. 2020;9(5):1269. doi:10.3390/cells9051269.
  • Westhoff JH, Steenbergen PJ, Thomas LSV, Heigwer J, Bruckner T, Cooper L, Tönshoff B, Hoffmann GF, Gehrig J. In vivo high-content screening in zebrafish for developmental nephrotoxicity of approved drugs. Front Cell Dev Biol. 2020;8:583. doi:10.3389/fcell.2020.00583.
  • Metzner A, Griffiths JD, Streets AJ, Markham E, Philippou T, Van Eeden FJM, Ong ACM. A high throughput zebrafish chemical screen reveals ALK5 and non-canonical androgen signalling as modulators of the pkd2-/- phenotype. null. 2020;10(1):72. doi:10.1038/s41598-019-56995-7.
  • Poureetezadi SJ, Cheng CN, Chambers JM, Drummond BE, Wingert RA. Prostaglandin signaling regulates nephron segment patterning of renal progenitors during zebrafish kidney development. Elife. 2016;5:e17551. doi:10.7554/eLife.17551.
  • Chambers JM, Poureetezadi SJ, Addiego A, Lahne M, RA W. Ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny. Elife. 2018;7:e40266. doi:10.7554/eLife.40266.
  • Wesselman HM, Gatz AE, Pfaff MR, Arceri L, Wingert RA. Estrogen signaling influences nephron segmentation of the zebrafish embryonic kidney. Cells. 2023;12(4):666. doi:10.3390/cells12040666.
  • Jin D, Ni TT, Sun J, Wan H, Amack JD, Yu G, Fleming J, Chiang C, Li W, Papierniak A, et al. Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport. Nat Cell Biol. 2014;16(9):841–851. doi:10.1038/ncb3029.
  • Li M, Zhao L, Page-McCaw PS, Chen W. Zebrafish genome engineering using the CRISPR-Cas9 system. Trends Genet. 2016;32(12):815–827. doi:10.1016/j.tig.2016.10.005.
  • Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A. 2013;110(34):13904–13909. doi:10.1073/pnas.1308335110.
  • Burger A, Lindsay H, Felker A, Hess C, Anders C, Chiavacci E, Zaugg J, Weber LM, Catena R, Jinek M, et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development. 2016;143(11):2025–2037. doi:10.1242/dev.134809.
  • Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB. Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods. 2015;12(6):535–540. doi:10.1038/nmeth.3360.
  • Wu RS, Lam C II, Duong H, DN DR, Coughlin SR. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev Cell. 2018;46(1):112–125.e4. doi:10.1016/j.devcel.2018.06.003.
  • Liu K, Petree C, Requena T, Varshney P, Varshney GK. Expanding the CRISPR toolbox in zebrafish for studying development and disease. Front Cell Dev Biol. 2019;7:13. doi:10.3389/fcell.2019.00013.
  • Carrington B, Bishop K, Sood R. A comprehensive review of indel detection methods for identification of zebrafish knockout mutants generated by genome-editing nucleases. Genes (Basel). 2022;13(5):857. doi:10.3390/genes13050857.
  • Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet. 2000;26(2):216–220. doi:10.1038/79951.
  • Bedell VM, Westcot SE, Ekker SC. Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics. 2011;10(4):181–188. doi:10.1093/bfgp/elr021.
  • Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, Ingham PW, Schulte-Merker S, Yelon D, Weinstein BM, et al. Guidelines for morpholino use in zebrafish. PLoS Genet. 2017;13(10):e1007000. doi:10.1371/journal.pgen.1007000.
  • Sassen WA, Köster R. A molecular toolbox for genetic manipulation of zebrafish. Adv Genomics Genet. 2015;5:151–163. doi:10.2147/AGG.S57585.
  • Råbergh CM, Airaksinen S, Soitamo A, Björklund HV, Johansson T, Nikinmaa M, Sistonen L. Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRnas in response to heat stress. J Exp Biol. 2000;203(Pt 12):1817–1824. doi:10.1242/jeb.203.12.1817.
  • Gerety SS, Breau MA, Sasai N, Xu Q, Briscoe J, Wilkinson DG. An inducible transgene expression system for zebrafish and chick. Development. 2013;140(10):2235–2243. doi:10.1242/dev.091520.
  • Shoji W, Sato-Maeda M. Application of heat shock promoter in transgenic zebrafish. Dev Growth Differ. 2008;50(6):401–406. doi:10.1111/j.1440-169X.2008.01038.x.
  • Kantarci H, Edlund RK, Groves AK, Riley BB. Tfap2a promotes specification and maturation of neurons in the inner ear through modulation of Bmp, Fgf and notch signaling. PLoS Genet. 2015;11(3):e1005037. doi:10.1371/journal.pgen.1005037.
  • Bouchard M, Souabni A, Mandler M, Neubüser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 2002;16(22):2958–2970. doi:10.1101/gad.240102.
  • Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M. Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development. Dev Biol. 2015;397(2):175–190. doi:10.1016/j.ydbio.2014.10.022.
  • Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development. 2000;127(10):2089–2098. doi:10.1242/dev.127.10.2089.
  • Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M. Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development. 1998;125(16):3063–3074. doi:10.1242/dev.125.16.3063.
  • Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gómez-Skarmeta JL. Odd-skipped genes encode repressors that control kidney development. Dev Biol. 2007;301(2):518–531. doi:10.1016/j.ydbio.2006.08.063.
  • Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA. Odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development. 2008;135(20):3355–3367. doi:10.1242/dev.022830.
  • Neto A, Mercader N, Gómez-Skarmeta JL. The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development. Development. 2012;139(2):301–311. doi:10.1242/dev.074856.
  • Perens EA, Garavito-Aguilar ZV, Guio-Vega GP, Peña KT, Schindler YL, Yelon D. Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm. Elife. 2016;5:e19941. doi:10.7554/eLife.19941.
  • Perens EA, Diaz JT, Quesnel A, Askary A, Crump JG, Yelon D. Osr1 couples intermediate mesoderm cell fate with temporal dynamics of vessel progenitor cell differentiation. Development. 2021;148(15):dev198408. doi:10.1242/dev.198408.
  • Tomar R, Mudumana SP, Pathak N, Hukriede NA, Drummond IA. Osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol. 2014;25(11):2539–2545. doi:10.1681/ASN.2013121327.
  • Drummond BE, Chambers BE, Wesselman HM, Gibson S, Arceri L, Ulrich MN, Gerlach GF, Kroeger PT, Leshchiner I, Goessling W, et al. Osr1 maintains renal progenitors and regulates podocyte development by promoting wnt2ba via the antagonism of hand2. Biomedicines. 2022;10(11):2868. doi:10.3390/biomedicines10112868.
  • Romagnani P, Lasagni L, Remuzzi G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol. 2013;9(3):137–146. doi:10.1038/nrneph.2012.290.
  • Zhou W, Boucher RC, Bollig F, Englert C, Hildebrandt F. Characterization of mesonephric development and regeneration using transgenic zebrafish. Am J Physiol Renal Physiol. 2010;299(5):F1040–F1047. doi:10.1152/ajprenal.00394.2010.
  • Diep CQ, Ma D, Deo RC, Holm TM, Naylor RW, Arora N, Wingert RA, Bollig F, Djordjevic G, Lichman B, et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature. 2011;470(7332):95–100. doi:10.1038/nature09669.
  • Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ. Development of the zebrafish mesonephros. Genesis. 2015;53(3–4):257–269. doi:10.1002/dvg.22846.
  • McCampbell KK, Springer KN, Wingert RA. Atlas of cellular dynamics during zebrafish adult kidney regeneration. Stem Cells Int. 2015;2015:547636. doi:10.1155/2015/547636.
  • Reimschuessel R. A fish model of renal regeneration and development. Ilar J. 2001;42(4):285–291. doi:10.1093/ilar.42.4.285.
  • Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol. 2014;29(4):553–564. doi:10.1007/s00467-013-2597-2.
  • Sander V, Davidson AJ. Kidney injury and regeneration in zebrafish. Semin Nephrol. 2014;34(4):437–444. doi:10.1016/j.semnephrol.2014.06.010.
  • McCampbell KK, Wingert RA. New tides: using zebrafish to study renal regeneration. Transl Res. 2014;163(2):109–122. doi:10.1016/j.trsl.2013.10.003.
  • Okamura DM, Brewer CM, Wakenight P, Bahrami N, Bernardi K, Tran A, Olson J, Shi X, Yeh SY, Piliponsky A, et al. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience. 2021;24(11):103269. doi:10.1016/j.isci.2021.103269.
  • O’Brien LL, McMahon AP. Induction and patterning of the metanephric nephron. Semin Cell Dev Biol. 2014;36:31–38. doi:10.1016/j.semcdb.2014.08.014.
  • Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development. 2015;142(11):1937–1947. doi:10.1242/dev.104802.
  • Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–292. doi:10.1016/j.devcel.2005.05.016.
  • Kamei CN, Gallegos TF, Liu Y, Hukriede N, Drummond IA. Wnt signaling mediates new nephron formation during zebrafish kidney regeneration. Development. 2019;146(8):dev168294. doi:10.1242/dev.168294.
  • Cho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR. Differential expression and function of cadherin-6 during renal epithelium development. Development. 1998;125(5):803–812. doi:10.1242/dev.125.5.803.
  • Combes AN, Davies JA, Little MH. Cell-cell interactions driving kidney morphogenesis. Curr Top Dev Biol. 2015;112:467–508. doi:10.1016/bs.ctdb.2014.12.002.
  • Horsfield J, Ramachandran A, Reuter K, LaVallie E, Collins-Racie L, Crosier K, Crosier P. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development. Mech Dev. 2002;115(1–2):15–26. doi:10.1016/s0925-4773(02)00094-1.
  • Kuechlin S, Schoels M, Slanchev K, Lassmann S, Walz G, Yakulov TA. EpCAM controls morphogenetic programs during zebrafish pronephros development. Biochem Biophys Res Commun. 2017;487(2):209–215. doi:10.1016/j.bbrc.2017.04.035.
  • Lindström NO, McMahon JA, Guo J, Tran T, Guo Q, Rutledge E, Parvez RK, Saribekyan G, Schuler RE, Liao C, et al. Conserved and divergent features of human and mouse kidney irganogenesis. J Am Soc Nephrol. 2018;29(3):785–805. doi:10.1681/ASN.2017080887.
  • Lindström NO, De Sena Brandine G, Tran T, Ransick A, Suh G, Guo J, Kim AD, Parvez RK, Ruffins SW, Rutledge EA, et al. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev Cell. 2018;45(5):651–660.e4. doi:10.1016/j.devcel.2018.05.010.
  • Lindström NO, Guo J, Kim AD, Tran T, Guo Q, De Sena Brandine G, Ransick A, Parvez RK, Thornton ME, Baskin L, et al. Conserved and divergent features of mesenchymal progenitor cell types within the cortical nephrogenic niche of the human and mouse kidney. J Am Soc Nephrol. 2018;29(3):806–824. doi:10.1681/ASN.2017080890.
  • Lindström NO, Tran T, Guo J, Rutledge E, Parvez RK, Thornton ME, Grubbs B, McMahon JA, McMahon AP. Conserved and divergent molecular and anatomic features of human and mouse nephron patterning. J Am Soc Nephrol. 2018;29(3):825–840. doi:10.1681/ASN.2017091036.
  • Lindström NO, Sealfon R, Chen X, Parvez RK, Ransick A, De Sena Brandine G, Guo J, Hill B, Tran T, Kim AD, et al. Spatial transcriptional mapping of the human nephrogenic program. Dev Cell. 2021;56(16):2381–2398.e6. doi:10.1016/j.devcel.2021.07.017.
  • Schnell J, Achieng M, Lindström NO. Principles of human and mouse nephron development. Nat Rev Nephrol. 2022;18(10):628–642. doi:10.1038/s41581-022-00598-5.
  • Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dollé P, Bellefroid EJ, Umbhauer M. Retinoic acid signalling is required for specification of pronephric cell fate. Dev Biol. 2006;299(1):35–51. doi:10.1016/j.ydbio.2006.06.047.
  • Naylor RW, Skvarca LB, Thisse C, Thisse B, Hukriede NA, Davidson AJ. BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis. Nat Commun. 2016;7:12197. doi:10.1038/ncomms12197.
  • Koning M, van den Berg CW, Rabelink TJ. Stem cell-derived kidney organoids: engineering the vasculature. Cell Mol Life Sci. 2020;77(12):2257–2273. doi:10.1007/s00018-019-03401-0.
  • Naylor RW, Przepiorski A, Ren Q, Yu J, Davidson AJ. HNF1β is essential for nephron segmentation during nephrogenesis. J Am Soc Nephrol. 2013;24(1):77–87. doi:10.1681/ASN.2012070756.
  • Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyryläinen R, Shan J, Vainio S, Umbhauer M, Cereghini S. HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development. 2013;140(4):873–885. doi:10.1242/dev.086538.
  • Massa F, Garbay S, Bouvier R, Sugitani Y, Noda T, Gubler MC, Heidet L, Pontoglio M, Fischer E. Hepatocyte nuclear factor 1β controls nephron tubular development. Development. 2013;140(4):886–896. doi:10.1242/dev.086546.
  • Nakayama M, Nozu K, Goto Y, Kamei K, Ito S, Sato H, Emi M, Nakanishi K, Tsuchiya S, Iijima K. HNF1B alterations associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2010;25(6):1073–1079. doi:10.1007/s00467-010-1454-9.
  • Cheng CN, Wingert RA. Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Dev Biol. 2015;399(1):100–116. doi:10.1016/j.ydbio.2014.12.020.
  • Cheng CN, Verdun VA, Wingert RA. Recent advances in elucidating the genetic mechanisms of nephrogenesis using zebrafish. Cells. 2015;4(2):218–233. doi:10.3390/cells4020218.
  • Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017;21(6):730–746.e6. doi:10.1016/j.stem.2017.10.011.
  • Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, Clish CB, Stillman IE, Karumanchi SA, Rhee EP, et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528–532. doi:10.1038/nature17184.
  • Chambers JM, Wingert RA. PGC-1α in disease: recent renal insights into a versatile metabolic regulator. Cells. 2020;9(10):2234. doi:10.3390/cells9102234.
  • Drummond BE, Li Y, Marra AN, Cheng CN, Wingert RA. The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish. Dev Biol. 2017;421(1):52–66. doi:10.1016/j.ydbio.2016.10.019.
  • Cho GS, Choi SC, Park EC, Han JK. Role of Tbx2 in defining the territory of the pronephric nephron. Development. 2011;138(3):465–474. doi:10.1242/dev.061234.
  • Morales EE, Handa N, Drummond BE, Chambers JM, Marra AN, Addiego A, Wingert RA. Homeogene emx1 is required for nephron distal segment development in zebrafish. null. 2018;8(1):18038. doi:10.1038/s41598-018-36061-4.
  • Chae S, Lee HK, Kim YK, Jung Sim H, Ji Y, Kim C, Ismail T, Park JW, Kwon OS, Kang BS, et al. Peroxiredoxin1, a novel regulator of pronephros development, influences retinoic acid and Wnt signaling by controlling ROS levels. null. 2017;7(1):8874. doi:10.1038/s41598-017-09262-6.
  • Bonvalet JP, Pradelles P, Farman N. Segmental synthesis and actions of prostaglandins along the nephron. Am J Physiol. 1987;253(3 Pt 2):F377–F387. doi:10.1152/ajprenal.1987.253.3.F377.
  • Liu X, Yu T, Tan X, Jin D, Yang W, Zhang J, Dai L, He Z, Li D, Zhang Y, et al. Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2. Elife. 2023;12:e81438. doi:10.7554/eLife.81438.
  • Wesselman HM, Wingert RA. Renal interstitial cells to the rescue. Elife. 2023;12:e86268. doi:10.7554/eLife.86268.
  • Dinopoulos A, Matsubara Y, Kure S. Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab. 2005;86(1–2):61–69. doi:10.1016/j.ymgme.2005.07.016.
  • Dinopoulos A, Kure S, Chuck G, Sato K, Gilbert DL, Matsubara Y, Degrauw T. Glycine decarboxylase mutations: a distinctive phenotype of nonketotic hyperglycinemia in adults. Neurology. 2005;64(7):1255–1257. doi:10.1212/01.WNL.0000156800.23776.40.
  • Kure S, Kato K, Dinopoulos A, Gail C, DeGrauw TJ, Christodoulou J, Bzduch V, Kalmanchey R, Fekete G, Trojovsky A, et al. Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat. 2006;27(4):343–352. doi:10.1002/humu.20293.
  • Coughlin CR 2nd, Swanson MA, Kronquist K, Acquaviva C, Hutchin T, Rodríguez-Pombo P, Väisänen ML, Spector E, Creadon-Swindell G, Brás-Goldberg AM, et al. The genetic basis of classic nonketotic hyperglycinemia due to mutations in GLDC and AMT. Genet Med. 2017;19(1):104–111. doi:10.1038/gim.2016.74.
  • Autuori MC, Pai YJ, Stuckey DJ, Savery D, Marconi AM, Massa V, Lythgoe MF, Copp AJ, David AL, Greene ND. Use of high-frequency ultrasound to study the prenatal development of cranial neural tube defects and hydrocephalus in Gldc-deficient mice. Prenat Diagn. 2017;37(3):273–281. doi:10.1002/pd.5004.
  • Pai YJ, Leung KY, Savery D, Hutchin T, Prunty H, Heales S, Brosnan ME, Brosnan JT, Copp AJ, Greene ND. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Commun. 2015;6:6388. doi:10.1038/ncomms7388.
  • Riché R, Liao M, Pena IA, Leung KY, Lepage N, Greene NDE, Sarafoglou K, Schimmenti LA, Drapeau P, É S. Glycine decarboxylase deficiency-induced motor dysfunction in zebrafish is rescued by counterbalancing glycine synaptic level. JCI Insight. 2018;3(21):e124642. doi:10.1172/jci.insight.124642.
  • Santos C, Pai YJ, Mahmood MR, Leung KY, Savery D, Waddington SN, Copp AJ, Greene N. Impaired folate 1-carbon metabolism causes formate-preventable hydrocephalus in glycine decarboxylase-deficient mice. J Clin Invest. 2020;130(3):1446–1452. doi:10.1172/JCI132360.
  • Narisawa A, Komatsuzaki S, Kikuchi A, Niihori T, Aoki Y, Fujiwara K, Tanemura M, Hata A, Suzuki Y, Relton CL, et al. Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Hum Mol Genet. 2012;21(7):1496–1503. doi:10.1093/hmg/ddr585.
  • Jog R, Chen G, Wang J, Leff T. Hormonal regulation of glycine decarboxylase and its relationship to oxidative stress. Physiol Rep. 2021;9(15):e14991. doi:10.14814/phy2.14991.
  • Tian S, Feng J, Cao Y, Shen S, Cai Y, Yang D, Yan R, Wang L, Zhang H, Zhong X, et al. Glycine cleavage system determines the fate of pluripotent stem cells via the regulation of senescence and epigenetic modifications. Life Sci Alliance. 2019;2(5):e201900413. doi:10.26508/lsa.201900413.
  • Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148(1–2):259–272. doi:10.1016/j.cell.2011.11.050.
  • Weaver NE, Healy A, Wingert RA. Gldc is essential for renal progenitor patterning during kidney development. Biomedicines. 2022;10(12):3220. doi:10.3390/biomedicines10123220.
  • Dumitrescu E, Karunaratne DP, Prochaska MK, Liu X, Wallace KN, Andreescu S. Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environ Pollut. 2017;229:439–447. doi:10.1016/j.envpol.2017.06.016.
  • Theisen U, Hey S, Hennig CD, Schnabel R, Köster RW. Glycine is able to induce both a motility speed in- and decrease during zebrafish neuronal migration. Commun Integr Biol. 2018;11(3):1–7. doi:10.1080/19420889.2018.1493324.
  • Tsuji-Tamura K, Sato M, Fujita M, Tamura M. Glycine exerts dose-dependent biphasic effects on vascular development of zebrafish embryos. Biochem Biophys Res Commun. 2020;527(2):539–544. doi:10.1016/j.bbrc.2020.04.098.
  • Tsuji-Tamura K, Sato M, Fujita M, Tamura M. The role of PI3K/Akt/mTOR signaling in dose-dependent biphasic effects of glycine on vascular development. Biochem Biophys Res Commun. 2020;529(3):596–602. doi:10.1016/j.bbrc.2020.06.085.
  • Weinberg JM, Davis JA, Abarzua M, Rajan T. Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J Clin Invest. 1987;80(5):1446–1454. doi:10.1172/JCI113224.
  • Weinberg JM, Davis JA, Abarzua M, Kiani T, Kunkel R. Protection by glycine of proximal tubules from injury due to inhibitors of mitochondrial ATP production. Am J Physiol. 1990;258(6 Pt 1):C1127–C1140. doi:10.1152/ajpcell.1990.258.6.C1127.
  • Weinberg JM, Buchanan DN, Davis JA, Abarzua M. Metabolic aspects of protection by glycine against hypoxic injury to isolated proximal tubules. J Am Soc Nephrol. 1991;1(7):949–958. doi:10.1681/ASN.V17949.
  • Weinberg JM, Davis JA, Roeser NF, Venkatachalam MA. Role of increased cytosolic free calcium in the pathogenesis of rabbit proximal tubule cell injury and protection by glycine or acidosis. J Clin Invest. 1991;87(2):581–590. doi:10.1172/JCI115033.
  • Weinberg JM, Roeser NF, Davis JA, Venkatachalam MA. Glycine-protected, hypoxic, proximal tubules develop severely compromised energetic function. Kidney Int. 1997;52(1):140–151. doi:10.1038/ki.1997.313.
  • Yin M, Zhong Z, Connor HD, Bunzendahl H, Finn WF, Rusyn I, Li X, Raleigh JA, Mason RP, Thurman RG. Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo. Am J Physiol Renal Physiol. 2002;282(3):F417–F423. doi:10.1152/ajprenal.00011.2001.
  • Thomsen K, Nielsen CB, Flyvbjerg A. Effects of glycine on glomerular filtration rate and segmental tubular handling of sodium in conscious rats. Clin Exp Pharmacol Physiol. 2002;29(5–6):449–454. doi:10.1046/j.1440-1681.2002.03683.x.
  • Nakamura Y, Matsumoto S, Mochida T, Nakamura K, Takehana K, Endo F. Glycine regulates proliferation and differentiation of salivary-gland-derived progenitor cells. Cell Tissue Res. 2009;336(2):203–212. doi:10.1007/s00441-009-0767-0.
  • Carroll KJ, Esain V, Garnaas MK, Cortes M, Dovey MC, Nissim S, Frechette GM, Liu SY, Kwan W, Cutting CC, et al. Estrogen defines the dorsal-ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche. Dev Cell. 2014;29(4):437–453. doi:10.1016/j.devcel.2014.04.012.
  • Pinto C, Grimaldi M, Boulahtouf A, Pakdel F, Brion F, Aït-Aïssa S, Cavaillès V, Bourguet W, Gustafsson JA, Bondesson M, et al. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicol Appl Pharmacol. 2014;280(1):60–69. doi:10.1016/j.taap.2014.07.020.
  • Nakai S, Sugitani Y, Sato H, Ito S, Miura Y, Ogawa M, Nishi M, Jishage K, Minowa O, Noda T. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development. 2003;130(19):4751–4759. doi:10.1242/dev.00666.
  • Krneta-Stankic V, DeLay BD, Miller RK. Xenopus: leaping forward in kidney organogenesis. Pediatr Nephrol. 2017;32(4):547–555. doi:10.1007/s00467-016-3372-y.
  • Corkins ME, Achieng M, DeLay BD, Krneta-Stankic V, Cain MP, Walker BL, Chen J, Lindström NO, Miller RK. A comparative study of cellular diversity between the Xenopus pronephric and mouse metanephric nephron. Kidney Int. 2023;103(1):77–86. doi:10.1016/j.kint.2022.07.027.
  • DeLay BD, Baldwin TA, Miller RK. Dynamin binding protein is required for Xenopus laevis kidney development. Front Physiol. 2019;10:143. doi:10.3389/fphys.2019.00143.
  • Lecaudey V, Anselme I, Dildrop R, Rüther U, Schneider-Maunoury S. Expression of the zebrafish Iroquois genes during early nervous system formation and patterning. J Comp Neurol. 2005;492(3):289–302. doi:10.1002/cne.20765.
  • Chambers BE, Gerlach GF, Clark EG, Chen KH, Levesque AE, Leshchiner I, Goessling W, Wingert RA. Tfap2a is a novel gatekeeper of nephron differentiation during kidney development. Development. 2019;146(13):dev172387. doi:10.1242/dev.172387.
  • Ott E, Wendik B, Srivastava M, Pacho F, Töchterle S, Salvenmoser W, Meyer D. Pronephric tubule morphogenesis in zebrafish depends on Mnx mediated repression of irx1b within the intermediate mesoderm. Dev Biol. 2016;411(1):101–114. doi:10.1016/j.ydbio.2015.10.014.
  • Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW. The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev. 2007;21(18):2358–2370. doi:10.1101/gad.450707.
  • Alarcón P, Rodríguez-Seguel E, Fernández-González A, Rubio R, Gómez-Skarmeta JL. A dual requirement for Iroquois genes during Xenopus kidney development. Development. 2008;135(19):3197–3207. doi:10.1242/dev.023697.
  • Chambers BE, Clark EG, Gatz AE, Wingert RA. Kctd15 regulates nephron segment development by repressing Tfap2a activity. Development. 2020;147(23):dev191973. doi:10.1242/dev.191973.
  • Izzedine H, Tankere F, Launay-Vacher V, Deray G. Ear and kidney syndromes: molecular versus clinical approach. Kidney Int. 2004;65(2):369–385. doi:10.1111/j.1523-1755.2004.00390.
  • Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K, Dixkens C, Weis J, Guay-Woodford L, Buettner R, et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. Genes Dev. 1997;11(15):1938–1948. doi:10.1101/gad.11.15.1938.
  • Moser M, Dahmen S, Kluge R, Gröne H, Dahmen J, Kunz D, Schorle H, Buettner R. Terminal renal failure in mice lacking transcription factor AP-2 beta. Lab Invest. 2003;83(4):571–578. doi:10.1097/01.lab.0000064703.92382.50.
  • Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D, McMahon AP, Flavell RA, Williams T. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature. 1996;381(6579):238–241. doi:10.1038/381238a0.
  • Milunsky JM, Maher TA, Zhao G, Roberts AE, Stalker HJ, Zori RT, Burch MN, Clemens M, Mulliken JB, Smith R, et al. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet. 2008;82(5):1171–1177. doi:10.1016/j.ajhg.2008.03.005.
  • Marneros AG. AP-2β/KCTD1 control distal nephron differentiation and protect against renal fibrosis. Dev Cell. 2020;54(3):348–366.e5. doi:10.1016/j.devcel.2020.05.026.
  • Lamontagne JO, Zhang H, Zeid AM, Strittmatter K, Rocha AD, Williams T, Zhang S, Marneros AG. Transcription factors AP-2α and AP-2β regulate distinct segments of the distal nephron in the mammalian kidney. Nat Commun. 2022;13(1):2226. doi:10.1038/s41467-022-29644-3.
  • Chambers BE, Weaver NE, Wingert RA. The “3Ds” of growing kidney organoids: advances in nephron development, disease modeling, and drug screening. Cells. 2023;12(4):549. doi:10.3390/cells12040549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.