1,605
Views
2
CrossRef citations to date
0
Altmetric
Review

Models for barrier understanding in health and disease in lab-on-a-chips

, , , & ORCID Icon
Article: 2221632 | Received 03 Feb 2023, Accepted 31 May 2023, Published online: 09 Jun 2023

References

  • Castillo-León J. Microfluidics and Lab-on-a-Chip Devices: history and Challenges. In Lab-on-a-Chip Devices and Micro-Total Analysis Systems: a Practical Guide. Castillo-León, J., Svendsen, W.E. Eds. Springer International Publishing : Cham. 2015pp. 1–32. ISBN 9783. ISBN 9783319086873. 319086873. 10.1007/978-3-319-08687-3_1
  • Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science. 1993;261(5123):895–897. doi:10.1126/science.261.5123.895.
  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. Rapid prototyping of microfluidic systems in Poly(Dimethylsiloxane). Anal Chem. 1998;70(23):4974–4984. doi:10.1021/ac980656z.
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986):1662–1668. doi:10.1126/science.1188302.
  • Abu-Dawas S, Alawami H, Zourob M, Ramadan Q. Design and fabrication of low-cost microfluidic chips and microfluidic routing system for reconfigurable multi-(organ-on-a-chip) assembly. Micromachines. 2021;12(12):1542. doi:10.3390/mi12121542.
  • Danku AE, Dulf E-H, Braicu C, Jurj A, Berindan-Neagoe I. Organ-on-A-Chip: a survey of technical results and problems. Front Bioeng Biotechnol. 2022;10:10. doi:10.3389/fbioe.2022.840674.
  • Mauriac H, Pannetier C, Casquillas GV. Organs on chip review. Elveflow. 2020. [accessed 2023 June 08].https://www.elveflow.com/microfluidic-reviews/organs-on-chip-3d-cell-culture/organs-chip-review/
  • Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE. Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol. 2018;5(4):659–668. doi:10.1016/j.jcmgh.2017.12.010.
  • Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19(2):65–81. doi:10.1038/s41568-018-0104-6.
  • Bajza Á, Kocsis D, Berezvai O, Laki AJ, Lukács B, Imre T, Iván K, Szabó P, Erdő F Verification of P-Glycoprotein function at the dermal barrier in diffusion cells and dynamic “skin-on-a-chip” microfluidic device. Pharmaceutics 2020, 12, E804, doi:10.3390/pharmaceutics12090804.
  • Jiang L, Li Q, Liang W, Du X, Yang Y, Zhang Z, Xu L, Zhang J, Li J, Chen Z, et al. Organ-on-A-Chip database revealed—achieving the human avatar in silicon. Bioengineering. 2022;9(11):685. doi:10.3390/bioengineering9110685.
  • Wang YI, Carmona C, Hickman JJ, Shuler ML. Multi-organ microphysiological systems for drug development: strategies, advances and challenges. Adv Healthcare Mater. 2018;7(2):1701000. doi:10.1002/adhm.201701000.
  • Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park S-J, Kotikian A, Nesmith AP, Campbell PH, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16(3):303–308. doi:10.1038/nmat4782.
  • Ellis BW, Acun A, Can UI, Zorlutuna P. Human IPSC-Derived myocardium-on-chip with capillary-like flow for personalized medicine. Biomicrofluidics. 2017;11(2):024105. doi:10.1063/1.4978468.
  • Kanamori T, Sugiura S, Sakai Y. Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator. Drug Metab Pharmacokinet. 2018;33(1):40–42. doi:10.1016/j.dmpk.2017.11.006.
  • Lee SH, Jun B-H. Advances in dynamic microphysiological organ-on-a-chip: design principle and its biomedical application. J Ind Eng Chem. 2019;71:65–77. doi:10.1016/j.jiec.2018.11.041.
  • Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of design considerations for brain-on-a-chip models. Micro (Basel). 2021;12(4):441. doi:10.3390/mi12040441.
  • Katt ME, Shusta EV. In Vitro models of the blood-brain barrier: building in physiological complexity. Curr Opin Chem Eng. 2020;30:42–52. doi:10.1016/j.coche.2020.07.002.
  • Yoon J-K, Kim J, Shah Z, Awasthi A, Mahajan A, Kim Y. Advanced human BBB-on-a-Chip: a new platform for alzheimer’s disease studies. Adv Healthcare Mater. 2021;10:e2002285. doi:10.1002/adhm.202002285.
  • Yi H-G, Jeong YH, Kim Y, Choi Y-J, Moon HE, Park SH, Kang KS, Bae M, Jang J, Youn H, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3(7):509–519. doi:10.1038/s41551-019-0363-x.
  • Wevers NR, Nair AL, Fowke TM, Pontier M, Kasi DG, Spijkers XM, Hallard C, Rabussier, van Vught, Vulto, et al. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids Barriers CNS. 2021;18(1):NA–NA. doi:10.1186/s12987-021-00294-9.
  • Kim J, Lee K-T, Lee JS, Shin J, Cui B, Yang K, Choi YS, Choi N, Lee SH, Lee J-H, et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nat Biomed Eng. 2021;5(8):830–846. doi:10.1038/s41551-021-00743-8.
  • Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan JA, Razmpour R, Hale JF, Galie PA, Potula R, et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis. 2020;146:105131. doi:10.1016/j.nbd.2020.105131.
  • Ragelle H, Goncalves A, Kustermann S, Antonetti DA, Jayagopal A. Organ-on-A-Chip technologies for advanced blood–retinal barrier models. J Ocul Pharmacol Ther. 2020;36(1):30–41. doi:10.1089/jop.2019.0017.
  • B Arık Y, Buijsman W, Loessberg-Zahl J, Cuartas-Vélez C, Veenstra C, Logtenberg S, M Grobbink A, Bergveld P, Gagliardi G, den Hollander AI, et al. Microfluidic Organ-on-a-Chip model of the outer blood–retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure. Lab Chip. 2021;21(2):272–283. doi:10.1039/D0LC00639D.
  • Chen L-J, Raut B, Nagai N, Abe T, Kaji H. Prototyping a versatile two-layer multi-channel microfluidic device for direct-contact cell-vessel co-culture. Micro (Basel). 2020;11(1):79. doi:10.3390/mi11010079.
  • Yeste J, García-Ramírez M, Illa X, Guimerà A, Hernández C, Simó R, Villa R. A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood–retinal barrier. Lab Chip. 2017;18(1):95–105. doi:10.1039/C7LC00795G.
  • Chung M, Lee S, Lee BJ, Son K, Jeon NL, Kim JH. Wet-AMD on a chip: modeling outer blood-retinal barrier in vitro. Adv Healthcare Mater. 2018;7(2):7. doi:10.1002/adhm.201700028.
  • Yu Z, Hao R, Du J, Wu X, Chen X, Zhang Y, Li W, Gu Z, Yang H. A human cornea-on-a-chip for the study of epithelial wound healing by extracellular vesicles. iScience. 2022;25(5):104200. doi:10.1016/j.isci.2022.104200.
  • Mun EA, Morrison PWJ, Williams AC, Khutoryanskiy VV. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharmaceutics. 2014;11(10):3556–3564. doi:10.1021/mp500332m.
  • Abdalkader R, Chaleckis R, Wheelock CE, Kamei K. Spatiotemporal determination of metabolite activities in the corneal epithelium on a chip. Exp Eye Res. 2021;209:108646. doi:10.1016/j.exer.2021.108646.
  • Abdalkader R, Kamei K. Multi-corneal barrier-on-a-chip to recapitulate eye blinking shear stress forces. Lab Chip. 2020;20(8):1410–1417. doi:10.1039/C9LC01256G.
  • Cohen N, Vagima Y, Mouhadeb O, Toister E, Gutman H, Lazar S, Jayson A, Artzy-Schnirman A, Sznitman J, Ordentlich A, et al. PEG-Fibrinogen hydrogel microspheres as a scaffold for therapeutic delivery of immune cells. Front Bioeng Biotechnol. 2022;10:905557. doi:10.3389/fbioe.2022.905557.
  • Byun J, Song B, Lee K, Kim B, Hwang HW, Ok M-R, Jeon H, Lee K, Baek S-K, Kim S-H, et al. Identification of urban particulate matter-induced disruption of human respiratory mucosa integrity using whole transcriptome analysis and organ-on-a chip. J Biol Eng. 2019;13(1):88. doi:10.1186/s13036-019-0219-7.
  • Zhu Y, Sun L, Wang Y, Cai L, Zhang Z, Shang Y, Zhao Y. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath. Adv Mater. 2022;34(13):2108972. doi:10.1002/adma.202108972.
  • Francis I, Shrestha J, Paudel KR, Hansbro PM, Warkiani ME, Saha SC. Recent advances in lung-on-a-chip models. Drug Discov Today. 2022;27(9):2593–2602. doi:10.1016/j.drudis.2022.06.004.
  • Felder M, Trueeb B, Stucki AO, Borcard S, Stucki JD, Schnyder B, Geiser T, Guenat OT. Impaired wound healing of alveolar lung epithelial cells in a breathing Lung-On-A-Chip. Front Bioeng Biotechnol. 2019;7:7. doi:10.3389/fbioe.2019.00003.
  • Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee H-H, Alves SE, Salmon M, Ferrante TC, Weaver JC, et al. Small Airway-on-a-Chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods. 2016;13(2):151–157. doi:10.1038/nmeth.3697.
  • Nesmith AP, Agarwal A, McCain ML, Parker KK. Human airway musculature on a Chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip. 2014;14(20):3925–3936. doi:10.1039/c4lc00688g.
  • Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, Ingber DE. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 2017;21(2):508–516. doi:10.1016/j.celrep.2017.09.043.
  • Khalid MAU, Kim YS, Ali M, Lee BG, Cho YJ, Choi KH. A lung Cancer-on-Chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem Eng J. 2020;155:107469. doi:10.1016/j.bej.2019.107469.
  • Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z, Wang Q. Application of a microfluidic chip-based 3D Co-Culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials. 2013;34(16):4109–4117. doi:10.1016/j.biomaterials.2013.02.045.
  • Barkal LJ, Procknow CL, Álvarez-García YR, Niu M, Jiménez-Torres JA, Brockman-Schneider RA, Gern JE, Denlinger LC, Theberge AB, Keller NP, et al. Microbial volatile communication in human organotypic lung models. Nat Commun. 2017;8(1):1770. doi:10.1038/s41467-017-01985-4.
  • Asmani M, Velumani S, Li Y, Wawrzyniak N, Hsia I, Chen Z, Hinz B, Zhao R. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat Commun. 2018;9(1):2066. doi:10.1038/s41467-018-04336-z.
  • Si L, Bai H, Rodas M, Cao W, Oh CY, Jiang A, Moller R, Hoagland D, Oishi K, Horiuchi S, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5(8):815–829. doi:10.1038/s41551-021-00718-9.
  • Zhang M, Wang P, Luo R, Wang Y, Li Z, Guo Y, Yao Y, Li M, Tao T, Chen W, et al. Biomimetic human disease Model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv Sci. 2021;8(3):2002928. doi:10.1002/advs.202002928.
  • Tang H, Abouleila Y, Si L, Ortega-Prieto AM, Mummery CL, Ingber DE, Mashaghi A. Human Organs-on-Chips for virology. Trends Microbiol. 2020;28(11):934–946. doi:10.1016/j.tim.2020.06.005.
  • Thacker VV, Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD A Lung-on-Chip infection model reveals protective and permissive roles of alveolar epithelial cells in tuberculosis 2020, 2020.02.03.931170.
  • Deinhardt-Emmer S, Rennert K, Schicke E, Cseresnyés Z, Windolph M, Nietzsche S, Heller R, Siwczak F, Haupt KF, Carlstedt S, et al. Co-infection with Staphylococcus Aureus After Primary Influenza Virus Infection Leads To Damage Of The Endothelium In A Human Alveolus-on-a-Chip Model. Biofabrication. 2020;12(2):025012. doi:10.1088/1758-5090/ab7073.
  • Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4(159):159ra147. doi:10.1126/scitranslmed.3004249.
  • Jain A, Barrile R, van der Meer AD, Mammoto A, Mammoto T, De Ceunynck K, Aisiku O, Otieno MA, Louden CS, Hamilton GA, et al. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther. 2018;103:332–340. doi:10.1002/cpt.742.
  • Filaire E, Nachat-Kappes R, Laporte C, Harmand M-F, Simon M, Poinsot C. Alternative in vitro models used in the main safety tests of cosmetic products and new challenges. Int J Cosmet Sci. 2022;44(6):604–613. doi:10.1111/ics.12803.
  • Alberti M, Dancik Y, Sriram G, Wu B, Teo YL, Feng Z, Bigliardi-Qi M, Wu RG, Wang ZP, Bigliardi PL. Multi-chamber microfluidic platform for high-precision skin permeation testing. Lab Chip. 2017;17(9):1625–1634. doi:10.1039/C6LC01574C.
  • Lukács B, Bajza Á, Kocsis D, Csorba A, Antal I, Iván K, Laki AJ, Erdő F. Skin-on-a-Chip device for ex vivo monitoring of transdermal delivery of drugs—design, fabrication, and testing. Pharmaceutics. 2019;11(9):E445. doi:10.3390/pharmaceutics11090445.
  • Jones CFE, Di Cio S, Connelly JT, Gautrot JE. Design of an Integrated Microvascularized Human Skin-on-a-Chip Tissue Equivalent Model. Front Bioeng Biotechnol. 2022;10:915702. doi:10.3389/fbioe.2022.915702.
  • Kim J, Kim K, Sung GY. Coenzyme Q10 efficacy test for human skin equivalents using a pumpless skin-on-a-chip system. Int J Mol Sci. 2020;21(22):8475. doi:10.3390/ijms21228475.
  • Tárnoki-Zách J, Mehes E, Varga-Medveczky Z, Isai DG, Barany N, Bugyik E, Revesz Z, Paku S, Erdo F, Czirok A. Development and evaluation of a human skin equivalent in a semiautomatic microfluidic diffusion chamber. Pharmaceutics. 2021;13(6):910. doi:10.3390/pharmaceutics13060910.
  • Varga-Medveczky Z, Kocsis D, Naszlady MB, Fónagy K, Erdő F. Skin-on-a-chip technology for testing transdermal drug delivery—starting points and recent developments. Pharmaceutics. 2021;13(11):1852. doi:10.3390/pharmaceutics13111852.
  • Kim K, Kim H, Sung GY. An interleukin-4 and interleukin-13 induced atopic dermatitis human skin equivalent model by a skin-On-A-Chip. Int J Mol Sci. 2022;23(4):2116. doi:10.3390/ijms23042116.
  • Jeon MS, Choi YY, Mo SJ, Ha JH, Lee YS, Lee HU, Park SD, Shim J-J, Lee J-L, Chung BG. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Nano Converg. 2022;9(1):8. doi:10.1186/s40580-022-00299-6.
  • De Gregorio V, Sgambato C, Urciuolo F, Vecchione R, Netti PA, Imparato G. Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials. 2022;286:121573. doi:10.1016/j.biomaterials.2022.121573.
  • Jing B, Xia K, Zhang C, Jiao S, Zhu L, Wei J, Wang ZA, Chen N, Tu P, Li J, et al. Chitosan oligosaccharides regulate the occurrence and development of enteritis in a human gut-on-a-chip. Front Cell Dev Biol. 2022;10:877892. doi:10.3389/fcell.2022.877892.
  • Kulthong K, Hooiveld GJEJ, Duivenvoorde LPM, Estruch IM, Bouwmeester H, Zande M. van der Comparative study of the transcriptomes of caco-2 cells cultured under dynamic vs. static conditions following exposure to titanium dioxide and zinc oxide nanomaterials. Nanotoxicology. 2021;15(9):1233–1252. doi:10.1080/17435390.2021.2012609.
  • Milani N, Parrott N, Ortiz Franyuti D, Godoy P, Galetin A, Gertz M, Fowler S. Application of a gut–liver-on-a-chip device and mechanistic modelling to the quantitative in vitro pharmacokinetic study of mycophenolate mofetil. Lab Chip. 2022;22(15):2853–2868. doi:10.1039/d2lc00276k.
  • Moossavi S, Arrieta M-C, Sanati-Nezhad A, Bishehsari F. Gut-on-chip for ecological and causal human gut microbiome research. Trends Microbiol. 2022;30:710–721. doi:10.1016/j.tim.2022.01.014.
  • Sasaki Y, Tatsuoka H, Tsuda M, Sumi T, Eguchi Y, So K, Higuchi Y, Takayama K, Torisawa Y, Yamashita F. Intestinal permeability of drugs in caco-2 cells cultured in microfluidic Devices. Biol Pharm Bull. 2022;45(9):1246–1253. doi:10.1248/bpb.b22-00092.
  • Shin W, Kim HJ. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat Protoc. 2022;17(3):910–939. doi:10.1038/s41596-021-00674-3.
  • Sontheimer-Phelps A, Chou DB, Tovaglieri A, Ferrante TC, Duckworth T, Fadel C, Frismantas V, Sutherland AD, Jalili-Firoozinezhad S, Kasendra M, et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell Mol Gastroenterol Hepatol. 2020;9(3):507–526. doi:10.1016/j.jcmgh.2019.11.008.
  • Dalsbecker P, Beck Adiels C, Goksör M. Liver-on-a-chip Devices: The Pros And Cons Of Complexity. Am J Physiol Gastrointest Liver Physiol. 2022;323(3):G188–G204. doi:10.1152/ajpgi.00346.2021.
  • Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2008;26(1):120–126. doi:10.1038/nbt1361.
  • Chen Z, He S, Zilberberg J, Lee W. Pumpless platform for high-throughput dynamic multicellular culture and chemosensitivity evaluation. Lab Chip. 2019;19(2):254–261. doi:10.1039/C8LC00872H.
  • Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep. 2018;8(1):8951. doi:10.1038/s41598-018-27179-6.
  • Prodanov L, Jindal R, Bale SS, Hegde M, McCarty WJ, Golberg I, Bhushan A, Yarmush ML, Usta OB. Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol Bioeng. 2016;113(1):241–246. doi:10.1002/bit.25700.
  • Toh Y-C, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026–2035. doi:10.1039/B900912D.
  • Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97(5):1340–1346. doi:10.1002/bit.21360.
  • Nakao Y, Kimura H, Sakai Y, Fujii T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics. 2011;5(2):22212. doi:10.1063/1.3580753.
  • Boul M, Benzoubir N, Messina A, Ghasemi R, Mosbah IB, Duclos-Vallée J-C, Dubart-Kupperschmitt A, Le Pioufle B. A versatile microfluidic tool for the 3D culture of heparg cells seeded at various stages of differentiation. Sci Rep. 2021;11(1):14075. doi:10.1038/s41598-021-92011-7.
  • Ong LJY, Chong LH, Jin L, Singh PK, Lee PS, Yu H, Ananthanarayanan A, Leo HL, Toh Y-C. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells. Biotechnol Bioeng. 2017;114(10):2360–2370. doi:10.1002/bit.26341.
  • Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör M. Design and FABRICATION OF A SCALABLE LIVER-LOBULE-ON-A-CHIP MICROPHYSIOLOGICAL PLATForm. Biofabrication. 2017;9(1):015014. doi:10.1088/1758-5090/9/1/015014.
  • Ma L-D, Wang Y-T, Wang J-R, Wu J-L, Meng X-S, Hu P, Mu X, Liang Q-L, Luo G-A. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip. 2018;18(17):2547–2562. doi:10.1039/C8LC00333E.
  • Wagner I, Materne E-M, Brincker S, Süssbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip. 2013;13(18):3538–3547. doi:10.1039/c3lc50234a.
  • Kim J-Y, Fluri DA, Kelm JM, Hierlemann A, Frey O. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids. J Lab Autom. 2015;20(3):274–282. doi:10.1177/2211068214564056.
  • van Midwoud PM, Groothuis GMM, Merema MT, Verpoorte E. Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol Bioeng. 2010;105(1):184–194. doi:10.1002/bit.22516.
  • Kwon D, Choi G, Park S-A, Cho S, Cho S, Ko S. Liver acinus dynamic chip for assessment of drug-induced zonal hepatotoxicity. Biosensors. 2022;12(7):445. doi:10.3390/bios12070445.
  • Liu J, Feng C, Zhang M, Song F, Liu H. Design and fabrication of a liver-on-a-chip reconstructing tissue-tissue interfaces. Front Oncol. 2022;12. doi:10.3389/fonc.2022.959299.
  • Du Y, Khandekar G, Llewellyn J, Polacheck W, Chen CS, Wells RG. A bile duct-on-a-chip with organ-level functions. Hepatology. 2020;71(4):1350–1363. doi:10.1002/hep.30918.
  • Du Y, Polacheck WJ, Wells RGBDO-AC. Methods mol biol. 2022;2373:57–68. doi:10.1007/978-1-0716-1693-2_4.
  • Faria J, Ahmed S, Gerritsen KGF, Mihaila SM, Masereeuw R. Kidney-based in vitro models for drug-induced toxicity testing. Arch Toxicol. 2019;93(12):3397–3418. doi:10.1007/s00204-019-02598-0.
  • Nieskens TTG, Persson M, Kelly EJ, Sjögren A-K. A multicompartment human kidney proximal tubule-on-a-chip replicates cell polarization–dependent cisplatin toxicity. Drug Metab Dispos. 2020;48(12):1303–1311. doi:10.1124/dmd.120.000098.
  • Nieskens TTG, Magnusson O, Andersson P, Söderberg M, Persson M, Sjögren A-K. Nephrotoxic antisense oligonucleotide SPC5001 induces kidney injury biomarkers in a proximal tubule-on-a-chip. Arch Toxicol. 2021;95(6):2123–2136. doi:10.1007/s00204-021-03062-8.
  • Vormann MK, Tool LM, Ohbuchi M, Gijzen L, van Vught R, Hankemeier T, Kiyonaga F, Kawabe T, Goto T, Fujimori A, et al. Modelling and prevention of acute kidney injury through ischemia and reperfusion in a combined human renal proximal tubule/blood vessel-on-a-Chip. Kidney360. 2022;3(2):217–231. doi:10.34067/KID.0003622021.
  • Weber EJ, Lidberg KA, Wang L, Bammler TK, MacDonald JW, Li MJ, Redhair M, Atkins WM, Tran C, Hines KM, et al. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity. JCI Insight. 2018;3(e123673):123673. doi:10.1172/jci.insight.123673.
  • Kim K, Jeong B, Lee Y-M, Son H-E, Ryu J-Y, Park S, Jeong JC, Chin HJ, Kim S. Three-dimensional kidney-on-a-chip assessment of contrast-induced kidney injury: osmolality and viscosity. Micro (Basel). 2022;13(5):688. doi:10.3390/mi13050688.
  • Lavelle J, Meyers S, Ramage R, Bastacky S, Doty D, Apodaca G, Zeidel ML. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am J Physiol Renal Physiol. 2002;283(2):F242–253. doi:10.1152/ajprenal.00307.2001.
  • Eojin L, Chunga K, Hyungseop H, Jimin P, Yu-Chan K, Myoung-Ryul O, Hyun-Kwang S, Hojeong J. Bladder cancer-on-a-chip for analysis of tumor transition mechanism. Front Bioeng Biotechnol. 2016;4. doi:10.3389/conf.FBIOE.2016.01.00831.
  • Liu P, Cao Y, Zhang S, Zhao Y, Liu X, Shi H, Hu K, Zhu G, Ma B, Niu H. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget. 2015;6(35):37695–37705. doi:10.18632/oncotarget.6070.
  • Menon MC, Chuang PY, He CJ. The Glomerular Filtration Barrier: Components And Crosstalk. Int J Nephrol. 2012;2012:1–9. doi:10.1155/2012/749010.
  • Zhu Y, Yin F, Wang H, Wang L, Yuan J, Qin J. Placental barrier-on-a-chip: modeling placental inflammatory responses to bacterial infection. ACS Biomater Sci Eng. 2018;4(9):3356–3363. doi:10.1021/acsbiomaterials.8b00653.
  • Mandt D, Gruber P, Markovic M, Tromayer M, Rothbauer M, Kratz SRA, Ali SF, Hoorick JV, Holnthoner W, Mühleder S, et al. Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. Int J Bioprint. 2018;4(144). doi:10.18063/IJB.v4i2.144.
  • Blundell C, Tess ER, Schanzer ASR, Coutifaris C, Su EJ, Parry S, Huh D. A microphysiological model of the human placental barrier. Lab Chip. 2016;16(16):3065–3073. doi:10.1039/c6lc00259e.
  • Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong J-S, Huh D. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29(7):1046–1054. doi:10.3109/14767058.2015.1038518.
  • Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol In Vitro. 2019;54:105–113. doi:10.1016/j.tiv.2018.08.014.
  • Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases. Biochim Biophys Acta, Mol Basis Dis. 2021;1867(7):166131. doi:10.1016/j.bbadis.2021.166131.
  • Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome. 2022;10(1):201. doi:10.1186/s40168-022-01400-1.
  • Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences 2012, 109, 13515–13520, doi:10.1073/pnas.1210182109.
  • Choi Y, Hyun E, Seo J, Blundell C, Kim HC, Lee E, Lee SH, Moon A, Moon WK, Huh D. A microengineered pathophysiological model of early-stage breast cancer. Lab Chip. 2015;15(16):3350–3357. doi:10.1039/C5LC00514K.
  • Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL, Oliveira JM, Truckenmüller R, Habibovic P. Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine. Sci Adv. 2019;5(5):eaaw1317. doi:10.1126/sciadv.aaw1317.
  • Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, Aft R, Fields RC, George SC. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 2018;18(23):3687–3702. doi:10.1039/c8lc00596f.
  • Tian C, Zheng S, Liu X, Kamei K-I. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J Nanobiotechnology. 2022;20(1):338. doi:10.1186/s12951-022-01552-0.
  • Lee J, Mehrotra S, Zare-Eelanjegh E, Rodrigues RO, Akbarinejad A, Ge D, Amato L, Kiaee K, Fang Y, Rosenkranz A, et al. A heart-breast cancer-on-a-chip platform for disease modeling and monitoring of cardiotoxicity induced by cancer chemotherapy. Small. 2021;17(15):e2004258. doi:10.1002/smll.202004258.
  • Yang Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H. Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip. 2015;15(3):735–744. doi:10.1039/C4LC01065E.
  • Tsai H-F, Trubelja A, Shen AQ, Bao G. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. J R Soc Interface. 2017;14(131):20170137. doi:10.1098/rsif.2017.0137.
  • Arsiwala TA, Blethen KE, Wolford CP, Panchal DM, Sprowls SA, Fladeland RA, Kielkowski BN, Pritt TA, Wang P, Wilson O, et al. Blood-tumor barrier opening by MRI-guided transcranial focused ultrasound in a preclinical breast cancer brain metastasis model improves efficacy of combinatorial chemotherapy. Front Oncol. 2023;13:1104594. doi:10.3389/fonc.2023.1104594.
  • Perestrelo AR, Águas ACP, Rainer A, Forte G. Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors (Basel). 2015;15(12):31142–31170. doi:10.3390/s151229848.
  • Leung CM, de Haan P, Ronaldson-Bouchard K, Kim G-A, Ko J, Rho HS, Chen Z, Habibovic P, Jeon NL, Takayama S, et al. A guide to the organ-on-a-chip. Nat Rev Methods Primers. 2022;2(1):1–29. doi:10.1038/s43586-022-00118-6.
  • Picollet-D’hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 2021;39(8):788–810. doi:10.1016/j.tibtech.2020.11.014.
  • Kimura H, Ikeda T, Nakayama H, Sakai Y, Fujii T. An on-chip small intestine–liver model for pharmacokinetic studies. J Lab Autom. 2015;20(3):265–273. doi:10.1177/2211068214557812.
  • Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, Sun Z, Li X, Lyu J, Wang Q. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces. 2016;8(39):25840–25847. doi:10.1021/acsami.6b08746.
  • Kong J, Luo Y, Jin D, An F, Zhang W, Liu L, Li J, Fang S, Li X, Yang X, et al. A novel microfluidic model can mimic organ-specific metastasis of circulating tumor cells. Oncotarget. 2016;7(48):78421–78432. doi:10.18632/oncotarget.9382.
  • Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Ishida S, Kikuchi K, Kakiki M, Kanamori T. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip. 2017;18(1):115–125. doi:10.1039/C7LC00952F.
  • Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, Bhushan BM, Freake D, Kirschner J, Maass C, Tsamandouras N, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep. 2018;8(1):4530. doi:10.1038/s41598-018-22749-0.
  • Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun. 2017;8(1):14584. doi:10.1038/ncomms14584.
  • Bauer S, Wennberg Huldt C, Kanebratt KP, Durieux I, Gunne D, Andersson S, Ewart L, Haynes WG, Maschmeyer I, Winter A, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci Rep. 2017;7(1):14620. doi:10.1038/s41598-017-14815-w.
  • Cao UMN, Zhang Y, Chen J, Sayson D, Pillai S, Tran SD. Microfluidic organ-on-a-chip: a guide to biomaterial choice and fabrication. Int J Mol Sci. 2023;24(4):3232. doi:10.3390/ijms24043232.
  • Koyilot MC, Natarajan P, Hunt CR, Sivarajkumar S, Roy R, Joglekar S, Pandita S, Tong CW, Marakkar S, Subramanian L, et al. Breakthroughs and applications of organ-on-a-chip technology. Cells. 2022;11(11):1828. doi:10.3390/cells11111828.
  • Yu F, Hunziker W, Choudhury D. Engineering microfluidic organoid-on-a-chip platforms. Micromachines. 2019;10(3):165. doi:10.3390/mi10030165.
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–126. doi:10.1177/2211068214561025.
  • Pak J, Chen ZJ, Sun K, Przekwas A, Walenga R, Fan J. Computational modeling of drug transport across the in vitro cornea. Comput Biol Med. 2018;92:139–146. doi:10.1016/j.compbiomed.2017.11.009.
  • Tenenbaum-Katan J, Artzy-Schnirman A, Fishler R, Korin N, Sznitman J. Biomimetics of the pulmonary environment in vitro: a microfluidics perspective. Biomicrofluidics. 2018;12(4):042209. doi:10.1063/1.5023034.
  • Booth R, Kim H. A MULTI-LAYERED MICROFLUIDIC DEVICE for in vitro BLOOD-BRAIN BARRIER PERMEABILITY STUDIES. Washington, USA: Seattle; 2011.
  • Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165–2174. doi:10.1039/c2lc40074j.
  • Yee S. In Vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharm Res. 1997;14:763–766. doi:10.1023/a:1012102522787.
  • Fleischer D. Biological transport phenomena in the gastrointestinal tract: cellular mechanisms. CRC Press. ISBN 978-0-429-22188-0; 1999. pp. 163–200. doi:10.1201/9780203909478.
  • Tavana H, Zamankhan P, Christensen PJ, Grotberg JB, Takayama S. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices. 2011;13(4):731–742. doi:10.1007/s10544-011-9543-5.
  • Cui B, Cho S-W. Blood-brain barrier-on-a-chip for brain disease modeling and drug testing. BMB Rep. 2022;55(5):213–219. doi:10.5483/BMBRep.2022.55.5.043.
  • Ragelle H, Dernick K, Khemais S, Keppler C, Cousin L, Farouz Y, Louche C, Fauser S, Kustermann S, Tibbitt MW, et al. Human retinal microvasculature-on-a-chip for drug discovery. Adv Healthcare Mater. 2020;9(21):e2001531. doi:10.1002/adhm.202001531.
  • Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1(4):e24997. doi:10.4161/tisb.24997.
  • Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125:183–200. doi:10.1111/j.0022-202X.2005.23668.x.
  • Elias PM. Skin Barrier Function. Curr Allergy Asthma Rep. 2008;8(4):299–305. doi:10.1007/s11882-008-0048-0.
  • Elias PM, Menon GK. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991;24:1–26. doi:10.1016/b978-0-12-024924-4.50005-5.
  • Kocsis D, Horváth S, Kemény Á, Varga-Medveczky Z, Pongor C, Molnár R, Mihály A, Farkas D, Naszlady BM, Fülöp A, et al. Drug delivery through the psoriatic epidermal barrier—A “skin-on-a-chip” permeability study and ex vivo optical imaging. Int J Mol Sci. 2022;23:4237. doi:10.3390/ijms23084237.
  • Jeong S, Kim J, Jeon HM, Kim K, Sung GY. Development of an aged full-thickness skin model using flexible skin-on-a-chip subjected to mechanical stimulus reflecting the circadian rhythm. Int J Mol Sci. 2021;22:12788. doi:10.3390/ijms222312788.
  • Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling cancer metastatic cascade using microfluidics-based technologies. Biophys Rev. 2022;14:517–543. doi:10.1007/s12551-022-00944-8.
  • Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CCW, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev. 2021;175:113798. doi:10.1016/j.addr.2021.05.008.
  • Wang H-F, Liu Y, Wang T, Yang G, Zeng B, Zhao C-X. Tumor-microenvironment-on-a-chip for evaluating nanoparticle-loaded macrophages for drug delivery. ACS Biomater Sci Eng. 2020;6(9):5040–5050. doi:10.1021/acsbiomaterials.0c00650.
  • Shao C, Yu Y, Lei X, Cao J, Zhao Y, Ye F. Organ-on-a-chip for dynamic tumor drug resistance investigation. Chemical Engineering Journal. 2023;460:141739. doi:10.1016/j.cej.2023.141739.
  • Chakrabarty S, Quiros-Solano WF, Kuijten MMP, Haspels B, Mallya S, Lo CSY, Othman A, Silvestri C, van de Stolpe A, Gaio N, et al. A microfluidic cancer-on-chip platform predicts drug response using organotypic tumor slice culture. Cancer Res. 2022;82(3):510–520. doi:10.1158/0008-5472.CAN-21-0799.
  • Nikoloff JM, Saucedo-Espinosa MA, Dittrich PS. Microfluidic platform for profiling of extracellular vesicles from single breast cancer cells. Anal Chem. 2023;95(3):1933–1939. doi:10.1021/acs.analchem.2c04106.
  • Versteeg HK, Malalasekara W. Introduction to computational fluid dynamics, an: the finite volume method. Harlow, England: Pearson Education Limited; 1995.
  • Nield DA, Bejan A. Convection in porous media 3rd. New York: Springer; 2006. ISBN 978-0-387-29096-6.
  • Bouhrira N, DeOre BJ, Sazer DW, Chiaradia Z, Miller JS, Galie PA. Disturbed flow disrupts the blood-brain barrier in a 3D bifurcation model. Biofabrication. 2020;12(2):025020. doi:10.1088/1758-5090/ab5898.
  • Lee S, Kim JH, Kang SJ, Chang IH, Park JY. Customized multilayered tissue-on-a-chip (MToC) to simulate bacillus Calmette–Guérin (BCG) immunotherapy for bladder cancer treatment. Biochip Journal. 2022;16(1):67–81. doi:10.1007/s13206-022-00047-2.
  • Mosavati B, Oleinikov AV, Du E. Development of an organ-on-a-chip-device for study of placental pathologies. Int J Mol Sci. 2020;21(22):8755. doi:10.3390/ijms21228755.
  • Davies AE, Williams RL, Lugano G, Pop SR, Kearns VR. In vitro and computational modelling of drug delivery across the outer blood–retinal barrier. Interface Focus. 2020;10(2):20190132. doi:10.1098/rsfs.2019.0132.
  • Du Y, Li N, Yang H, Luo C, Gong Y, Tong C, Gao Y, Lü S, Long M. Mimicking liver sinusoidal structures and functions using a 3D-Configured microfluidic chip. Lab Chip. 2017;17(5):782–794. doi:10.1039/C6LC01374K.
  • Enders A, Grünberger A, Bahnemann J. Towards small scale: overview and applications of microfluidics in biotechnology. Mol Biotechnol. 2022. doi:10.1007/s12033-022-00626-6.
  • Kafarski P. Rainbow code of biotechnology. Chemik. 2012;66:814–816.
  • Barcelos MCS, Lupki FB, Campolina GA, Nelson DL, Molina G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol Lett. 2018;365. doi:10.1093/femsle/fny239.