158
Views
1
CrossRef citations to date
0
Altmetric
Review

Human in vitro blood barrier models: architectures and applications

ORCID Icon, & ORCID Icon
Article: 2222628 | Received 01 Mar 2023, Accepted 04 Jun 2023, Published online: 20 Jun 2023

References

  • Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev. 2019;99(3):1–25. doi:10.1152/physrev.00037.2018.
  • Doran KS, Banerjee A, Disson O, Lecuit M. Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med. 2013;3(7):a010090–a010090. doi:10.1101/cshperspect.a010090.
  • Hudson N, Campbell M. Tight junctions of the neurovascular unit. Front Mol Neurosci. 2021;14:752781. doi:10.3389/fnmol.2021.752781.
  • Parthasarathi K. The pulmonary vascular barrier: insights into structure, function, and regulatory mechanisms. Adv Anat Embryol Cell Biol. 2018;228:41–61. doi:10.1007/978-3-319-68483-3_3.
  • Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci. 2002;27(12):599–601. doi:10.1016/s0968-0004(02)02229-6.
  • Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–834. doi:10.1080/17474124.2017.1343143.
  • Camilleri M, Madsen K, Spiller R, Meerveld B G-V, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology & Motility. 2012;24(6):503–512. doi:10.1111/j.1365-2982.2012.01921.x.
  • Yeste J, Illa X, Alvarez M, Villa R. Engineering and monitoring cellular barrier models. J Biol Eng. 2018;12(1):18. doi:10.1186/s13036-018-0108-5.
  • Gastfriend BD, Palecek SP, Shusta EV. Modeling the blood-brain barrier: beyond the endothelial cells. Curr Opin Biomed Eng. 2018;5:6–12. doi:10.1016/j.cobme.2017.11.002.
  • Ramachandran B, Chakraborty S, Dixit M, Muthuvijayan V. A comparative study of polyethylene terephthalate surface carboxylation techniques: characterization, in vitro haemocompatibility and endothelialization. React Funct Polym. 2018;122:22–32. doi:10.1016/j.reactfunctpolym.2017.11.001.
  • Appelt-Menzel A, Cubukova A, Gunther K, Edenhofer F, Piontek J, Krause G, Stuber T, Walles H, Neuhaus W, Metzger M. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 2017;8(4):894–906. doi:10.1016/j.stemcr.2017.02.021.
  • Canfield SG, Stebbins MJ, Faubion MG, Gastfriend BD, Palecek SP, Shusta EV. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS. 2019;16(1):25. doi:10.1186/s12987-019-0145-6.
  • Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10(1):33. doi:10.1186/2045-8118-10-33.
  • Furihata T, Kawamatsu S, Ito R, Saito K, Suzuki S, Kishida S, Saito Y, Kamiichi A, Chiba K. Hydrocortisone enhances the barrier properties of HBMEC/ciβ, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS. 2015;12(1):7. doi:10.1186/s12987-015-0003-0.
  • Gerhartl A, Pracser N, Vladetic A, Hendrikx S, Friedl HP, Neuhaus W. The pivotal role of micro-environmental cells in a human blood–brain barrier in vitro model of cerebral ischemia: functional and transcriptomic analysis. Fluids Barriers CNS. 2020;17(1):19. doi:10.1186/s12987-020-00179-3.
  • Gonzalez-Velasquez FJ, Kotarek JA, Moss MA. Soluble aggregates of the amyloid-β protein selectively stimulate permeability in human brain microvascular endothelial monolayers. J Neurochem. 2008;107(2):466–477. doi:10.1111/j.1471-4159.2008.05618.x.
  • Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 2011;199(2):223–229. doi:10.1016/j.jneumeth.2011.05.012.
  • Ito R, Umehara K, Suzuki S, Kitamura K, Nunoya KI, Yamaura Y, Imawaka H, Izumi S, Wakayama N, Komori T, et al. A human immortalized cell-based blood–brain barrier triculture model: development and characterization as a promising tool for drug−brain permeability studies. Mol Pharmaceutics. 2019;16(11):4461–4471. doi:10.1021/acs.molpharmaceut.9b00519.
  • Jamieson JJ, Linville RM, Ding YY, Gerecht S, Searson PC. Role of Ipsc-derived pericytes on barrier function of Ipsc-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS. 2019;16(1):15. doi:10.1186/s12987-019-0136-7.
  • Kulczar C, Lubin KE, Lefebvre S, Miller DW, Knipp GT. Development of a direct contact astrocyte-human cerebral microvessel endothelial cells blood–brain barrier coculture model. J Pharm Pharmacol. 2017;69(12):1684–1696. doi:10.1111/jphp.12803.
  • Martins Gomes SF, Westermann AJ, Sauerwein T, Hertlein T, Forstner KU, Ohlsen K, Metzger M, Shusta EV, Kim BJ, Appelt-Menzel A, et al. Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study neisseria meningitidis infection. Front Microbiol. 2019;10:1181. doi:10.3389/fmicb.2019.01181.
  • Ohshima M, Kamei S, Fushimi H, Mima S, Yamada T, Yamamoto T. Prediction of drug permeability using in vitro blood–brain barrier models with human induced pluripotent stem cell-derived brain microvascular endothelial cells. Biores Open Access. 2019;8(1):200–209. doi:10.1089/biores.2019.0026.
  • Paradis A, Leblanc D, Dumais N. Optimization of an in vitro human blood-brain barrier model: application to blood monocyte transmigration assays. MethodsX. 2016;3:25–34. doi:10.1016/j.mex.2015.11.009.
  • Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50. doi:10.1016/j.brainres.2007.02.029.
  • Stone NL, England TJ, O’Sullivan SE. A novel transwell blood brain barrier model using primary human cells. Front Cell Neurosci. 2019;13:230. doi:10.3389/fncel.2019.00230.
  • Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013;10(1):16. doi:10.1186/2045-8118-10-16.
  • Zhu D, Su Y, Fu B, Xu H. Magnesium reduces blood-brain barrier permeability and regulates amyloid-β transcytosis. Mol Neurobiol. 2018;55(9):7118–7131. doi:10.1007/s12035-018-0896-0.
  • Nishihara H, Gastfriend BD, Soldati S, Perriot S, Mathias A, Sano Y, Shimizu F, Gosselet F, Kanda T, Palecek SP, et al. Advancing human induced pluripotent stem cell-derived blood-brain barrier models for studying immune cell interactions. Faseb J. 2020;34(12):16693–16715. doi:10.1096/fj.202001507RR.
  • Mi Y, Mao Y, Cheng H, Ke G, Liu M, Fang C, Wang Q. Studies of blood-brain barrier permeability of gastrodigenin in vitro and in vivo. Fitoterapia. 2020;140:104447. doi:10.1016/j.fitote.2019.104447.
  • Beduneau A, Tempesta C, Fimbel S, Pellequer Y, Jannin V, Demarne F, Lamprecht A. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur J Pharm Biopharm. 2014;87(2):290–298. doi:10.1016/j.ejpb.2014.03.017.
  • Bian Y, Dong Y, Sun J, Sun M, Hou Q, Lai Y, Zhang B. Protective effect of kaempferol on lps-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. J Agric Food Chem. 2020;68:160–167. doi:10.1021/acs.jafc.9b06294.
  • Bottani M, Cornaghi L, Donetti E, Ferraretto A. Excess of nutrient-induced morphofunctional adaptation and inflammation degree in a Caco2/HT-29 in vitro intestinal co-culture. Nutrition. 2019;58:156–166. doi:10.1016/j.nut.2018.07.018.
  • Chen XM, Elisia I, Kitts DD. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. J Pharmacol Toxicol Methods. 2010;61(3):334–342. doi:10.1016/j.vascn.2010.02.004.
  • Ferraretto A, Bottani M, De Luca P, Cornaghi L, Arnaboldi F, Maggioni M, Fiorilli A, Donetti E. Morphofunctional properties of a differentiated Caco2/HT-29 co-culture as an in vitro model of human intestinal epithelium. Biosci Rep. 2018;38(2). doi:10.1042/BSR20171497.
  • Hoffmann P, Burmester M, Langeheine M, Brehm R, Empl MT, Seeger B, Breves G, Deli MA. Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells. PLos One. 2021;16(10):e0257824. doi:10.1371/journal.pone.0257824.
  • Kamiloglu S, Grootaert C, Capanoglu E, Ozkan C, Smagghe G, Raes K, Van Camp J. Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.Hy926 cells. Mol Nutr Food Res. 2017;61(2):1600455. doi:10.1002/mnfr.201600455.
  • Kampfer AAM, Urban P, Gioria S, Kanase N, Stone V, Kinsner-Ovaskainen A. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol In Vitro. 2017;45:31–43. doi:10.1016/j.tiv.2017.08.011.
  • Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Using human iPS cell-derived enterocytes as novel in vitro model for the evaluation of human intestinal mucosal damage. Inflamm Res. 2018;67(11–12):975–984. doi:10.1007/s00011-018-1193-0.
  • Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, Zachos NC. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep. 2017;7(1):45270. doi:10.1038/srep45270.
  • Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C. Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol. 2004;60(5):477–485. doi:10.1111/j.0300-9475.2004.01495.x.
  • Satsu H, Ishimoto Y, Nakano T, Mochizuki T, Iwanaga T, Shimizu M. Induction by activated macrophage-like THP-1 cells of apoptotic and necrotic cell death in intestinal epithelial Caco-2 monolayers via tumor necrosis factor-alpha. Exp Cell Res. 2006;312(19):3909–3919. doi:10.1016/j.yexcr.2006.08.018.
  • Schimpel C, Teubl B, Absenger M, Meindl C, Frohlich E, Leitinger G, Zimmer A, Roblegg E. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol Pharm. 2014;11(3):808–818. doi:10.1021/mp400507g.
  • Takayama K, Negoro R, Yamashita T, Kawai K, Ichikawa M, Mori T, Nakatsu N, Harada K, Ito S, Yamada H, et al. Generation of human Ipsc–derived intestinal epithelial cell monolayers by CDX2 transduction. Cell Mol Gastroenterol Hepatol. 2019;8(3):513–526. doi:10.1016/j.jcmgh.2019.06.004.
  • Toaldo IM, Van Camp J, Gonzales GB, Kamiloglu S, Bordignon-Luiz MT, Smagghe G, Raes K, Capanoglu E, Grootaert C. Resveratrol improves TNF-alpha-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. J Nutr Biochem. 2016;36:21–30. doi:10.1016/j.jnutbio.2016.07.007.
  • Turco L, Catone T, Caloni F, Di Consiglio E, Testai E, Stammati A. Caco-2/TC7 cell line characterization for intestinal absorption: how reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol In Vitro. 2011;25(1):13–20. doi:10.1016/j.tiv.2010.08.009.
  • Van den Abbeele P, Verstrepen L, Ghyselinck J, Albers R, Marzorati M, Mercenier A. A novel non-digestible, carrot-derived polysaccharide (Crg-I) selectively modulates the human gut microbiota while promoting gut barrier integrity: an integrated in vitro approach. Nutrients. 2020;12(7):1917. doi:10.3390/nu12071917.
  • van der Lugt B, Vos MCP, Grootte Bromhaar M, Ijssennagger N, Vrieling F, Meijerink J, Steegenga WT. The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model. Heliyon. 2022;8(2):e08883. doi:10.1016/j.heliyon.2022.e08883.
  • Vieira EF, Van Camp J, Ferreira I, Grootaert C. Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal–endothelial co-culture cell model. Eur J Nutr. 2018;57(6):2275–2286. doi:10.1007/s00394-017-1503-2.
  • Vissenaekens H, Grootaert C, Raes K, De Munck J, Smagghe G, Boon N, Van Camp J. Quercetin mitigates endothelial activation in a novel intestinal-endothelial-monocyte/macrophage coculture setup. Inflammation. 2022;45(4):1600–1611. doi:10.1007/s10753-022-01645-w.
  • XX W, XL H, RR C, Li T, HJ Y, Xie W, ZM H, Cao GZ. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-Induced inflammation in Caco-2 cell monolayers. Inflammation. 2019;42(6):2215–2225. doi:10.1007/s10753-019-01085-z.
  • Yamada S, Kanda Y. Retinoic acid promotes barrier functions in human Ipsc-derived intestinal epithelial monolayers. J Pharmacol Sci. 2019;140(4):337–344. doi:10.1016/j.jphs.2019.06.012.
  • Barilli A, Visigalli R, Ferrari F, Di Lascia M, Riccardi B, Puccini P, Dall’asta V, Rotoli BM. Organic cation transporters (OCTs/OCTNs) in human primary alveolar epithelial cells. Biochem Biophys Res Commun. 2021;576:27–32. doi:10.1016/j.bbrc.2021.08.076.
  • Brookes O, Boland S, Lai Kuen R, Miremont D, Movassat J, Baeza-Squiban A, Shi W. Co-culture of type I and type II pneumocytes as a model of alveolar epithelium. PLos One. 2021;16(9):e0248798. doi:10.1371/journal.pone.0248798.
  • Costa A, de Souza Carvalho-Wodarz C, Seabra V, Sarmento B, Lehr CM. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier. Acta Biomater. 2019;91:235–247. doi:10.1016/j.actbio.2019.04.037.
  • Dekali S, Gamez C, Kortulewski T, Blazy K, Rat P, Lacroix G. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Rep. 2014;1:157–171. doi:10.1016/j.toxrep.2014.03.003.
  • Dohle E, Singh S, Nishigushi A, Fischer T, Wessling M, Moller M, Sader R, Kasper J, Ghanaati S, Kirkpatrick CJ. Human Co- and triple-culture model of the alveolar-capillary barrier on a basement membrane mimic. Tissue Eng Part C Methods. 2018;24(9):495–503. doi:10.1089/ten.TEC.2018.0087.
  • Jakaria MG, Sorkhdini P, Yang D, Zhou Y, Meenach SA. Lung cell membrane-coated nanoparticles capable of enhanced internalization and translocation in pulmonary epithelial cells. Int J Pharm. 2022;613:121418. doi:10.1016/j.ijpharm.2021.121418.
  • Janga H, Cassidy L, Wang F, Spengler D, Oestern-Fitschen S, Krause MF, Seekamp A, Tholey A, Fuchs S. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. J Cell Mol Med. 2018;22:982–998. doi:10.1111/jcmm.13421.
  • Kasper J, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, Unger RE, Kirkpatrick JC. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol. 2011;8(1):6. doi:10.1186/1743-8977-8-6.
  • Kasper JY, Hermanns MI, Unger RE, Kirkpatrick CJ. A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes. J Tissue Eng Regen Med. 2017;11(4):1285–1297. doi:10.1002/term.2032.
  • McIntyre BA, Alev C, Mechael R, Salci KR, Lee JB, Fiebig-Comyn A, Guezguez B, Wu Y, Sheng G, Bhatia M. Expansive generation of functional airway epithelium from human embryonic stem cells. Stem Cells Transl Med. 2014;3(1):7–17. doi:10.5966/sctm.2013-0119.
  • Meenach SA, Tsoras AN, McGarry RC, Mansour HM, Hilt JZ, Anderson KW. Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics. Int J Oncol. 2016;48(4):1701–1709. doi:10.3892/ijo.2016.3376.
  • Nalayanda DD, Fulton WB, Colombani PM, Wang TH, Abdullah F. Pressure induced lung injury in a novel in vitro model of the alveolar interface: protective effect of dexamethasone. J Pediatr Surg. 2014;49(1):61–65. discussion 65. doi:10.1016/j.jpedsurg.2013.09.030.
  • Ohlinger K, Kolesnik T, Meindl C, Galle B, Absenger-Novak M, Kolb-Lenz D, Frohlich E. Air-liquid interface culture changes surface properties of A549 cells. Toxicol In Vitro. 2019;60:369–382. doi:10.1016/j.tiv.2019.06.014.
  • Salomon JJ, Muchitsch VE, Gausterer JC, Schwagerus E, Huwer H, Daum N, Lehr CM, Ehrhardt C. The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm. 2014;11(3):995–1006. doi:10.1021/mp4006535.
  • Schruf E, Schroeder V, Le HQ, Schönberger T, Raedel D, Stewart EL, Fundel-Clemens K, Bluhmki T, Weigle S, Schuler M, et al. Recapitulating idiopathic pulmonary fibrosis related alveolar epithelial dysfunction in a human Ipsc-derived air-liquid interface model. Faseb J. 2020;34(6):7825–7846. doi:10.1096/fj.201902926R.
  • Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, Richard M, Herold S, Becker C, Scott DP, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J. 2016;47(3):954–966. doi:10.1183/13993003.01282-2015.
  • van Riet S, Ninaber DK, Mikkers HMM, Tetley TD, Jost CR, Mulder AA, Pasman T, Baptista D, Poot AA, Truckenmuller R, et al. In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells. Sci Rep. 2020;10(1):5499. doi:10.1038/s41598-020-62226-1.
  • Wang G, Zhang X, Liu X, Zheng J. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM2.5: a comparison of growth under ALI and submerged conditions. Toxicol Res (Camb). 2020;9(5):636–651. doi:10.1093/toxres/tfaa072.
  • Wang Y, Adamcakova-Dodd A, Steines BR, Jing X, Salem AK, Thorne PS. Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models. NanoImpact. 2020;18:100215. doi:10.1016/j.impact.2020.100215.
  • Kabeya T, Mima S, Imakura Y, Miyashita T, Ogura I, Yamada T, Yasujima T, Yuasa H, Iwao T, Matsunaga T. Pharmacokinetic functions of human induced pluripotent stem cell-derived small intestinal epithelial cells. Drug Metab Pharmacokinet. 2020;35(4):374–382. doi:10.1016/j.dmpk.2020.04.334.
  • Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech. 2018;11(12). doi:10.1242/dmm.034520.
  • Santbergen MJC, van der Zande M, Gerssen A, Bouwmeester H, Nielen MWF. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal Bioanal Chem. 2020;412(5):1111–1122. doi:10.1007/s00216-019-02336-6.
  • Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest. 2013;123(11):4950–4962. doi:10.1172/JCI68793.
  • Huang J, Hume AJ, Abo KM, Werder RB, Villacorta-Martin C, Alysandratos KD, Beermann ML, Simone-Roach C, Lindstrom-Vautrin J, Olejnik J, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell. 2020;27(6):962–973.e7. doi:10.1016/j.stem.2020.09.013.
  • Ren H, Birch NP, Suresh V, Alvarez de la Rosa D. An optimised human cell culture model for alveolar epithelial transport. PLos One. 2016;11(10):e0165225. doi:10.1371/journal.pone.0165225.
  • Signorelli S, Jennings P, Leonard MO, Pfaller W. Differential effects of hypoxic stress in alveolar epithelial cells and microvascular endothelial cells. Cell Physiol Biochem. 2010;25(1):135–144. doi:10.1159/000272066.
  • Wang R, Hume AJ, Beermann ML, Simone-Roach C, Lindstrom-Vautrin J, Le Suer J, Huang J, Olejnik J, Villacorta-Martin C, Bullitt E, et al. Human airway lineages derived from pluripotent stem cells reveal the epithelial responses to SARS-CoV-2 infection. Am J Physiol Lung Cell Mol Physiol. 2022;322(3):L462–L478. doi:10.1152/ajplung.00397.2021.
  • Gao X, Zhang Y, Mu G, Xu Y, Wang X, Tuo Y, Qian F. Protecting effect of bacillus coagulans T242 on HT-29 cells against AAPH-Induced oxidative damage. Probiotics Antimicrob Proteins. 2022;14(4):741–750. doi:10.1007/s12602-022-09917-5.
  • Guibourdenche M, Haug J, Chevalier N, Spatz M, Barbezier N, Gay-Queheillard J, Anton PM. Food contaminants effects on an in vitro model of human intestinal epithelium. Toxics. 2021;9(6):135. doi:10.3390/toxics9060135.
  • Chary A, Serchi T, Moschini E, Hennen J, Cambier S, Ezendam J, Blomeke B, Gutleb AC. An in vitro coculture system for the detection of sensitization following aerosol exposure. ALTEX. 2019;36:403–418. doi:10.14573/altex.1901241.
  • Drasler B, Karakocak BB, Tankus EB, Barosova H, Abe J, Sousa de Almeida M, Petri-Fink A, Rothen-Rutishauser B. An inflamed human alveolar model for testing the efficiency of anti-inflammatory drugs in vitro. Front Bioeng Biotechnol. 2020;8:987. doi:10.3389/fbioe.2020.00987.
  • Klein SG, Cambier S, Hennen J, Legay S, Serchi T, Nelissen I, Chary A, Moschini E, Krein A, Blomeke B, et al. Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Part Fibre Toxicol. 2017;14(1):7. doi:10.1186/s12989-017-0186-4.
  • Lenz AG, Karg E, Brendel E, Hinze-Heyn H, Maier KL, Eickelberg O, Stoeger T, Schmid O. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int. 2013;2013:1–12. doi:10.1155/2013/652632.
  • Wang P, Luo R, Zhang M, Wang Y, Song T, Tao T, Li Z, Jin L, Zheng H, Chen W, et al. A cross-talk between epithelium and endothelium mediates human alveolar–capillary injury during SARS-CoV-2 infection. Cell Death Disease. 2020;11(12):1042. doi:10.1038/s41419-020-03252-9.
  • Daniel H. Elbrecht CJLaJJH. Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices. doi: 10.29245/2572-9411/2016/3.1026.
  • Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–126. doi:10.1177/2211068214561025.
  • Scalise AA, Kakogiannos N, Zanardi F, Iannelli F, Giannotta M. The blood–brain and gut–vascular barriers: from the perspective of claudins. Tissue Barriers. 2021;9(3):1926190. doi:10.1080/21688370.2021.1926190.
  • Adil MS, Somanath PR. Endothelial permeability assays in vitro. Methods Mol Biol. 2021;2367:177–191. doi:10.1007/7651_2020_309.
  • Shulman RG, Hyder F, Rothman DL. Cerebral metabolism and consciousness. C R Biol. 2003;326(3):253–273. doi:10.1016/s1631-0691(03)00071-4.
  • Maiuolo J, Gliozzi M, Musolino V, Scicchitano M, Carresi C, Scarano F, Bosco F, Nucera S, Ruga S, Zito MC, et al. The “Frail” Brain blood barrier in neurodegenerative diseases: role of early disruption of endothelial cell-to-cell connections. Int J Mol Sci. 2018;19(9):2693. doi:10.3390/ijms19092693.
  • Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol. 2015;38:2–6. doi:10.1016/j.semcdb.2015.01.002.
  • Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck MP, Ferreira L. Stem cell-based human blood–brain barrier models for drug discovery and delivery. Trends Biotechnol. 2016;34(5):382–393. doi:10.1016/j.tibtech.2016.01.001.
  • Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Forster C, Galla HJ, Romero IA, Shusta EV, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–890. doi:10.1177/0271678X16630991.
  • Cipolla MJ. Chapter 2: Anatomy and Ultrastructure. In: Granger DN, Granger JP, editors. The Cerebral Circulation Integrated Systems Physiology: from Molecule to Function. San Rafael, CA: Morgan & Claypool Life Sciences; 2009. p. 3–11. doi:10.4199/C00141ED2V01Y201607ISP066.
  • Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The neurovascular unit: effects of brain insults during the perinatal period. Front Neurosci. 2019;13:1452. doi:10.3389/fnins.2019.01452.
  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412. doi:10.1101/cshperspect.a020412.
  • González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):1–44. doi:10.1016/s0079-6107(02)00037-8.
  • Langen UH, Ayloo S, Gu C. Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol. 2019;35(1):591–613. doi:10.1146/annurev-cellbio-100617-062608.
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150. doi:10.1038/nrneurol.2017.188.
  • Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021;24(9):1198–1209. doi:10.1038/s41593-021-00904-7.
  • Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther. 13:3591–3605. doi:10.2147/DDDT.S218708(2019).
  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–561. doi:10.1038/nature09522.
  • Jakel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11:24. doi:10.3389/fncel.2017.00024.
  • Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018;135(3):311–336. doi:10.1007/s00401-018-1815-1.
  • Gonzalez-Velasquez F, Reed JW, Fuseler JW, Matherly EE, Kotarek JA, Soto-Ortega DD, Moss MA. Activation of brain endothelium by soluble aggregates of the amyloid-β protein involves nuclear factor-κB. Curr Alzheimer Res. 2011;8(1):81–94. doi:10.2174/156720511794604606.
  • Li Y, Sun X, Liu H, Huang L, Meng G, Ding Y, Su W, Lu J, Gong S, Terstappen GC, et al. Development of human in vitro brain-blood barrier model from induced pluripotent stem cell-derived endothelial cells to predict the in vivo permeability of drugs. Neurosci Bull. 2019;35(6):996–1010. doi:10.1007/s12264-019-00384-7.
  • Merkel SF, Andrews AM, Lutton EM, Mu D, Hudry E, Hyman BT, Maguire CA, Ramirez SH. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J Neurochem. 2017;140(2):216–230. doi:10.1111/jnc.13861.
  • Stins MF, Gilles F, Kim KS. Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol. 1997;76(1–2):81–90. doi:10.1016/s0165-5728(97)00036-2.
  • Stebbins MJ, Wilson HK, Canfield SG, Qian T, Palecek SP, Shusta EV. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93–102. doi:10.1016/j.ymeth.2015.10.016.
  • Grifno GN, Farrell AM, Linville RM, Arevalo D, Kim JH, Gu L, Searson PC. Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells. Sci Rep. 2019;9(1):13957. doi:10.1038/s41598-019-50193-1.
  • Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, Sung HJ, MacDonald TJ, Levey AI, Kim Y. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun. 2020;11(1):175. doi:10.1038/s41467-019-13896-7.
  • Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117–129. doi:10.1016/j.biomaterials.2018.07.014.
  • Urich E, Lazic SE, Molnos J, Wells I, Freskgard PO, Arai K. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLos One. 2012;7(5):e38149. doi:10.1371/journal.pone.0038149.
  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ. Hydrocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun. 1998;244(1):312–316. doi:10.1006/bbrc.1997.8051.
  • Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200(6):629–638. doi:10.1046/j.1469-7580.2002.00064.x.
  • Schiera G, Bono E, Raffa MP, Gallo A, Pitarresi GL, Di Liegro I, Savettieri G. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003;7(2):165–170. doi:10.1111/j.1582-4934.2003.tb00215.x.
  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi:10.1042/BCJ20160510.
  • La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins. 2018;10(1):11–21. doi:10.1007/s12602-017-9322-6.
  • Dupont D, Verhoeckx K. General Introduction. In: Verhoeckx K, Cotter P, Kleiveland C, Mackie A, Swiatecka D, Iván López-Expósito I, Lea Tor, Requena T, Wichers Harry, editors. The Impact of Food Bioactives on Health. Springer International Publishing; 2015. p. vii–xii. doi:10.1007/978-3-319-16104-4.
  • Ufnal M, Pham K. The gut-blood barrier permeability - a new marker in cardiovascular and metabolic diseases? Med Hypotheses. 2017;98:35–37. doi:10.1016/j.mehy.2016.11.012.
  • Assimakopoulos SF, Triantos C, Maroulis I, Gogos C. The role of the gut barrier function in health and disease. Gastroenterol Res. 2018;11(4):261–263. doi:10.14740/gr1053w.
  • Hou Q, Huang J, Ayansola H, Masatoshi H, Zhang B. Intestinal stem cells and immune cell relationships: potential therapeutic targets for inflammatory bowel diseases. Front Immunol. 2020;11:623691. doi:10.3389/fimmu.2020.623691.
  • Thoo L, Noti M, Krebs P. Keep calm: the intestinal barrier at the interface of peace and war. Cell Death Disease. 2019;10(11):849. doi:10.1038/s41419-019-2086-z.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi:10.1371/journal.pbio.1002533.
  • Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–420. doi:10.1038/nri2316.
  • Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine. 2017;49(5):e338. doi:10.1038/emm.2017.20.
  • Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667–685. doi:10.1038/nri3738.
  • Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39(9):677–696. doi:10.1016/j.it.2018.04.002.
  • Proszkowiec-Weglarz MSturkie’s Avian Physiologypp. 485–527202210.1016/B978-0-12-819770-7.00010-4
  • Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The roles of peyer’s patches and microfold cells in the gut immune system: relevance to autoimmune diseases. Front Immunol. 2019;10:2345. doi:10.3389/fimmu.2019.02345.
  • Sakhon OS, Ross B, Gusti V, Pham AJ, Vu K, Lo DD. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers. 2015;3(1–2):e1004975. doi:10.1080/21688370.2015.1004975.
  • Konig J, Wells J, Cani PD, Garcia-Rodenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10):e196. doi:10.1038/ctg.2016.54.
  • Thomas H. Gut endothelial cells — another line of defence. Nat Rev Gastroenterol Hepatol. 2016;13(1):4. doi:10.1038/nrgastro.2015.205.
  • Geremia A, Arancibia-Carcamo CV. Innate Lymphoid Cells in Intestinal Inflammation. Front Immunol. 2017;8:1296. doi:10.3389/fimmu.2017.01296.
  • Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, Wang S, Wu Y, Lu Y. Innate Lymphoid Cells: regulators of gut barrier function and immune homeostasis. J Immunol Res. 2019;2019:1–15. doi:10.1155/2019/2525984.
  • Stagg AJ. Intestinal dendritic cells in health and gut inflammation. Front Immunol. 2018;9:2883. doi:10.3389/fimmu.2018.02883.
  • Tiscornia I, Sanchez-Martins V, Hernandez A, Bollati-Fogolin M. Human monocyte-derived dendritic cells from leukoreduction system chambers after plateletpheresis are functional in an in vitro co-culture assay with intestinal epithelial cells. J Immunol Methods. 2012;384(1–2):164–170. doi:10.1016/j.jim.2012.07.005.
  • Zhang J, Hernandez-Gordillo V, Trapecar M, Wright C, Taketani M, Schneider K, Chen WLK, Stas E, Breault DT, Carrier RL, et al. Coculture of primary human colon monolayer with human gut bacteria. Nat Protoc. 2021;16(8):3874–3900. doi:10.1038/s41596-021-00562-w.
  • Weindl G. Immunocompetent human intestinal models in preclinical drug development. Handb Exp Pharmacol. 2021;265:219–233. doi:10.1007/164_2020_429.
  • Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev. 2012;70(Suppl 1):S10–13. doi:10.1111/j.1753-4887.2012.00499.x.
  • Larregieu CA, Benet LZ. Drug discovery and regulatory considerations for improving in silico and in vitro predictions that use Caco-2 as a surrogate for human intestinal permeability measurements. Aaps J. 2013;15(2):483–497. doi:10.1208/s12248-013-9456-8.
  • Martínez-Maqueda D, Miralles B, Recio I. Chapter 11: HT29 cell line. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, and Wichers H ed. et al. The impact of food bioactives on health: in vitro and ex vivo models. Springer International Publishing; 2015. p. 113–124. doi:10.1007/978-3-319-16104-4_11pl.
  • Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–348. doi:10.1038/clpt.2014.129.
  • Kleiveland CR. Chapter 15: Peripheral Blood Mononuclear Cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, and Wichers H, editors. The impact of food bioactives on health: in vitro and ex vivo models. 2015. p. 161–167. doi:10.1007/978-3-319-16104-4_15.
  • Papazian D, Würtzen PA, Hansen SW. Polarized airway epithelial models for immunological co-culture studies. Int Arch Allergy Immunol. 2016;170(1):1–21. doi:10.1159/000445833.
  • Martini FN, Nath JL, Bartholomew EF. Fundamentals of Anatomy and Physiology. Tenth edn ed. Pearson; 2015.
  • Miserocchi G, Beretta E, Rivolta I, Bartesaghi M. Role of the air-blood barrier phenotype in lung oxygen uptake and control of extravascular water. Front Physiol. 2022;13:811129. doi:10.3389/fphys.2022.811129.
  • Nicod LP. Lung defences: an overview. Eur Respir Rev. 2005;14(95):45–50. doi:10.1183/09059180.05.00009501.
  • Harkema JR, Nikula KJ, haschek wmfundamentals of toxicologic pathology chChapter 14 - Respiratory Systempp. 351–393Academic Press201810.1016/B978-0-12-809841-7.00014-9
  • Nova Z, Skovierova H, Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. Int J Mol Sci. 2019;20(4):831. doi:10.3390/ijms20040831.
  • Evans KV, Lee JH. Alveolar wars: the rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med. 2020;9(8):867–881. doi:10.1002/sctm.19-0433.
  • Castellani S, Di Gioia S, di Toma L, Conese M. Human cellular models for the investigation of lung inflammation and mucus production in cystic fibrosis. Anal Cell Pathol (Amst). 2018;2018:1–15. doi:10.1155/2018/3839803.
  • Mammoto A, Mammoto T. Vascular niche in lung alveolar development, homeostasis, and regeneration. Front Bioeng Biotechnol. 2019;7:318. doi:10.3389/fbioe.2019.00318.
  • Stevens T. Functional and molecular heterogeneity of pulmonary endothelial cells. Proc Am Thorac Soc. 2011;8(6):453–457. doi:10.1513/pats.201101-004MW.
  • Weibel ER. Lung morphometry: the link between structure and function. Cell Tissue Res. 2017;367(3):413–426. doi:10.1007/s00441-016-2541-4.
  • DeLeon-Pennell KY, Barker TH, Lindsey ML. Fibroblasts: the arbiters of extracellular matrix remodeling. Matrix Biol. 2020;91-92:1–7. doi:10.1016/j.matbio.2020.05.006.
  • Dragan AL, Voth DE. Take my breath away: studying pathogen invasion of the human lung using primary tissue models. Pathog Dis. 2021;79(4). doi:10.1093/femspd/ftab016.
  • Kato A, Hulse KE, Tan BK, Schleimer RP. B-lymphocyte lineage cells and the respiratory system. J Allergy Clin Immunol. 2013;131(4):933–957. quiz 958. doi:10.1016/j.jaci.2013.02.023.
  • Sun YL, Hurley K, Villacorta-Martin C, Huang J, Hinds A, Gopalan K, Caballero IS, Russo SJ, Kitzmiller JA, Whitsett JA, et al. Heterogeneity in human induced pluripotent stem cell–derived alveolar epithelial type ii cells revealed with ABCA3/SFTPC reporters. Am J Respir Cell Mol Biol. 2021;65(4):442–460. doi:10.1165/rcmb.2020-0259OC.
  • Di Ianni E, Erdem JS, Moller P, Sahlgren NM, Poulsen SS, Knudsen KB, Zienolddiny S, Saber AT, Wallin H, Vogel U, et al. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part Fibre Toxicol. 2021;18(1):25. doi:10.1186/s12989-021-00413-2.
  • Blume C, Reale R, Held M, Loxham M, Millar TM, Collins JE, Swindle EJ, Morgan H, Davies DE. Cellular crosstalk between airway epithelial and endothelial cells regulates barrier functions during exposure to double-stranded RNA. Immun Inflamm Dis. 2017;5(1):45–56. doi:10.1002/iid3.139.
  • Zavala J, Freedman AN, Szilagyi JT, Jaspers I, Wambaugh JF, Higuchi M, Rager JE. New approach methods to evaluate health risks of air pollutants: critical design considerations for in vitro exposure testing. Int J Environ Res Public Health. 2020;17(6):2124. doi:10.3390/ijerph17062124.
  • Lacroix G, Koch W, Ritter D, Gutleb AC, Larsen ST, Loret T, Zanetti F, Constant S, Chortarea S, Rothen-Rutishauser B, et al. Air–liquid interface in vitro models for respiratory toxicology research: consensus workshop and recommendations. Appl In Vitro Toxicol. 2018;4(2):91–106. doi:10.1089/aivt.2017.0034.
  • Upadhyay S, Palmberg L. Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci. 2018;164(1):21–30. doi:10.1093/toxsci/kfy053.
  • Castell JV, Donato MT, Gomez-Lechon MJ. Metabolism and bioactivation of toxicants in the lung. The in vitro cellular approach. Exp Toxicol Pathol. 2005;57(Suppl 1):189–204. doi:10.1016/j.etp.2005.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.