774
Views
0
CrossRef citations to date
0
Altmetric
Articles

An analytical approach for a performance calculation of shuttle-based storage and retrieval systems with multiple-deep and class-based storage

ORCID Icon
Pages 321-336 | Received 06 Jan 2022, Accepted 24 May 2022, Published online: 03 Jun 2022

References

  • Azadeh, K., Roy, D., & De Koster, R. (2019). Design, modeling, and analysis of vertical robotic storage and retrieval systems. Transportation Science, 53(5), 1213–1234. https://doi.org/10.1287/trsc.2018.0883
  • Boysen, N., De Koster, R., & Weidinger, F. (2019). Warehousing in the e-commerce era: A survey. European Journal of Operational Research, 277(2), 396–411. https://doi.org/10.1016/j.ejor.2018.08.023
  • Carlo, H. J., & Vis, I. F. A. (2012). Sequencing dynamic storage systems with multiple lifts and shuttles. International Journal of Production Economics, 140(2), 844–853. https://doi.org/10.1016/j.ijpe.2012.06.035
  • Eder, M., & Kartnig, G. (2016). Throughput analysis of S/R shuttle systems and ideal geometry for high performance. FME Transactions, 44(2), 174–179. https://doi.org/10.5937/fmet1602174E
  • Eder, M. (2019). An analytical approach for a performance calculation of shuttle-based storage and retrieval systems. Production & Manufacturing Research, 7(1), 255–270. https://doi.org/10.1080/21693277.2019.1619102
  • Eder, M. (2020a). An approach for a performance calculation of shuttle-based storage and retrieval systems with multiple-deep storage. The International Journal of Advanced Manufacturing Technology, 107, 859–873. https://doi.org/10.1007/s00170-019-04831-7
  • Eder, M. (2020b). Analytical model to estimate the performance of shuttle-based storage and retrieval systems with class-based storage policy. The International Journal of Advanced Manufacturing Technology, 107, 2091–2106. https://doi.org/10.1007/s00170-020-04990-y
  • Ekren, B. Y., Sari, Z., & Lerher, T. (2015). Warehouse design under class-based storage policy of shuttle-based storage and retrieval system. IFAC-PapersOnLine, 48(3), 1152–1154. https://doi.org/10.1016/j.ifacol.2015.06.239
  • Ekren, B. Y., et al. 2017. “A queuing network approach for performance estimation of shuttle based storage and retrieval system design.” In B. Y. Ekren, A. Akpunar, Z. Sari, T. Lerher (Eds.), XXII international conference on material handling constructions and logistics - MHCL 2017.
  • Epp, M., Wiedemann, S., & Furmans, K. (2017). A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems. International Journal of Production Research, 55(4), 960–978. https://doi.org/10.1080/00207543.2016.1208371
  • Heragu, S. S., Cai, X., Krishnamurthy, A., & Malmborg, C. J. (2011). Analytical models for analysis of automated warehouse material handling systems. International Journal of Production Research, 49(22), 6833–6861. https://doi.org/10.1080/00207543.2010.518994
  • Jerman, B., Yetkin Ekren, B., Küçükyaşar, M., & Lerher, T. (2021). Simulation- based performance analysis for a novel avs/rs technology with movable lifts. Applied Sciences, 11(5), 2283. https://doi.org/10.3390/app11052283
  • Kriehn, T., Schloz, F., Wehking, K.-H., & Fittinghoff, M. (2018). Impact of class-based storage, sequencing of retrieval requests and warehouse reorganisation on throughput of shuttle-based storage and retrieval systems. FME Transactions, 46(3), 320–329. https://doi.org/10.5937/fmet1803320K
  • Kuo, P.-H., Krishnamurthy, A., & Malmborg, C. J. (2008). Performance modelling of autonomous vehicle storage and retrieval systems using class-based storage policies. International Journal of Computer Applications in Technology, 31(3–4), 238–248. https://doi.org/10.1504/IJCAT.2008.018160
  • Lehmann, T., & Hußmann, J. (2021). Travel time model for multi-deep automated storage and retrieval system with a homogeneous allocation structure. Logistics Research, 14, 5. https://doi.org/10.23773/2021_5
  • Lerher, T. (2016). Travel time model for double-deep shuttle-based storage and retrieval systems. International Journal of Production Research, 54(9), 2519–2540. https://doi.org/10.1080/00207543.2015.1061717
  • Lin, Y., Wang, Y., Zhu, J., & Wang, L. (2021). A model and a task scheduling method for double-deep tier-captive SBS/RS with alternative elevator-patterns. IEEE Access, 9, 146378–146391. https://doi.org/10.1109/ACCESS.2021.3120418
  • Liu, Z., Wang, Y., Jin, M., Hao, W., & Dong, W. (2021). Energy consumption model for shuttle-based storage and retrieval systems. Journal of Cleaner Production, 282, 124480. https://doi.org/10.1016/j.jclepro.2020.124480
  • Manzini, R., Accorsi, R., Baruffaldi, G., Cennerazzo, T., & Gamberi, M. (2016). Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS). International Journal of Production Research, 54(14), 4286–4304. https://doi.org/10.1080/00207543.2016.1144241
  • Marchet, G., Melacini, M., Perotti, S., & Tappia, E. (2012). Analytical model to estimate performances of autonomous vehicle storage and retrieval systems for product totes. International Journal of Production Research, 50(24), 7134–7148. https://doi.org/10.1080/00207543.2011.639815
  • Marolt, J., Kosanić, N., & Lerher, T. (2022). Relocation and storage assignment strategy evaluation in a multiple-deep tier captive automated vehicle storage and retrieval system with undetermined retrieval sequence. The International Journal of Advanced Manufacturing Technology, 118(9), 3403–3420. https://doi.org/10.1007/s00170-021-08169-x
  • Schloz, F., Kriehn, T., Wehking, K.-H., & Fittinghoff, M. (2017). Entwicklung situationsabhängiger Lagerstrategien für Hochregallager mit autonomen Fahrzeugen. Logistics Journal: Proceedings, 2017(10), 1–8 https://doi.org/10.2195/lj_Proc_schloz_de_201710_01
  • Silva, A., Coelho, L. C., Darvish, M., & Renaud, J. (2020). Integrating storage location and order picking problems in warehouse planning. Transportation Research Part E: Logistics and Transportation Review, 140, 102003. https://doi.org/10.1016/j.tre.2020.102003
  • Smith, J. M. (2004). Optimal design and performance modelling of M/G/1/K queueing systems. Mathematical and Computer Modelling, 39(9–10), 1049–1081. https://doi.org/10.1016/S0895-7177(04)90534-1
  • Tappia, E., Roy, D., De Koster, R., & Melacini, M. (2017). Modeling, analysis, and design insights for shuttle-based compact storage systems. Transportation Science, 51(1), 269–295. https://doi.org/10.1287/trsc.2016.0699
  • Zhan, X., Liyun, X., & Ling, X. (2021). Task scheduling problem of double-deep multi-tier shuttle warehousing systems. Processes, 9(1), 41. https://doi.org/10.3390/pr9010041