3,015
Views
1
CrossRef citations to date
0
Altmetric
Articles

A systematic review of empirical studies on green manufacturing: eight propositions and a research framework for digitalized sustainable manufacturing

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 727-759 | Received 22 Jul 2022, Accepted 17 Sep 2022, Published online: 06 Oct 2022

References

  • Abdulaziz-al-Humaidan, A., Ahmad, N.-H., & Islam, M. S. (2021). Investigating the mediating relationship between sustainability orientations and sustainable performance in the SME context of Tunisia. Vision, 26(3), 369–381. https://doi.org/10.1177/09722629211000481
  • Adhitya, A., Halim, I., & Srinivasan, R. (2011). Decision support for green supply chain operations by integrating dynamic simulation and LCA indicators: Diaper case study. Environmental Science and Technology, 45(23), 10178–10185. https://doi.org/10.1021/es201763q
  • Ahmad, S., Wong, K. Y., & Elahi, H. (2017). Sustainability assessment and analysis of Malaysian food manufacturing sector—A move towards sustainable development. Advanced Science Letters, 23(9), 8942–8946. https://doi.org/10.1166/asl.2017.10000
  • Ahmad, S., Wong, K. Y., & Rajoo, S. (2019). Sustainability indicators for manufacturing sectors: A literature survey and maturity analysis from the triple-bottom line perspective. Journal of Manufacturing Technology Management, 30(2), 312–334. https://doi.org/10.1108/JMTM-03-2018-0091
  • Alamroshan, F., La’li, M., & Yahyaei, M. (2022). The green-agile supplier selection problem for the medical devices: A hybrid fuzzy decision-making approach. Environmental Science and Pollution Research, 29(5), 6793–6811. https://doi.org/10.1007/s11356-021-14690-z
  • Albizzati, P. F., Tonini, D., & Astrup, T. F. (2021). High-value products from food waste: An environmental and socio-economic assessment. Science of the Total Environment, 755. https://doi.org/10.1016/j.scitotenv.2020.142466
  • Ali, K., & Johl, S. K. (2022). Impact of total quality management on SMEs sustainable performance in the context of industry 4.0. Lecture Notes in Networks and Systems, (Vol. 299). https://doi.org/10.1007/978-3-030-82616-1_50
  • Allacker, K., Mathieux, F., Pennington, D., & Pant, R. (2017). The search for an appropriate end-of-life formula for the purpose of the European commission environmental footprint initiative. International Journal of Life Cycle Assessment, 22(9), 1441–1458. https://doi.org/10.1007/s11367-016-1244-0
  • Almeida, C. M. V. B., Sevegnani, F., Agostinho, F., Liu, G., Yang, Z., Coscieme, L., & Giannetti, B. F. (2018). Accounting for the benefits of technology change: Replacing a zinc-coating process by a water-based organo-metallic coating process. Journal of Cleaner Production, 174, 170–176. https://doi.org/10.1016/j.jclepro.2017.10.192
  • Altmann, M. (2015). A supply chain design approach considering environmentally sensitive customers: The case of a German manufacturing SME. International Journal of Production Research, 53(21), 6534–6550. https://doi.org/10.1080/00207543.2014.961203
  • Antomarioni, S., Bevilacqua, M., & Ciarapica, F. E. (2018). More sustainable performances through lean practices: A case study. 2018 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2018 - Proceedings. https://doi.org/10.1109/ICE.2018.8436263
  • Bacenetti, J., Duca, D., Negri, M., Fusi, A., & Fiala, M. (2015). Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study. Science of the Total Environment, 526, 88–97. https://doi.org/10.1016/j.scitotenv.2015.04.069
  • Badurdeen, F., Shuaib, M. A., Lu, T., & Jawahir, I. S. (2015). Sustainable value creation in manufacturing at product and process levels: Metrics-based evaluation. HandBook of Manufacturing Engineering and Technology. https://doi.org/10.1007/978-1-4471-4670-4_52
  • Barni, A., Fontana, A., Menato, S., Sorlini, M., & Canetta, L. (2018). Exploiting the digital twin in the assessment and optimization of sustainability performances. 9th International Conference on Intelligent Systems 2018: Theory, Research and Innovation in Applications, IS 2018 - Proceedings, 706–713. https://doi.org/10.1109/IS.2018.8710554
  • Baumann, H., & Cowell, S. J. (1999). An evaluative framework for conceptual and analytical approaches used in environmental management. Greener Management International, 26, 109–122. https://research.chalmers.se/en/publication/159077
  • Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews. Review of General Psychology, 1(3), 311–320. https://doi.org/10.1037/1089-2680.1.3.311
  • Baumer-Cardoso, M. I., Campos, L. M. S., Portela Santos, P. P., & Frazzon, E. M. (2020). Simulation-based analysis of catalyzers and trade-offs in lean & green manufacturing. Journal of Cleaner Production, 242. https://doi.org/10.1016/j.jclepro.2019.118411
  • Belucio, M., Rodrigues, C., Antunes, C. H., Freire, F., & Dias, L. C. (2021). Eco-efficiency in early design decisions: A multimethodology approach. Journal of Cleaner Production, 283. https://doi.org/10.1016/j.jclepro.2020.124630
  • Ben Ruben, R., Vinodh, S., & Asokan, P. (2017). Implementation of lean six sigma framework with environmental considerations in an Indian automotive component manufacturing firm: A case study. Production Planning and Control, 28(15), 1193–1211. https://doi.org/10.1080/09537287.2017.1357215
  • Bhatt, Y., Ghuman, K., & Dhir, A. (2020). Sustainable manufacturing. bibliometrics and content analysis. Journal of Cleaner Production, 260. https://doi.org/10.1016/j.jclepro.2020.120988
  • Biganzoli, L., Rigamonti, L., & Grosso, M. (2019). LCA evaluation of packaging re-use: The steel drums case study. Journal of Material Cycles and Waste Management, 21(1), 67–78. https://doi.org/10.1007/s10163-018-00817-x
  • Bos-Brouwers, H. E. J. (2010). Corporate sustainability and innovation in SMEs: Evidence of themes and activities in practice. Business Strategy and the Environment, 19(7), 417–435. https://doi.org/10.1002/bse.652
  • Broo, D. G., & Schooling, J. (2021). A framework for using data as an engineering tool for sustainable cyber-physical systems. IEEE Access, 9, 22876–22882. https://doi.org/10.1109/ACCESS.2021.3055652
  • Brown, A., Amundson, J., & Badurdeen, F. (2014). Sustainable value stream mapping (Sus-VSM) in different manufacturing system configurations: Application case studies. Journal of Cleaner Production, 85, 164–179. https://doi.org/10.1016/j.jclepro.2014.05.101
  • Cagno, E., Neri, A., Howard, M., Brenna, G., & Trianni, A. (2019). Industrial sustainability performance measurement systems: A novel framework. Journal of Cleaner Production, 230, 1354–1375. https://doi.org/10.1016/j.jclepro.2019.05.021
  • Carmichael, C., Newcomb, P. J., Bras, B., Stuart, P., & Realff, M. (2003). Integrated environmental and economic performance assessment. TAPPI Fall Technical Conference, 11–23.
  • Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., Jäger, J., & Mitchell, R. B. (2003). Knowledge systems for sustainable development. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8086–8091. https://doi.org/10.1073/pnas.1231332100
  • Chen, X., Despeisse, M., & Johansson, B. (2020). Environmental sustainability of digitalization in manufacturing: A review. Sustainability, 12(24), 10298. https://doi.org/10.3390/su122410298
  • Cheung, W. M., Leong, J. T., & Vichare, P. (2017). Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products. Journal of Cleaner Production, 167, 759–775. https://doi.org/10.1016/j.jclepro.2017.08.208
  • Chiarini, A. (2014). Sustainable manufacturing-greening processes using specific lean production tools: An empirical observation from European motorcycle component manufacturers. Journal of Cleaner Production, 85, 226–233. https://doi.org/10.1016/j.jclepro.2014.07.080
  • Chithambaranathan, P., Subramanian, N., Gunasekaran, A., & Palaniappan, P. K. (2015). Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. International Journal of Production Economics, 166, 163–176. https://doi.org/10.1016/j.ijpe.2015.01.002
  • Choudhary, A., De, A., Ahmed, K., & Shankar, R. (2021). An integrated fuzzy intuitionistic sustainability assessment framework for manufacturing supply chain: A study of UK based firms. Annals of Operations Research. https://doi.org/10.1007/s10479-019-03452-3
  • Choudhary, S., Nayak, R., Dora, M., Mishra, N., & Ghadge, A. (2019). An integrated lean and green approach for improving sustainability performance: A case study of a packaging manufacturing SME in the U.K. Production Planning and Control, 30(5–6), 353–368. https://doi.org/10.1080/09537287.2018.1501811
  • Chun, -Y.-Y., & Lee, K.-M. (2017). Environmental impacts of the rental business model compared to the conventional business model: A Korean case of water purifier for home use. International Journal of Life Cycle Assessment, 22(7), 1096–1108. https://doi.org/10.1007/s11367-016-1227-1
  • Colbert, A., Yee, N., & George, G. (2016). The digital workforce and the workplace of the future. Academy of Management Journal, 59(3), 731–739. https://doi.org/10.5465/amj.2016.4003
  • Cooper, D. R., & Gutowski, T. G. (2020). Prospective environmental analyses of emerging technology: A critique, a proposed methodology, and a case study on incremental sheet forming. Journal of Industrial Ecology, 24(1), 38–51. https://doi.org/10.1111/jiec.12748
  • Davis, J., Mengersen, K., Bennett, S., & Mazerolle, L. (2014). Viewing systematic reviews and meta-analysis in social research through different lenses. SpringerPlus, 3(1). https://doi.org/10.1186/2193-1801-3-511
  • Desing, H., Braun, G., & Hischier, R. (2021). Resource pressure – A circular design method. Resources, Conservation and Recycling, 164. https://doi.org/10.1016/j.resconrec.2020.105179
  • Desing, H., Brunner, D., Takacs, F., Nahrath, S., Frankenberger, K., & Hischier, R. (2020). A circular economy within the planetary boundaries: Towards a resource-based, systemic approach. Resources, Conservation and Recycling, 155. https://doi.org/10.1016/j.resconrec.2019.104673
  • de Sousa Jabbour, A. B. L., Jabbour, C. J. C., Foropon, C., & Filho, M. G. (2018). When titans meet – can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18–25. https://doi.org/10.1016/j.techfore.2018.01.017
  • Despeisse, M., & Turanoglu Bekar, E. (2020). Challenges in data life cycle management for sustainable cyber-physical production systems. IFIP Advances in Information and Communication Technology, 592, 57–65. IFIP. https://doi.org/10.1007/978-3-030-57997-5_7
  • Dey, P. K., & Cheffi, W. (2013). Green supply chain performance measurement using the analytic hierarchy process: A comparative analysis of manufacturing organisations. Production Planning and Control, 24(8–9), 702–720.
  • Dong, H., Geng, Y., Xi, F., & Fujita, T. (2013). Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach. Energy Policy, 57, 298–307. https://doi.org/10.1016/j.enpol.2013.01.057
  • Donnellan, B., Sheridan, C., & Curry, E. (2011). A Capability Maturity Framework for Sustainable Information and Communication Technology. IT Professional, 13(1), 33–40. https://doi.org/10.1109/MITP.2011.2
  • Echeverria, D., Venditti, R., Jameel, H., & Yao, Y. (2021). A general life cycle assessment framework for sustainable bleaching: A case study of peracetic acid bleaching of wood pulp. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2021.125854
  • EFFRA - European Factories of the Future Research Association. (2013). Factories of the future. https://doi.org/10.2777/29815
  • Epping, K., & Zhang, H. (2018). A sustainable decision-making framework for transitioning to robotic welding for small and medium manufacturers. Sustainability (Switzerland), 10(10). https://doi.org/10.3390/su10103651, .
  • Errigo, A., Choi, J.-K., & Kissock, K. (2022). Techno-economic-environmental impacts of industrial energy assessment: Sustainable industrial motor systems of small and medium-sized enterprises. Sustainable Energy Technologies and Assessments, 49. https://doi.org/10.1016/j.seta.2021.101694
  • Esmaeilian, B., Behdad, S., & Wang, B. (2016). The evolution and future of manufacturing: A review. Journal of Manufacturing Systems, 39, 79–100. https://doi.org/10.1016/j.jmsy.2016.03.001
  • European Commission. (2019). The European Green Deal. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640
  • European Commission. (2021). European Climate Law. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020PC0080
  • Ewing, A., Thabrew, L., Perrone, D., Abkowitz, M., & Hornberger, G. (2011). Insights on the use of hybrid life cycle assessment for environmental footprinting: A case study of an Inland Marine freight transportation Company. Journal of Industrial Ecology, 15(6), 937–950. https://doi.org/10.1111/j.1530-9290.2011.00374.x
  • Faulkner, W., & Badurdeen, F. (2014). Sustainable Value Stream Mapping (Sus-VSM): Methodology to visualize and assess manufacturing sustainability performance. Journal of Cleaner Production, 85, 8–18. https://doi.org/10.1016/j.jclepro.2014.05.042
  • Favi, C., Marconi, M., & Germani, M. (2019). Teaching eco-design by using LCA analysis of company’s product portfolio: The case study of an Italian manufacturing firm. Procedia CIRP, 80, 452–457. https://doi.org/10.1016/j.procir.2019.01.032
  • Feng, S. C., Senthilkumaran, K., Brown, C. U., & Kulvatunyou, B. (2014). Energy metrics for product assembly equipment and processes. Journal of Cleaner Production, 65, 142–151. https://doi.org/10.1016/j.jclepro.2013.09.044
  • Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., & Suh, S. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21. https://doi.org/10.1016/j.jenvman.2009.06.018
  • Finnveden, G., & Moberg, A. (2005). Environmental systems analysis tools - An overview. Journal of Cleaner Production, 13(12), 1165–1173. https://doi.org/10.1016/j.jclepro.2004.06.004
  • Foresight. (2013). The Future of Manufacturing: A new era of opportunity and challenge for the UK. https://sustainabledevelopment.un.org/post2015/transformingourworld
  • Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing. Scientific American, 261(3), 144–153. http://www.jstor.org/stable/24987406
  • Gamage, G. B., & Boyle, C. (2006). Developing the use of environmental impact assessment in commercial organisations: A case study of formway furniture. Proceedings of the 13th CIRP International Conference on Life Cycle Engineering, LCE 2006, 119–124.
  • Gamage, J. R., DeSilva, A. K. M., Harrison, C. S., & Harrison, D. K. (2016). Process level environmental performance of electrodischarge machining of aluminium (3003) and steel (AISI P20). Journal of Cleaner Production, 137, 291–299. https://doi.org/10.1016/j.jclepro.2016.07.090
  • Gao, A. L., & Wan, Y. (2022). Life cycle assessment of environmental impact of disposable drinking straws: A trade-off analysis with marine litter in the United States. Science of the Total Environment, 817. https://doi.org/10.1016/j.scitotenv.2022.153016
  • Garbie, I. H. (2014). An analytical technique to model and assess sustainable development index in manufacturing enterprises. International Journal of Production Research, 52(16), 4876–4915. https://doi.org/10.1080/00207543.2014.893066
  • Geffen, C. A., & Rothenberg, S. (2000). Suppliers and environmental innovation the automotive paint process. International Journal of Operations and Production Management, 20(2), 166–186. https://doi.org/10.1080/00207543.2014.893066
  • Gelowitz, M. D. C., & McArthur, J. J. (2017). Comparison of type III environmental product declarations for construction products: Material sourcing and harmonization evaluation. Journal of Cleaner Production, 157, 125–133. https://doi.org/10.1016/j.jclepro.2017.04.133
  • Gholami, H., Jamil, N., Mat Saman, M. Z., Streimikiene, D., Sharif, S., & Zakuan, N. (2021). The application of green lean six sigma. Business Strategy and the Environment, 30(4), 1913–1931. https://doi.org/10.1002/bse.2724
  • Ghosh, S., Mandal, M. C., & Ray, A. (2022). A PDCA based approach to evaluate green supply chain management performance under fuzzy environment. International Journal of Management Science and Engineering Management, https://doi.org/10.1080/17509653.2022.2027292
  • Glavič, P., & Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875–1885. https://doi.org/10.1016/j.jclepro.2006.12.006
  • Gobbo, J. A., Busso, C. M., Gobbo, S. C. O., & Carreão, H. (2018). Making the links among environmental protection, process safety, and industry 4.0. Process Safety and Environmental Protection, 117, 372–382. https://doi.org/10.1016/j.psep.2018.05.017
  • Greschner Farkavcova, V., Rieckhof, R., & Guenther, E. (2018). Expanding knowledge on environmental impacts of transport processes for more sustainable supply chain decisions: A case study using life cycle assessment. Transportation Research Part D: Transport and Environment, 61, 68–83. https://doi.org/10.1016/j.trd.2017.04.025
  • Gupta, H., Kumar, A., & Wasan, P. (2021). Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. Journal of Cleaner Production, 295. https://doi.org/10.1016/j.jclepro.2021.126253
  • Haapala, K. R., Zhao, F., Camelio, J., Sutherland, J. W., Skerlos, S. J., Dornfeld, D. A., Jawahir, I. S., Clarens, A. F., & Rickli, J. L. (2013). A review of engineering research in sustainable manufacturing. Journal of Manufacturing Science and Engineering, 135(4). https://doi.org/10.1115/1.4024040
  • Hegab, H. A., Darras, B., & Kishawy, H. A. (2018). Towards sustainability assessment of machining processes. Journal of Cleaner Production, 170, 694–703. https://doi.org/10.1016/j.jclepro.2017.09.197
  • Holt, S. P., & Berge, N. D. (2018). Life-cycle assessment of using liquid hazardous waste as an alternative energy source during Portland cement manufacturing: A United States case study. Journal of Cleaner Production, 195, 1057–1068. https://doi.org/10.1016/j.jclepro.2018.05.214
  • Hui, I. K., He, L., & Dang, C. (2002). Environmental impact assessment in an uncertain environment. International Journal of Production Research, 40(2), 375–388. https://doi.org/10.1080/00207540110081506
  • Issa, I. I., Pigosso, D. C. A., McAloone, T. C., & Rozenfeld, H. (2015). Leading product-related environmental performance indicators: A selection guide and database. Journal of Cleaner Production, 108(PartA), 321–330 https://doi.org/10.1016/j.jclepro.2015.06.088
  • Jasiulewicz-Kaczmarek, M., Żywica, P., & Gola, A. (2021). Fuzzy set theory driven maintenance sustainability performance assessment model: A multiple criteria approach. Journal of Intelligent Manufacturing, 32(5), 1497–1515. https://doi.org/10.1007/s10845-020-01734-3
  • Jena, M. C., Mishra, S. K., & Moharana, H. S. (2020). Application of Industry 4.0 to enhance sustainable manufacturing. Environmental Progress and Sustainable Energy, 39(1. https://doi.org/10.1002/ep.13360
  • Jiang, Q., Liu, Z., Liu, W., Li, T., Cong, W., Zhang, H., & Shi, J. (2018). A principal component analysis based three-dimensional sustainability assessment model to evaluate corporate sustainable performance. Journal of Cleaner Production, 187, 625–637. https://doi.org/10.1016/j.jclepro.2018.03.255
  • Jiang, Z., Zhang, H., & Sutherland, J. W. (2012). Development of an environmental performance assessment method for manufacturing process plans. International Journal of Advanced Manufacturing Technology, 58(5–8), 783–790. https://doi.org/10.1007/s00170-011-3410-7
  • Joachimiak-Lechman, K., Selech, J., & Kasprzak, J. (2019). Eco-efficiency analysis of an innovative packaging production: Case study. Clean Technologies and Environmental Policy, 21(2), 339–350. https://doi.org/10.1007/s10098-018-1639-7
  • Joung, C. B., Carrell, J., Sarkar, P., & Feng, S. C. (2013). Categorization of indicators for sustainable manufacturing. Ecological Indicators, 24, 148–157. https://doi.org/10.1016/j.ecolind.2012.05.030
  • Kamble, S. S., & Gunasekaran, A. (2021). Analysing the role of Industry 4.0 technologies and circular economy practices in improving sustainable performance in Indian manufacturing organisations. Production Planning and Control, 1–15. https://doi.org/10.1080/09537287.2021.1980904
  • Kamble, S. S. S., Gunasekaran, A., & Gawankar, S. A. S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/10.1016/j.psep.2018.05.009
  • Kara, S., & Ibbotson, S. (2011). Embodied energy of manufacturing supply chains. CIRP Journal of Manufacturing Science and Technology, 4(3), 317–323. https://doi.org/10.1016/j.cirpj.2011.03.006
  • Karimi, A., Jafarzadeh-Ghoushchi, S., & Mohtadi-Bonab, M. A. 2020. Presenting a new model for performance measurement of the sustainable supply chain of Shoa Panjereh Company in different provinces of Iran (case study). 11(1): 140–154. https://doi.org/10.1007/s13198-019-00932-4
  • Kazancoglu, Y., Ozkan-Ozen, Y. D., Sagnak, M., Kazancoglu, I., & Dora, M. (2021). Framework for a sustainable supply chain to overcome risks in transition to a circular economy through Industry 4.0. Production Planning and Control, 1–16. https://doi.org/10.1080/09537287.2021.1980910
  • Kellens, K., Dewulf, W., Overcash, M., Hauschild, M. Z., & Duflou, J. R. (2012). Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)-CO&#x003C;inf>2</inf>PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description. International Journal of Life Cycle Assessment, 17(1), 69–78. https://doi.org/10.1007/s11367-011-0340-4
  • Kerdlap, P., Low, J. S. C., Tan, D. Z. L., Yeo, Z., & Ramakrishna, S. (2020). M3-IS-LCA: A Methodology for Multi-level Life Cycle Environmental Performance Evaluation of Industrial Symbiosis Networks. Resources, Conservation and Recycling, 161. https://doi.org/10.1016/j.resconrec.2020.104963
  • Kibira, D., Brundage, M. P., Feng, S., & Morris, K. C. (2018). Procedure for selecting key performance indicators for sustainable manufacturing. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 140(1. https://doi.org/10.1115/1.4037439
  • Kiel, D., Müller, J. M. M., Arnold, C., & Voigt, K.-I. (2017). Sustainable industrial value creation: Benefits and challenges of industry 4.0. International Journal of Innovation Management, 21(8), 1740015. https://doi.org/10.1142/S1363919617400151
  • Kikuchi, Y., & Hirao, M. (2010). Local risks and global impacts considering plant-specific functions and constraints: A case study of metal parts cleaning. International Journal of Life Cycle Assessment, 15(1), 17–31. https://doi.org/10.1007/s11367-009-0137-x
  • Kishita, Y., Low, B. H., Fukushige, S., Umeda, Y., Suzuki, A., & Kawabe, T. (2010). Checklist-based assessment methodology for sustainable design. Journal of Mechanical Design, Transactions of the ASME, 132(9), 0910111–0910118. https://doi.org/10.1115/1.4002130
  • Klassen, R. D., & Whybark, D. C. (1999). Environmental management in operations: The selection of environmental technologies. Decision Sciences, 30(3), 601–631. https://doi.org/10.1115/1.4002130
  • Kluczek, A. (2016). Application of multi-criteria approach for sustainability assessment of manufacturing processes. Management and Production Engineering Review, 7(3), 62–78. https://doi.org/10.1515/mper-2016-0026
  • Kristensen, H. S., & Mosgaard, M. A. (2020). A review of micro level indicators for a circular economy – Moving away from the three dimensions of sustainability? Journal of Cleaner Production, 243. https://doi.org/10.1016/j.jclepro.2019.118531
  • Krystofik, M., Babbitt, C. W., & Gaustad, G. (2014). When consumer behavior dictates life cycle performance beyond the use phase: Case study of inkjet cartridge end-of-life management. International Journal of Life Cycle Assessment, 19(5), 1129–1145. https://doi.org/10.1007/s11367-014-0713-6
  • Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.
  • Lee, H. S., & Choi, Y. (2019). Environmental performance evaluation of the Korean manufacturing industry based on sequential DEA. Sustainability, 11(3), 874. https://doi.org/10.3390/su11030874
  • Lee, C. K., Khoo, H. H., & Tan, R. B. H. (2016). Life cycle assessment based environmental performance comparison of batch and continuous processing: A case of 4-D-erythronolactone synthesis. Organic Process Research and Development, 20(11), 1937–1948. https://doi.org/10.1021/acs.oprd.6b00275
  • Lee, J. Y., & Lee, Y. T. (2014). A framework for a research inventory of sustainability assessment in manufacturing. Journal of Cleaner Production, 79, 207–218. https://doi.org/10.1016/j.jclepro.2014.05.004
  • Lee, J. Y., Shin, S.-J., Lee, Y. T., & Libes, D. (2015). Toward development of a testbed for sustainable manufacturing. Concurrent Engineering Research and Applications, 23(1), 64–73. https://doi.org/10.1177/1063293X14559527
  • Lenzo, P., Traverso, M., Mondello, G., Salomone, R., & Ioppolo, G. (2018). Sustainability performance of an Italian textile product. Economies, 6(1), 17. https://doi.org/10.1177/1063293X14559527
  • Leso, V., Fontana, L., & Iavicoli, I. (2018). The occupational health and safety dimension of Industry 4.0. La Medicina Del Lavoro, 110(5), 327–338. https://doi.org/10.23749/mdl.v110i5.7282
  • Li, W., Alvandi, S., Kara, S., Thiede, S., & Herrmann, C. (2016). Sustainability Cockpit: An integrated tool for continuous assessment and improvement of sustainability in manufacturing. CIRP Annals - Manufacturing Technology, 65(1), 5–8. https://doi.org/10.1016/j.cirp.2016.04.029
  • Linkosalmi, L., Husgafvel, R., Fomkin, A., Junnikkala, H., Witikkala, T., Kairi, M., & Dahl, O. (2016). Main factors influencing greenhouse gas emissions of wood-based furniture industry in Finland. Journal of Cleaner Production, 113, 596–605. https://doi.org/10.1016/j.jclepro.2015.11.091
  • Lin, X., Li, X., Kulkarni, S., & Zhao, F. (2021). The application of blockchain-based life cycle assessment on an industrial supply chain. Sustainability, 13 (23), 13332. https://doi.org/10.3390/su132313332
  • Lubin, D. A., & Esty, D. C. (2010). The sustainability imperative. Harvard Business Review, 88(5). https://doi.org/10.1201/9780429490361-22
  • Luglietti, R., Magalini, F., Taisch, M., & Cassina, J. (2014). Environmental impact and cost evaluation in remanufacturing business decision support. IFIP Advances in Information and Communication Technology, 439(PART 2). https://doi.org/10.1007/978-3-662-44736-9_51
  • Machado, C. G., Winroth, M. P., & Ribeiro da Silva, E. H. D. (2020). Sustainable manufacturing in Industry 4.0: An emerging research agenda. International Journal of Production Research, 58(5), 1462–1484. https://doi.org/10.1201/9780429490361-22
  • Man, J. C. D., & Strandhagen, J. O. (2017). An industry 4.0 research agenda for sustainable business models. Procedia CIRP, 63, 721–726. https://doi.org/10.1201/9780429490361-22
  • Mesa, J., Esparragoza, I., & Maury, H. (2019). Relative assessment of indicators in sustainability Enhancement (RAISE): A first approach in the manufacturing stage of products. International Journal of Sustainable Engineering, 12(1), 2–17. https://doi.org/10.1080/19397038.2018.1491070
  • Ministry of Enterprise and Innovation. (2016). Smart industry - a strategy for new industrialisation for Sweden. https://www.regeringskansliet.se/informationsmaterial/2016/07/smart-industry–a-strategy-for-new-industrialisation-for-sweden/
  • Mirabella, N., Castellani, V., & Sala, S. (2014). LCA for assessing environmental benefit of eco-design strategies and forest wood short supply chain: A furniture case study. International Journal of Life Cycle Assessment, 19(8), 1536–1550. https://doi.org/10.1007/s11367-014-0757-7
  • Moldavska, A., & Welo, T. (2017). The concept of sustainable manufacturing and its definitions: A content-analysis based literature review. Journal of Cleaner Production, 166, 744–755. https://doi.org/10.1016/j.jclepro.2017.08.006
  • Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals - Manufacturing Technology, 65(2), 621–641. https://doi.org/10.1016/j.cirp.2016.06.005
  • Müller, J. M. M., Kiel, D., & Voigt, K.-I. (2018). What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. Sustainability, 10(1), 247. https://doi.org/10.3390/su10010247
  • Muñoz-Villamizar, A., Santos, J., Garcia-Sabater, J. J., Lleo, A., & Grau, P. (2019). Green value stream mapping approach to improving productivity and environmental performance. International Journal of Productivity and Performance Management, 68(3), 608–625. https://doi.org/10.1108/IJPPM-06-2018-0216
  • Nair, A., Singh, P. J., Bhattacharya, A., & Pal, S. (2021). Withstanding the economic recession: Examining the efficacy of manufacturing strategy alignment and process integration. International Journal of Production Economics, 231. https://doi.org/10.1016/j.ijpe.2020.107810
  • Narita, H., Norihisa, T., Chen, Y. L., Fujimoto, H., & Hasebe, T. (2007). A study on calculation methods of environmental burden for nc program diagnosis. Mechatronics for Safety, Security and Dependability in a New Era. https://doi.org/10.1016/B978-008044963-0/50025-4
  • Neri, A., Cagno, E., Di Sebastiano, G., & Trianni, A. (2018). Industrial sustainability: Modelling drivers and mechanisms with barriers. Journal of Cleaner Production, 194, 452–472. https://doi.org/10.1016/j.jclepro.2018.05.140
  • Nguyen, -K.-K., Cheriet, M., Lemay, M., Savoie, M., & Ho, B. (2013). Powering a data center network via renewable energy: A green testbed. IEEE Internet Computing, 17(1), 40–49. https://doi.org/10.1109/MIC.2012.125
  • Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 31(4), 714–730. https://doi.org/10.1016/j.wasman.2010.10.023
  • Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4
  • Pakdeechoho, N., & Sukhotu, V. (2018). Sustainable supply chain collaboration: Incentives in emerging economies. Journal of Manufacturing Technology Management, 29(2), 273–294. https://doi.org/10.1108/JMTM-05-2017-0081
  • Pask, F., Lake, P., Yang, A., Tokos, H., & Sadhukhan, J. (2017). Sustainability indicators for industrial ovens and assessment using Fuzzy set theory and Monte Carlo simulation. Journal of Cleaner Production, 140, 1217–1225. https://doi.org/10.1016/j.jclepro.2016.10.038
  • Peças, P., Götze, U., Bravo, R., Richter, F., & Ribeiro, I. (2018). Methodology for selection and application of eco-efficiency indicators fostering decision-making and communication at product level-the case of molds for injection molding. Advanced Applications in Manufacturing Engineering. https://doi.org/10.1016/B978-0-08-102414-0.00001-X
  • Pelegrino, D. H., Dos Santos, R. G., & Coelho, R. T. (2019). Experimental evaluation of energy consumption in machine tools: A case study for a two-spindle turning center. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10). https://doi.org/10.1007/s40430-019-1921-6
  • Pergola, M., Gialdini, A., Celano, G., Basile, M., Caniani, D., Cozzi, M., Gentilesca, T., Mancini, I. M., Pastore, V., Romano, S., Ventura, G., & Ripullone, F. (2018). An environmental and economic analysis of the wood-pellet chain: Two case studies in Southern Italy. International Journal of Life Cycle Assessment, 23(8), 1675–1684. https://doi.org/10.1007/s11367-017-1374-z
  • Pineda-Henson, R., & Culaba, A. B. (2004). A diagnostic model for Green Productivity assessment of manufacturing processes. International Journal of Life Cycle Assessment, 9(6), 379–386. https://doi.org/10.1065/lca2004.09.180.7
  • Pinto, L. (2020). Green supply chain practices and company performance in Portuguese manufacturing sector. Business Strategy and the Environment, 29(5), 1832–1849. https://doi.org/10.1002/bse.2471
  • Plehn, J., Züst, R., Kimura, F., Sproedt, A., & Schönsleben, P. (2012). A method for determining a functional unit to measure environmental performance in manufacturing systems. CIRP Annals - Manufacturing Technology, 61(1), 415–418. https://doi.org/10.1016/j.cirp.2012.03.061
  • Porter, M. E., & van der Linde, C. (1995). Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118. https://doi.org/10.1257/jep.9.4.97
  • Qi, Y., Wang, S., Pan, J., Liu, Z., & Zhang, H. (2006). Environmental impact assessment method based synthesis weight. IEEE International Symposium on Electronics and the Environment, 2006, 9–14. https://doi.org/10.1109/ISEE.2006.1650023
  • Rahdari, A. H., & Anvary Rostamy, A. A. (2015). Designing a general set of sustainability indicators at the corporate level. Journal of Cleaner Production, 108, 757–771. https://doi.org/10.1016/j.jclepro.2015.05.108
  • Rajak, S., & Vinodh, S. (2015). Application of fuzzy logic for social sustainability performance evaluation: A case study of an Indian automotive component manufacturing organization. Journal of Cleaner Production, 108, 1184–1192. https://doi.org/10.1016/j.jclepro.2015.05.070
  • Raj, A., & Srivastava, S. K. (2018). Sustainability performance assessment of an aircraft manufacturing firm. Benchmarking, 25(5), 1500–1527. https://doi.org/10.1108/BIJ-01-2017-0001
  • Ratner, S. V., & Lychev, A. V. (2019). Evaluating environmental impacts of photovoltaic technologies using data envelopment analysis. Advances in Systems Science and Applications, 19(1), 12–30. https://doi.org/10.25728/assa.2019.19.1.651
  • Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., & Almeida, C. M. V. B. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of Cleaner Production, 210, 1343–1365. https://doi.org/10.1016/j.jclepro.2018.11.025
  • Resta, B., Gaiardelli, P., Pinto, R., & Dotti, S. (2016). Enhancing environmental management in the textile sector: An organisational-life cycle assessment approach. Journal of Cleaner Production, 135, 620–632. https://doi.org/10.1016/j.jclepro.2016.06.135
  • Rieckhof, R., & Guenther, E. (2018). Integrating life cycle assessment and material flow cost accounting to account for resource productivity and economic-environmental performance. International Journal of Life Cycle Assessment, 23(7), 1491–1506. https://doi.org/10.1007/s11367-018-1447-7
  • Rodriguez, R. D., Medini, K., & Wuest, T. (2022). A DMAIC framework to improve quality and sustainability in additive manufacturing—A case study. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010581
  • Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Free Press.
  • Ruben, R. B., Asokan, P., & Vinodh, S. (2017). Performance evaluation of lean sustainable systems using adaptive neuro fuzzy inference system: A case study. International Journal of Sustainable Engineering, 10(3), 158–175. https://doi.org/10.1080/19397038.2017.1286409
  • Sadiq, S., Amjad, M. S., Rafique, M. Z., Hussain, S., Yasmeen, U., & Khan, M. A. (2021). An integrated framework for lean manufacturing in relation with blue ocean manufacturing - A case study. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123790
  • Sangwan, K. S., Bhakar, V., & Digalwar, A. K. (2019). A sustainability assessment framework for cement industry – A case study. Benchmarking, 26(2), 470–497. https://doi.org/10.1108/BIJ-01-2018-0021
  • Santolaya, J. L., Lacasa, E., Biedermann, A., & Muñoz, N. (2019). A practical methodology to project the design of more sustainable products in the production stage. Research in Engineering Design, 30(4), 539–558. https://doi.org/10.1007/s00163-019-00320-w
  • Santos, J., Muñoz-Villamizar, A., Ormazábal, M., & Viles, E. (2019). Using problem-oriented monitoring to simultaneously improve productivity and environmental performance in manufacturing companies. International Journal of Computer Integrated Manufacturing, 32(2), 183–193. https://doi.org/10.1080/0951192X.2018.1552796
  • Sari, E., Ma’aram, A., Shaharoun, A. M., Chofreh, A. G., Goni, F. A., Klemeš, J. J., Marie, I. A., & Saraswati, D. (2021). Measuring sustainable cleaner maintenance hierarchical contributions of the car manufacturing industry. Journal of Cleaner Production, 312. https://doi.org/10.1016/j.jclepro.2021.127717
  • Sarkis, J., & Rasheed, A. (1995). Greening the manufacturing function. Business Horizons, 38(5), 17–27. https://doi.org/10.1016/0007-6813(95)90032-2
  • Schwab Castella, P., Blanc, I., Gomez Ferrer, M., Ecabert, B., Wakeman, M., Manson, J.-A., Emery, D., Han, S.-H., Hong, J., & Jolliet, O. (2009). Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train. International Journal of Life Cycle Assessment, 14(5), 429–442. https://doi.org/10.1007/s11367-009-0096-2
  • Shanbag, A., & Manjare, S. (2020). Life cycle assessment of tyre manufacturing process. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(1), 22–34. https://doi.org/10.13044/j.sdewes.d7.0260
  • Shetty, D., Ghosh, S., Campana, C., & Ghoesh, S. (2015). Model for sustainable product design using modeling, simulation and service. ASEE Annual Conference and Exposition, Conference Proceedings, 122nd ASEE(122nd ASEE). https://doi.org/10.18260/p.24496
  • Shin, S.-J., Kim, D. B., Shao, G., Brodsky, A., & Lechevalier, D. (2017). Developing a decision support system for improving sustainability performance of manufacturing processes. Journal of Intelligent Manufacturing, 28(6), 1421–1440. https://doi.org/10.1007/s10845-015-1059-z
  • Shojaeipour, S. (2015). Sustainable manufacturing process planning. International Journal of Advanced Manufacturing Technology, 78(5–8), 1347–1360. https://doi.org/10.1007/s00170-014-6705-7
  • Shokri, A., Antony, J., & Garza-Reyes, J. A. (2022). A new way of environmentally sustainable manufacturing with assessing transformation through the green deployment of Lean Six Sigma projects. Journal of Cleaner Production, 351. https://doi.org/10.1016/j.jclepro.2022.131510
  • Skornowicz, K., Fialkowska-Filipek, M., & Horbal, R. (2017). Eco orbit view – A way to improve environmental performance with the application of lean management. In Smart Innovation, Systems and Technologies (Vol. 68). https://doi.org/10.1007/978-3-319-57078-5_62
  • Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
  • Stahel, W. R. (2013). Policy for material efficiency - Sustainable taxation as a departure from the throwaway society. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1986). https://doi.org/10.1098/rsta.2011.0567
  • Stock, T., Obenaus, M., Kunz, S., & Kohl, H. (2018). Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process Safety and Environmental Protection, 118, 254–267. https://doi.org/10.1016/j.psep.2018.06.026
  • Stock, T., & Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. In G. M. J. Seliger & H. Kohl (Eds.), Procedia CIRP (Vol. 40, pp. 536–541). Elsevier B.V. https://doi.org/10.1016/j.procir.2016.01.129
  • Taghipour, A., Akkalatham, W., Eaknarajindawat, N., & Stefanakis, A. I. (2022). The impact of government policies and steel recycling companies’ performance on sustainable management in a circular economy. Resources Policy, 77. https://doi.org/10.1016/j.resourpol.2022.102663
  • Tan, X.-C., Wang, -Y.-Y., Gu, B.-H., Mu, Z.-K., & Yang, C. (2011). Improved methods for production manufacturing processes in environmentally benign manufacturing. Energies, 4(9), 1391–1409. https://doi.org/10.3390/en4091391
  • Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
  • Trianni, A., Cagno, E., Neri, A., & Howard, M. (2019). Measuring industrial sustainability performance: Empirical evidence from Italian and German manufacturing small and medium enterprises. Journal of Cleaner Production, 229, 1355–1376. https://doi.org/10.1016/j.jclepro.2019.05.076
  • Turan, E., Konuşkan, Y., Yıldırım, N., Tunçalp, D., İnan, M., Yasin, O., Turan, B., & Kerimoğlu, V. (2022). Digital twin modelling for optimizing the material consumption: A case study on sustainability improvement of thermoforming process. Sustainable Computing: Informatics and Systems, 35. https://doi.org/10.1016/j.suscom.2022.100655
  • UNFCCC - United Nations Framework Convention on Climate Change. (2015). The Paris Agreement. https://unfccc.int/sites/default/files/english_paris_agreement.pdf
  • United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
  • Verma, P., Kumar, V., Daim, T., Sharma, N. K., & Mittal, A. (2022). Identifying and prioritizing impediments of industry 4.0 to sustainable digital manufacturing: A mixed method approach. Journal of Cleaner Production, 356. https://doi.org/10.1016/j.jclepro.2022.131639
  • Wen, Y., & Shonnard, D. R. (2003). Environmental and economic assessments of heat exchanger networks for optimum minimum approach temperature. Computers and Chemical Engineering, 27(11), 1577–1590. https://doi.org/10.1016/S0098-1354(03)00097-8
  • Wilhelm, M., Hutchins, M., Mars, C., & Benoit-Norris, C. (2015). An overview of social impacts and their corresponding improvement implications: A mobile phone case study. Journal of Cleaner Production, 102, 302–315. https://doi.org/10.1016/j.jclepro.2015.04.025
  • Wong, C. W. Y., Lai, K.-H., Pang, Y., Lee, H. S. Y., & Cheng, T. C. E. (2020). Sourcing green makes green: Evidence from the BRICs. Industrial Marketing Management, 88, 426–436. https://doi.org/10.1016/j.indmarman.2019.03.016
  • Yang, D., Fan, L., Shi, F., Liu, Q., & Wang, Y. (2017). Comparative study of cement manufacturing with different strength grades using the coupled LCA and partial LCC methods—A case study in China. Resources, Conservation and Recycling, 119, 60–68. https://doi.org/10.1016/j.resconrec.2016.06.017
  • Yang, J., Wang, Y., Gu, Q., & Xie, H. (2022). The antecedents and consequences of green purchasing: An empirical investigation. Benchmarking, 29(1), 1–21. https://doi.org/10.1108/BIJ-11-2020-0564
  • Yu, S., Tao, J., Yang, Q., Zhang, J., & Yin, F. (2011). Case study of Chinese SMEs oriented environmental impact assessment on refrigerator production. Proceedings of the ASME Design Engineering Technical Conference, 9, 1003–1010. https://doi.org/10.1115/DETC2011-48920
  • Zanghelini, G. M., Cherubini, E., Orsi, P., & Soares, S. R. (2014). Waste management Life Cycle Assessment: The case of a reciprocating air compressor in Brazil. Journal of Cleaner Production, 70, 164–174. https://doi.org/10.1016/j.jclepro.2014.02.034
  • Zapelloni, G., García Rellán, A., & Bello Bugallo, P. M. (2019). Sustainable production of marine equipment in a circular economy: Deepening in material and energy flows, best available techniques and toxicological impacts. Science of the Total Environment, 687, 991–1010. https://doi.org/10.1016/j.scitotenv.2019.06.058
  • Zendoia, J., Woy, U., Ridgway, N., Pajula, T., Unamuno, G., Olaizola, A., Fysikopoulos, A., & Krain, R. (2014). A specific method for the life cycle inventory of machine tools and its demonstration with two manufacturing case studies. Journal of Cleaner Production, 78, 139–151. https://doi.org/10.1016/j.jclepro.2014.05.012
  • Zhang, H. (2019). Understanding the linkages: A dynamic sustainability assessment method and decision making in manufacturing systems. Procedia CIRP, 80, 233–238. https://doi.org/10.1016/j.procir.2019.01.064
  • Zhang, W., Gu, F., & Guo, J. (2019). Can smart factories bring environmental benefits to their products?: A case study of household refrigerators. Journal of Industrial Ecology, 23(6), 1381–1395. https://doi.org/10.1111/jiec.12928
  • Zhang, H., & Haapala, K. R. (2015). Integrating sustainable manufacturing assessment into decision making for a production work cell. Journal of Cleaner Production, 105, 52–63. https://doi.org/10.1016/j.jclepro.2014.01.038
  • Zhou, X., & Schoenung, J. M. (2009). Combining U.S.-based prioritization tools to improve screening level accountability for environmental impact: The case of the chemical manufacturing industry. Journal of Hazardous Materials, 172(1), 423–431. https://doi.org/10.1016/j.jhazmat.2009.07.032
  • Zhu, S., Song, J., Hazen, B. T., Lee, K., & Cegielski, C. (2018). How supply chain analytics enables operational supply chain transparency: An organizational information processing theory perspective. International Journal of Physical Distribution and Logistics Management, 48(1), 47–68. https://doi.org/10.1108/IJPDLM-11-2017-0341