1,660
Views
1
CrossRef citations to date
0
Altmetric
Articles

Use of real time localization systems (RTLS) in the automotive production and the prospects of 5G – A literature review

, &
Pages 840-874 | Received 19 Oct 2021, Accepted 29 Oct 2022, Published online: 17 Nov 2022

References

  • 3GPP. 2001. “TR 25.847: UE positioning enhancements: Technical specification group radio access network.” Accessed April 27, 2021. https://www.3gpp.org/ftp/Specs/archive/25_series/25.847/25847-400.zip.
  • 3GPP. (2019). TR 38.855 V16.0.0 (2019-03): Study on NR positioning support: Technical specification group radio access network. Retrieved April 30, 2021. https://www.3gpp.org/ftp//Specs/archive/38_series/38.855/38855-g00.zip
  • 3GPP. 2020a. “Release 17 timeline agreed.” Accessed April 26, 2021. https://www.3gpp.org/news-events/2145-rel-17_newtimeline.
  • 3GPP. (2020b). TR 21.916 V1.0.0 (2020-12) - release 16 description: Technical specification group services and system aspects. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3493
  • 3GPP. 2021a. “S1-210175: Requirements for low power highly accurate positioning.” Accessed April 26, 2021. Requirements for low power highly accurate positioning.
  • 3GPP. 2021b. “TS 22.104 V17.5.0 (2021-03): Service requirements for cyber-physical control applications in vertical domains: Technical specification group services and system aspects.” Accessed April 26, 2021. https://www.3gpp.org/ftp/Specs/archive/22_series/22.104/22104-h50.zip.
  • 3GPP. 2021c. “TS 22.261 V17.6.0 (2021-03): Service requirements for the 5G system: Technical specification group services and system aspects.” Accessed April 26, 2021. https://www.3gpp.org/ftp/Specs/archive/22_series/22.261/22261-h60.zip.
  • 3GPP. (2021d). TS 22.261 V18.2.0 (2021-03): Technical specification group services and system aspects: service requirements for the 5G system - Rel. 18. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107
  • Aboubacar, M., Ayadi, J., Jimenez, V. P. G., & Consoli, A. (2020). MmWave massive MIMO small cells for 5G and beyond mobile networks: An overview. 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (12), 1–6. https://doi.org/10.1109/CSNDSP49049.2020.9249602
  • Ahasanun, N., Adhikari, B., Hussain, F., & Fernando, X. N. (2020). A survey of machine learning for indoor positioning. IEEE Access, 8, 214945–214965. https://doi.org/10.1109/ACCESS.2020.3039271
  • Al-Kadi, R., & Zorn, C. (2020). Ultra Wideband - Marktpotenziale und Funktionsweise. ATZ Elektron, 15(3), 44–49. https://doi.org/10.1007/s35658-020-0163-9
  • Al-Turjman, F., Ever, E., & Zahmatkesh, H. (2019). Small cells in the forthcoming 5G/IoT: Traffic modelling and deployment overview. IEEE Commun. Surv. Tutorials, 21(1), 28–65. https://doi.org/10.1109/COMST.2018.2864779
  • Bakri, M. Q., Ismail, A. H., Hashim, M. S. M., Muhamad Azmi, M. S., Safar, M. J. A., & Marhaban, M. H. (2020). Design and development of a service robot for Wi-Fi RSSI fingerprint data collection. IOP Conference Series: Materials Science and Engineering, 920(1), 12003. https://doi.org/10.1088/1757-899X/920/1/012003
  • Barral, V., Suárez-Casal, P., Escudero, C. J., & García-Naya, J. A. (2019). Multi-sensor accurate forklift location and tracking simulation in industrial indoor environments. Electronics, 8(10), 1152. https://doi.org/10.3390/electronics8101152
  • Batistic, L., & Tomic, M. (2018). Overview of indoor positioning system technologies. Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO, 473–478. https://doi.org/10.23919/MIPRO.2018.8400090
  • Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15–16), 4719–4742. https://doi.org/10.1080/00207543.2017.1402140
  • Bharadwaj, R., Parini, C., & Alomainy, A. (2015). Experimental investigation of 3-D human body localization using wearable Ultra-wideband antennas. IEEE Trans. Antennas Propagat, 63(11), 5035–5044. https://doi.org/10.1109/TAP.2015.2478455
  • Blasio, G. D., Quesada-Arencibia, A., Garcia, C. R., Rodriguez-Rodriguez, J. C., & Moreno-Diaz, R. (2018). A protocol-channel-based indoor positioning performance study for Bluetooth low energy. IEEE Access, 6, 33440–33450. https://doi.org/10.1109/ACCESS.2018.2837497
  • Buer, S.-V., Strandhagen, J. O., & Chan, F. T. S. (2018). The link between Industry 4.0 and lean manufacturing: Mapping current research and establishing a research agenda. International Journal of Production Research, 56(8), 2924–2940. https://doi.org/10.1080/00207543.2018.1442945
  • Byunghun, K., Kwak, M., Lee, J., & Kwon, T. T. 2015. “A multi-pronged approach for indoor positioning with WiFi, magnetic and cellular signals.” International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea (South) (IEEE), 723–726. https://doi.org/10.1109/IPIN.2014.7275551.
  • Chen, S. W., Seow, C. K., & Tan, S. Y. (2016). Elliptical lagrange-based NLOS tracking localization scheme. IEEE Transactions on Wireless Communications, 15(5), 3212–3225. https://doi.org/10.1109/TWC.2016.2518174
  • Chen, H., Zhang, Y., Wei, L., Tao, X., & Zhang, P. (2017). ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information. IEEE Access, 5, 18066–18074. https://doi.org/10.1109/ACCESS.2017.2749516
  • Chon, H. D., Jun, S., Jung, H., & Won, A. (2004). Using RFID for Accurate Positioning. Journal of Global Positioning Systems, 3(1&2), 32–39. https://doi.org/10.5081/jgps.3.1.32
  • Chowdhury, T. I., Rahman, M. M., Sadre-Ala Parvez, A. K. M. M. A., Basher, A., Alam, A., & Rizwan, S. 2015. “A multi-step approach for RSSi-based distance estimation using smartphones.” International Conference on Networking Systems and Security (NSysS) (IEEE), 1–5. https://doi.org/10.1109/NSysS.2015.7042942.
  • Christ, R., & Lavigne, R. 2000. “Radio frequency-based personnel location systems.” 34th Annual International Carnahan Conference on Security Technology, Ottawa, ON, Canada (IEEE), 141–150. https://doi.org/10.1109/CCST.2000.891180.
  • Chu, C.-H., Wang, C.-H., Liang, C.-K., Ouyang, W., Cai, J.-H., & Chen, Y.-H. 2011. “High-Accuracy Indoor personnel tracking system with a ZigBee wireless sensor network.” Seventh International Conference on Mobile Ad-hoc and Sensor Networks, Beijing, China (IEEE), 398–402. https://doi.org/10.1109/MSN.2011.36.
  • Cidronali, A., Maddio, S., Giorgetti, G., & Manes, G. (2010). Analysis and performance of a smart antenna for 2.45-GHz single-anchor indoor positioning. IEEE Transactions on Microwave Theory and Techniques, 58(1), 21–31. https://doi.org/10.1109/TMTT.2009.2035947
  • Cox, C. I. (2014). An Introduction to LTE LTE, LTE-Advanced, SAE. In VoLTE and 4G Mobile Communications. John Wiley & Sons Inc, 488 .
  • Dammann, A., Raulefs, R., & Zhang, S. 2015. “On prospects of positioning in 5G.” IEEE International Conference on Communication Workshop (ICCW), London, UK (IEEE), 1207–1213. https://doi.org/10.1109/ICCW.2015.7247342.
  • Del Peral-Rosado, J. A., Lopez-Salcedo, J. A., Kim, S., & Seco-Granados, G. 2016. “Feasibility study of 5G-based localization for assisted driving.” International Conference on Localization and GNSS (ICL-GNSS), Barcelona (IEEE), 1–6. https://doi.org/10.1109/ICL-GNSS.2016.7533837.
  • Del Peral-Rosado, R. R., Lopez-Salcedo, J. A., Seco-Granados, G., & Del Peral-Rosado, J. A. (2018). Survey of cellular mobile radio localization methods: From 1G to 5G. IEEE Communications Surveys & Tutorials, 20(2), 1124–1148. https://doi.org/10.1109/COMST.2017.2785181
  • Dougherty, J. J., El-Sherief, H., Simon, D. J., & Whitmer, G. A. (1995). GPS modeling for designing aerospace vehicle navigation systems. IEEE Transactions on Aerospace and Electronic Systems, 31(2), 695–705. https://doi.org/10.1109/7.381917
  • Dwivedi, S., Shreevastav, R., Munier, F., Nygren, J., Siomina, I., Lyazidi, Y., Shrestha, D., Lindmark, G., Ernström, P., Razavi, S., Muruganathan, S., Masini, G., Busin, A., Gunnarsson, F. (2021). “Positioning in 5G networks.” Cornell UZniversity, 1–7. https://arxiv.org/abs/2102.03361v1. Accessed April 30, 2021.
  • Elsanhoury, M., Makela, P., Koljonen, J., Valisuo, P., Shamsuzzoha, A., Mantere, T., Elmusrati, M., & Kuusniemi, H. (2022). Precision positioning for smart logistics using ultra-wideband technology-based indoor navigation: A review. IEEE Access, 10, 44413–44445. https://doi.org/10.1109/ACCESS.2022.3169267
  • Faheem, Z., Gkelias, A., & Leung, K. K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 21(3), 2568–2599. https://doi.org/10.1109/COMST.2019.2911558
  • Fard, H. K., Chen, Y., & Son, K. K. 2015. “Indoor positioning of mobile devices with agile iBeacon deployment.” Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada (IEEE), 275–279. https://doi.org/10.1109/CCECE.2015.7129199.
  • FCC. 1996. “Report & order and further notice of proposed rulemaking on revision of the FCC rules to ensure compatibility with enhanced 911 emergency calling systems.” Accessed April 27, 2021. https://docs.fcc.gov/public/attachments/DA-02-2423A1.pdf.
  • Fei, H., Xiao, F., Sheng, B., Huang, H., & Sun, L. (2019). Motion path reconstruction in indoor environment using commodity Wi-Fi. IEEE Transactions on Vehicular Technology, 68(8), 7668–7678. https://doi.org/10.1109/tvt.2019.2921408
  • Feng, Z., Lingfei, M., & Meng, L. 2015. “Analysis of low energy consumption wireless sensor with BLE.” IEEE SENSORS, Busan, Korea (South) (IEEE), 1–4. https://doi.org/10.1109/ICSENS.2015.7370563.
  • Füchtenhans, M., Grosse, E. H., & Glock, C. H. (2021). Smart lighting systems: State-of-the-art and potential applications in warehouse order picking. International Journal of Production Research, 59(12), 3817–3839. https://doi.org/10.1080/00207543.2021.1897177
  • Gezici, S., & Poor, H. V. (2009). Position estimation via ultra-wide-band signals. Proceedings of the IEEE, 97(2), 386–403. https://doi.org/10.1109/JPROC.2008.2008840
  • Gezici, S., Zhi Tian, G. B. G., F. Molisch, A., Molisch, A. F., Poor, H. V., Sahinoglu, Z., & Sahinoglu, Z. (2005). Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70–84. https://doi.org/10.1109/MSP.2005.1458289
  • Giovanni, P., Arena, F., Gebremariam, Y. E., & You, I. (2021). Bluetooth 5.1: An analysis of direction finding capability for high-precision location services. Sensors (Basel, Switzerland), 21(11). https://doi.org/10.3390/s21113589
  • Guo, G., Chen, R., Feng, Y., Peng, X., Liu, Z., & Pan, Y. (2019). Indoor smartphone localization: A hybrid Wifi RTT-RSS ranging approach. IEEE Access, 7, 176767–176781. https://doi.org/10.1109/ACCESS.2019.2957753
  • Guoquan, L., Geng, E., Zhouyang, Y., Yongjun, X., & Zhu, H. 2018. “An indoor positioning algorithm based on RSSI real-time correction.” International Conference on Signal Processing (ICSP), Beijing, China (IEEE), 129–133. https://doi.org/10.1109/ICSP.2018.8652382.
  • Guo, D., Zhong, R. Y., Ling, S., Rong, Y., & Huang, G. Q. (2020). A roadmap for assembly 4.0: Self-configuration of fixed-position assembly islands under graduation intelligent manufacturing system. International Journal of Production Research, 58(15), 4631–4646. https://doi.org/10.1080/00207543.2020.1762944
  • Hakkarainen, A., Werner, J., Costa, M., Leppanen, K., & Valkama, M. 2015. “High-efficiency device localization in 5G ultra-dense networks: Prospects and Enabling Technologies.” IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA (IEEE), 1–5. https://doi.org/10.1109/VTCFall.2015.7390965.
  • Halawa, F., Dauod, H., Lee, I. G., Yinglei, L., Yoon, S. W., & Chung, S. H. (2020). Introduction of a real time location system to enhance the warehouse safety and operational efficiency. International Journal of Production Economics, 224(5), 107541. https://doi.org/10.1016/j.ijpe.2019.107541
  • Hanssens, B., Plets, D., Tanghe, E., Oestges, C., Gaillot, D. P., Lienard, M., Taoyong, L., Steendam, H., Martens, L., & Joseph, W. (2018). An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters. IEEE Transactions on Antennas and Propagation, 66(5), 2522–2533. https://doi.org/10.1109/TAP.2018.2810340
  • He, D., Bouras, T., Chen, X., Wenxian, Y., Zhang, Y., & Yang, Y. (2018). 3-D spatial spectrum fusion indoor localization algorithm based on CSI-UCA smoothing technique. IEEE Access, 6, 59575–59588. https://doi.org/10.1109/ACCESS.2018.2873686
  • Henk, W., Lien, J., & Win, M. Z. (2009). Cooperative localization in wireless networks. Proceedings of the IEEE, 97(2), 427–450. https://doi.org/10.1109/JPROC.2008.2008853
  • Hernandez, A., Badorrey, R., Choliz, J., Alastruey, I., & Valdovinos, A. (2008). Accurate indoor wireless location with IR UWB systems a performance evaluation of joint receiver structures and TOA based mechanism. IEEE Transactions on Consumer Electronics, 54(2), 381–389. https://doi.org/10.1109/TCE.2008.4560103
  • Hilty, L. M., Oertel, B., Wölk, M., & Pärli, K. (2012). “Lokalisiert und identifiziert. Wie Ortungstechnologien unser Leben verändern.”. https://doi.org/10.3218/3477-6
  • Huan-Bang, L., Miura, R., & Kagawa, T. (2016). Tracking of warehouse forklifts using an indoor positioning system based on ir-uwb. National Institute of Information and Communications Technology (NICT), 1–4. https://www.semanticscholar.org/paper/Tracking-of-Warehouse-Forklifts-Using-an-Indoor-on-Li-Miura/27977b023abce26f4977a149a18c73978b42e858.
  • Huang, S., Zhao, K., Zheng, Z., Wenqing, J., Tianyi, L., Liao, X., & Sun, J. (2021). An optimized fingerprinting-based indoor positioning with Kalman filter and universal kriging for 5G internet of things. Wireless Communications and Mobile Computing, 2021, 1–10. https://doi.org/10.1155/2021/9936706
  • Huawei Technologies Co., Ltd. 2020. “Huawei launches LAMPSITE EE (Enterprise Edition), a 5G indoor coverage solution for industry scenarios.” News release. February 21. Accessed April 30, 2021. https://www.huawei.com/cn/news/2020/2/5g-lampsite-ee-2020.
  • Ilie-Zudor, E., Kemény, Z., Pfeiffer, A., & Monostori, L. (2016). Decision support solutions for factory and network logistics operations. International Journal of Computer Integrated Manufacturing, 7(1), 1–11. https://doi.org/10.1080/0951192X.2016.1145801
  • ITU. 2020. “International Telecommunication Union.” Accessed April 26, 2021. https://www.itu.int/en/about/Pages/default.aspx.
  • Ivanov, D., Das, A., & Choi, T.-M. (2018). New flexibility drivers for manufacturing, supply chain and service operations. International Journal of Production Research, 56(10), 3359–3368. https://doi.org/10.1080/00207543.2018.1457813
  • Ivanov, D., Tang, C. S., Dolgui, A., Battini, D., & Das, A. (2021). Researchers’ perspectives on Industry 4.0: Multi-disciplinary analysis and opportunities for operations management. International Journal of Production Research, 59(7), 2055–2078. https://doi.org/10.1080/00207543.2020.1798035
  • Jackson, J., Davis, B., & Gebre-Egziabher, D. (2018). A performance assessment of low-cost RTK GNSS receivers (IEEE) (pp. 642–649). https://doi.org/10.1109/PLANS.2018.8373438
  • Jaffe, A., & Wax, M. (2014). Single-site localization via maximum discrimination multipath fingerprinting. IEEE Transactions on Signal Processing, 62(7), 1718–1728. https://doi.org/10.1109/TSP.2014.2304923
  • Jiang, T., Zhang, J., Tang, P., Tian, L., Zheng, Y., Dou, J., Asplund, H., Raschkowski, L., D’Errico, R., & Jamsa, T. (2021). 3GPP standardized 5G channel model for IIoT scenarios: A survey. IEEE Internet of Things Journal, 8(11), 8799–8815. https://doi.org/10.1109/JIOT.2020.3048992
  • Jiang, X., Zhou, Z., Youwen, Y., & Ni, L. M. (2016). A survey on wireless indoor localization from the device perspective. ACM Computing Surveys, 49(2), 1–31. https://doi.org/10.1145/2933232
  • Jianyong, Z., Haiyong, L., Zili, C., & Zhaohui, L. 2014. “RSSI based Bluetooth low energy indoor positioning.” International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan (IEEE), 526–533. https://doi.org/10.1109/IPIN.2014.7275525.
  • Kasparek, M., Mutschler, C., & Seitz, J. 2021. “5G for connecting and locating mobile devices: 5G-ACIA demo session, Hannover Messe .” April 14. Accessed April 30, 2021. https://www.hannovermesse.de/veranstaltung/5g-acia-demo-session-5g-for-connecting-and-locating-mobile-devices/ld/98601.
  • Keating, R., Saily, M., Hulkkonen, J., & Karjalainen, J. 2019. “Overview of positioning in 5G new radio.” International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland (IEEE), 320–324. https://doi.org/10.1109/ISWCS.2019.8877160.
  • Khajenasiri, I., Zhu, P., Verhelst, M., & Gielen, G. (2015). A low-energy ultra-wideband internet-of-Things radio system for multi-standard smart-home energy management. IEIE Transactions on Smart Processing and Computing, 4(5), 354–365. https://doi.org/10.5573/IEIESPC.2015.4.5.354
  • Kim Geok, T., Zar Aung, K., Sandar Aung, M., Thu Soe, M., Abdaziz, A., Pao Liew, C., Hossain, F., Tso, C. P., & Yong, W. H. (2021). Review of indoor positioning: Radio wave technology. Applied Sciences, 11(1), 279. https://doi.org/10.3390/app11010279
  • Klaithem, A. N., & Kamel, H. 2011. “A survey of indoor positioning systems and algorithms.” 2011 International Conference on Innovations in Information Technology, Abu Dhabi, United Arab Emirates (IEEE), 185–190. https://doi.org/10.1109/INNOVATIONS.2011.5893813.
  • Kraus, S., Breier, M., & Dasí-Rodríguez, S. (2020). The art of crafting a systematic literature review in entrepreneurship research. International Entrepreneurship and Management Journal, 16(3), 1023–1042. https://doi.org/10.1007/s11365-020-00635-4
  • Krzywdzinski, M. (2019). Globalisation, decarbonisation and technological change: Challenges for the German and CEE Automotive Supplier Industry. In B. Galgóczi (Ed.), Towards a just transition: Coal, cars and the world of work (pp. 215–241). ETUI European Trade Union Institute.
  • Kumar, S., Gil, S., Katabi, D., & Rus, D. 2014. “Accurate indoor localization with zero start-up cost.” Proceedings of the 20th annual international conference on Mobile computing and networking, New York, NY, United States (Association for Computing Machinery), 483–494. https://doi.org/10.1145/2639108.2639142.
  • Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1–2), 508–517. https://doi.org/10.1080/00207543.2017.1351644
  • Kyamakya, K., & Jobmann, K. (2005). Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis. IEEE Transactions on Vehicular Technology, 54(2), 687–708. https://doi.org/10.1109/TVT.2004.842459
  • Laoudias, C., Moreira, A., Kim, S., Lee, S., Wirola, L., & Fischione, C. (2018a). A survey of enabling technologies for network localization, tracking, and navigation. IEEE Communications Surveys & Tutorials, 20(4), 3607–3644. https://doi.org/10.1109/COMST.2018.2855063
  • Laoudias, C., Moreira, A., Kim, S., Lee, S., Wirola, L., & Fischione, C. (2018b). A survey of enabling technologies for network localization, tracking, and navigation. IEEE Communications Surveys & Tutorials, 20(4), 3607–3644. https://doi.org/10.1109/COMST.2018.2855063
  • Laoudias, C., Moreira, A., Kim, S., Lee, S., Wirola, L., & Fischione, C. (2018c). A survey of enabling technologies for network localization, tracking, and navigation. IEEE Communications Surveys & Tutorials, 20(4), 3607–3644. https://doi.org/10.1109/COMST.2018.2855063
  • Lauri, W., Laine, T. A., & Syrjarinne, J. 2010. “Mass-market requirements for indoor positioning and indoor navigation.” International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland (IEEE), 1–7. https://doi.org/10.1109/IPIN.2010.5646748
  • Lee, J., Hsu, H.-H., & Ying-Ern, H. (2019). Scalable package-level RFI filter for digital clock noise mitigation in 5-GHz and future 6-GHz WiFi applications, (New Orleans, LA, USA: IEEE) (pp. 427–431). https://doi.org/10.1109/ISEMC.2019.8825285
  • Li, D., Lei, Y., & Zhang, H. (2020). A novel outdoor positioning technique using LTE network fingerprints. Sensors (Basel, Switzerland), 20(6). https://doi.org/10.3390/s20061691
  • Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007a). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(6), 1067–1080. https://doi.org/10.1109/TSMCC.2007.905750
  • Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007b). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(6), 1067–1080. https://doi.org/10.1109/TSMCC.2007.905750
  • Liu, D.-Y., Wang, C.-S., & Hsu, K.-S. 2016. “Beacon applications in information services.” International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan, Taiwan (IEEE), 438–440. https://doi.org/10.1109/ICAMSE.2016.7840318.
  • Löcklin, A., Przybysz-Herz, K., Ruppert, T., Libert, R., Jakab, L., Jazdi, N., & Weyrich, M. (2021). Tailored digitization with real-time locating systems. atp, 63(3), 76–83. https://doi.org/10.17560/atp.v63i03.2550
  • Maghdid, H. S., Lami, I. A., Ghafoor, K. Z., & Lloret, J. (2016). Seamless outdoors-indoors localization solutions on smartphones. ACM Computing Surveys, 48(4), 1–34. https://doi.org/10.1145/2871166
  • Mahfouz, M. R., Cemin Zhang, B. C. M., Kuhn, M. J., Fathy, A. E., & Fathy, A. E. (2008). Investigation of high-accuracy indoor 3-D positioning using UWB technology. IEEE Transactions on Microwave Theory and Techniques, 56(6), 1316–1330. https://doi.org/10.1109/TMTT.2008.923351
  • Martinez, S., Mariño, A., Sanchez, S., Montes, A. M., Triana, J. M., Barbieri, G., Abolghasem, S., Vera, J., & Guevara, M. (2021). A digital twin demonstrator to enable flexible manufacturing with robotics: A process supervision case study. Production & Manufacturing Research, 9(1), 140–156. https://doi.org/10.1080/21693277.2021.1964405
  • Mata, F. J., Grec, F., Azaola, M., Blázquez, F., Fernández, A., Dominguez, E., Cueto-Felgueroso, G., Seco-Granados, G., del Peral-Rosado, J.A., Staudinger, E., Gentner, C., Kasparek, M., Backert, C., Barlett, D., Serna, E., Ries, L., Prieto-Cerdeira, R. (2020). “Preliminary field trials and simulations results on performance of hybrid positioning based on GNSS and 5G signals.” International Technical Meeting of the Satellite Division of The Institute of Navigation Colorado, USA, 387–401. https://doi.org/10.33012/2020.17609.
  • McElroy, C., Neirynck, D., & McLaughlin, M. 2014. “Comparison of wireless clock synchronization algorithms for indoor location systems.” International Conference on Communications Workshops (ICC), Sydney, NSW, Australia (IEEE), 157–162. https://doi.org/10.1109/ICCW.2014.6881189.
  • Minseuk, K., Han, D., & Rhee, J.-K.-K. (2020). Machine learning for practical localization system using multiview CSI. IEEE Access, 8, 184575–184584. https://doi.org/10.1109/ACCESS.2020.3029598
  • Nardo, M., Forino, D., & Murino, T. (2020). The evolution of man–machine interaction: The role of human in Industry 4.0 paradigm. Production & Manufacturing Research, 8(1), 20–34. https://doi.org/10.1080/21693277.2020.1737592
  • Nasir, S., Nam, H., Al-Naffouri, T. Y., & Alouini, M.-S. (2019). A state-of-the-art survey on multidimensional scaling-based localization techniques. IEEE Communications Surveys & Tutorials, 21(4), 3565–3583. https://doi.org/10.1109/COMST.2019.2921972
  • Ning, D., Wagner, D., Chen, X., Abhinav Pathak, Y. C. H., Rice, A., & Rice, A. (2013). Characterizing and modeling the impact of wireless signal strength on smartphone battery drain. SIGMETRICS Perform. Eval. Rev, 41(1), 29–40. https://doi.org/10.1145/2494232.2466586
  • Ojas, K., & Rappaport, T. S. (2021). Position location for futuristic cellular communications: 5G and beyond. IEEE Communications Magazine, 59(1), 70–75. https://doi.org/10.1109/MCOM.001.2000150
  • Parkash, D., Kundu, T., & Kaur, P. (2012). The RFID technology and its applications: A review. International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD, 2, 109–120. https://www.researchgate.net/publication/232575248.
  • Posluk, M., Ahlander, J., Shrestha, D., Razavi, S. M., Lindmark, G., & Gunnarsson, F. (2021). 5G deployment strategies for high positioning accuracy in indoor environments. arXiv. https://doi.org/10.48550/arXiv.2105.09584
  • Qualcomm Technologies Inc. 2020. “Transforming enterprise and industry with 5G private networks.” Accessed April 30, 2021. https://www.qualcomm.com/media/documents/files/the-role-of-5g-in-private-networks-for-industrial-iot.pdf.
  • Qualcomm Technologies Inc. 2021. “5G industrial precise positioning.” Accessed August 25, 2021. https://www.youtube.com/watch?v=6PlR7kYNXrs.
  • Rácz-Szabó, A., Ruppert, T., Bántay, L., Löcklin, A., Jakab, L., & Abonyi, J. (2020). Real-time locating system in production management. Sensors (Basel, Switzerland), 20(23), 6766. https://doi.org/10.3390/s20236766
  • Ramos, A., Lazaro, A., & Villarino, R. (2016). RFID and wireless sensors using ultra-wideband technology ,(ISTE Press Ltd.). https://doi.org/10.1016/C2015-0-01232-1
  • Ren, J., Wang, Y., Niu, C., & Song, W. (2019a). A novel high precision and low consumption indoor positioning algorithm for internet of things. IEEE Access, 7, 86874–86883. https://doi.org/10.1109/ACCESS.2019.2924992
  • Ren, J., Wang, Y., Niu, C., Song, W., & Huang, S. (2019b). A novel clustering algorithm for Wi-Fi indoor positioning. IEEE Access, 7, 122428–122434. https://doi.org/10.1109/ACCESS.2019.2937464
  • Rong, P., & Sichitiu, M. L. 2006. “Angle of arrival localization for wireless sensor networks.” 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA (IEEE), 374–382. https://doi.org/10.1109/SAHCN.2006.288442.
  • Rusli, M. E., Ali, M., Jamil, N., & Din, M. M. 2016. “An improved indoor positioning algorithm based on RSSI-trilateration technique for internet of things (IOT).” International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia (IEEE), 72–77. https://doi.org/10.1109/ICCCE.2016.28.
  • Sadowski, S., & Spachos, P. (2018a). RSSI-based indoor localization with the internet of things. IEEE Access, 6, 30149–30161. https://doi.org/10.1109/ACCESS.2018.2843325
  • Sadowski, S., & Spachos, P. (2018b). RSSI-based indoor localization with the internet of things. IEEE Access, 6, 30149–30161. https://doi.org/10.1109/ACCESS.2018.2843325
  • Schuldt, C., Shoushtari, H., Hellweg, N., & Sternberg, H. (2021). L5IN: Overview of an indoor navigation pilot project. Remote Sensing, 13(4), 624. https://doi.org/10.3390/rs13040624
  • Sedlacek, P., Slanina, M., & Masek, P. 2019. “An overview of the IEEE 802.15.4z standard its comparison and to the existing UWB standards.” International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic (IEEE), 1–6. https://doi.org/10.1109/RADIOELEK.2019.8733537.
  • Shahmansoori, A., Garcia, G. E., Destino, G., Seco-Granados, G., & Wymeersch, H. (2017). Position and orientation estimation through millimeter-wave MIMO in 5G systems. IEEE Transactions on Wireless Communications, 17(3), 1822–1835. https://doi.org/10.1109/TWC.2017.2785788
  • Shen, J., & Molisch, A. F. 2011. “Passive location estimation using TOA measurements.” 2011 IEEE International Conference on Ultra-Wideband (ICUWB), Bologna, Italy (IEEE), 253–257. https://doi.org/10.1109/ICUWB.2011.6058839.
  • Shi, G., & Ming, Y. (2016). Survey of indoor positioning systems based on ultra-wideband (UWB) technology. 348, 1269–1278. https://doi.org/10.1007/978-81-322-2580-5_115
  • Shi, S., Sigg, S., Chen, L., & Yusheng, J. (2018). Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting. IEEE Transactions on Vehicular Technology, 67(6), 5217–5230. https://doi.org/10.1109/TVT.2018.2810307
  • Siddhesh, D., Bakal, J. W., & Gedam, M. (2016). Survey of indoor positioning measurements, methods and techniques. International Journal of Computer Applications, 140(7), 1–4. https://doi.org/10.5120/ijca2016909361
  • Slezak, C., Semkin, V., Andreev, S., Koucheryavy, Y., & Rangan, S. (2018). Empirical effects of dynamic human-body blockage in 60 GHz communications. IEEE Communications Magazine, 56(12), 60–66. https://doi.org/10.1109/MCOM.2018.1800232
  • Slovak, J., Vasek, P., Simovec, M., Melicher, M., & Sismisova, D. 2019. “RTLS tracking of material flow in order to reveal weak spots in production process.” International Conference on Process Control (PC19), Strbske Pleso, Slovakia (IEEE), 234–238. https://doi.org/10.1109/PC.2019.8815220.
  • Sony, M. (2020). Pros and cons of implementing Industry 4.0 for the organizations: A review and synthesis of evidence. Production & Manufacturing Research, 8(1), 244–272. https://doi.org/10.1080/21693277.2020.1781705
  • Sosa-Sesma, S., & Perez-Navarro, A. 2016. “Fusion system based on WiFi and ultrasounds for in-home positioning systems: The UTOPIA experiment.” 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain (IEEE), 1–8. https://doi.org/10.1109/IPIN.2016.7743622.
  • Sosnin, S., Lomayev, A., & Khoryaev, A. 2021. “DL-AOD positioning algorithm for enhanced 5G NR location services.” International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain (IEEE), 1–7. https://doi.org/10.1109/IPIN51156.2021.9662638.
  • Sun, B., Tan, B., Wang, W., & Lohan, E. S. (2021). A comparative study of 3D UE positioning in 5G new radio with a single station. Sensors (Basel, Switzerland), 21(4). https://doi.org/10.3390/s21041178
  • Sun, H., Zhu, X., Liu, Y., & Liu, W. (2020). WiFi based fingerprinting positioning based on Seq2seq model. Sensors (Basel, Switzerland), 20(13). https://doi.org/10.3390/s20133767
  • Tahat, A., Kaddoum, G., Yousefi, S., Valaee, S., & Gagnon, F. (2016). A look at the recent wireless positioning techniques with a focus on algorithms for moving receivers. IEEE Access, 4, 6652–6680. https://doi.org/10.1109/ACCESS.2016.2606486
  • Thuong, N. T., Phong, H. T., Dinh-Thuan, D., van Hieu, P., & Loc, D. T. 2016. “Android application for WiFi based indoor position: System design and performance analysis.” International Conference on Information Networking (ICOIN), Kota Kinabalu, Malaysia (IEEE), 416–419. https://doi.org/10.1109/ICOIN.2016.7427147.
  • Wang, Y., Cheng, L., Yingjie, Y., & Huang, S. 2021. “Enabling low-power high-accuracy positioning (LPHAP) in 3GPP NR standards.” International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain (IEEE), 1–7. https://doi.org/10.1109/IPIN51156.2021.9662628.
  • Wang, X., Mao, S., Pandey, S., & Agrawal, P. (2014). CA2T: Cooperative antenna arrays technique for pinpoint indoor localization. Procedia Computer Science, 34(6), 392–399. https://doi.org/10.1016/j.procs.2014.07.044
  • Xiansheng, G., Ansari, N., Fangzi, H., Shao, Y., Elikplim, N. R., & Lin, L. (2020). A survey on fusion-based indoor positioning. IEEE Communications Surveys & Tutorials, 22(1), 566–594. https://doi.org/10.1109/COMST.2019.2951036
  • Xin, X., Dan, L., Sun, M., Yang, S., Shujiang, Y., Manogaran, G., Mastorakis, G., & Mavromoustakis, C. X. (2019). Research on key technologies of smart campus teaching Platform based on 5G network. IEEE Access, 7, 20664–20675. https://doi.org/10.1109/ACCESS.2019.2894129
  • Xiong, J., & Jamieson, K. 2013. “ArrayTrack: A fine-grained indoor location system.” Proc. 10th USENIX Symp. Netw. Syst. Design Implement, London, UK, University College London, 71–84.
  • Xu, L., Eric, D., Xu, L., & Ling, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806
  • Yammine, G., Alawieh, M., Ilin, G., Momani, M., Elkhouly, M., Karbownik, P., Franke, N., & Eberlein, E. 2021. “Experimental investigation of 5G positioning performance using a mmWave measurement Setup.” International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain (IEEE), 1–8. https://doi.org/10.1109/IPIN51156.2021.9662535.
  • Yanying, G., Anthony, L., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials, 11(1), 13–32. https://doi.org/10.1109/SURV.2009.090103
  • Yildirim, B. S., Cetiner, B. A., Roqueta, G., & Jofre, L. (2009). Integrated Bluetooth and UWB antenna. IEEE Antennas and Wireless Propagation Letters, 8, 149–152. https://doi.org/10.1109/LAWP.2009.2013371
  • Yong, Y., Stecke, K. E., & Dongni, L. (2018). The evolution of production systems from industry 2.0 through industry 4.0. International Journal of Production Research, 56(1–2), 848–861. https://doi.org/10.1080/00207543.2017.1403664
  • Yongtao, M., Wang, B., Pei, S., Zhang, Y., Zhang, S., & Jiexiao, Y. (2018). An indoor localization method based on AOA and PDOA using virtual stations in multipath and NLOS environments for passive UHF RFID. IEEE Access, 6, 31772–31782. https://doi.org/10.1109/ACCESS.2018.2838590
  • You, L., Zhuang, Y., Xin, H., Gao, Z., Jia, H., Chen, L., Zhe, H., Pei, L., Chen, K., Wang, M., Niu, X., Chen, R., Thompson, J., Ghannouchi, F. M., & El-Sheimy, N. (2021). Toward location-enabled IoT (LE-IoT): IoT positioning techniques, error sources, and error mitigation. IEEE Internet of Things Journal, 8(6), 4035–4062. https://doi.org/10.1109/JIOT.2020.3019199
  • Yuan, X., Ahn, C. K., Shmaliy, Y. S., Chen, X., & Yueyang, L. (2018). Adaptive robust INS/UWB-integrated human tracking using UFIR filter bank. Measurement, 123(1), 1–7. https://doi.org/10.1016/j.measurement.2018.03.043
  • Yuan, W., Shaodan, M., & Chen, C. L. P. (2014). TOA-based passive localization in quasi-synchronous networks. IEEE Communications Letters, 18(4), 592–595. https://doi.org/10.1109/LCOMM.2014.021214.132662
  • Zekavat, S. A., & Buehrer, R. M. 2019. Handbook of position location: Theory, practice, and advances. Second edition. IEEE series on digital & mobile communication. Hoboken: IEEE Press; Wiley.
  • Zhang, X. 2021. “Indoor precise positioning demonstration: 5G-ACIA demo session: 5G for connecting and locating mobile devices Hannover Messe .” April 14. Accessed April 30, 2021. https://www.hannovermesse.de/veranstaltung/5g-acia-demo-session-5g-for-connecting-and-locating-mobile-devices/ld/98601.
  • Zhang, Y., Gong, X., Liu, K., & Zhang, S. (2021b). Localization and tracking of an indoor autonomous vehicle based on the phase difference of passive UHF RFID signals. Sensors (Basel, Switzerland), 21(9). https://doi.org/10.3390/s21093286
  • Zhang, Y., Jin, J., Liu, C., & Jia, P. (2021a). Indoor 3D dynamic reconstruction fingerprint matching algorithm in 5G ultra-dense network. KSII TIIS, 15, 1. https://doi.org/10.3837/tiis.2021.01.019
  • Zhang, D., Xia, F., Yang, Z., Yao, L., & Zhao, W. 2010. “Localization technologies for indoor human tracking.” International Conference on Future Information Technology, Busan, Korea (South) (IEEE), 1–6. doi:10.1109/FUTURETECH.2010.5482731.
  • Zuo, Z., Liu, L., Zhang, L., & Fang, Y. (2018). Indoor positioning based on Bluetooth low-energy beacons adopting graph optimization. Sensors (Basel, Switzerland), 18(11), 3736. https://doi.org/10.3390/s18113736