546
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optical and mechanical properties characterizations of transparent polycrystalline MgAl2O4 spinel

ORCID Icon, , , , &
Pages 451-463 | Received 27 Feb 2023, Accepted 13 Aug 2023, Published online: 28 Aug 2023

References

  • Dericioglu AF, Boccaccini AR, Dlouhy I, et al. Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics. Mater Trans. 2005;46(5):996–1003. doi: 10.2320/matertrans.46.996
  • Stewart RL, Bradt RC. Fracture of polycrystalline MgAl2O4. J Am Ceram Soc. 1980;63(11–12):619–623. doi: 10.1111/j.1151-2916.1980.tb09847.x
  • Porter DF, Reed JS, Lewis D. Elastic moduli of refractory spinel. J Am Ceram Soc. 1977;60(7–8):345–349. doi: 10.1111/j.1151-2916.1977.tb15558.x
  • White KW, Kelkar GP. Fracture mechanisms of a coarse-grained, transparent MgAl2O4 at elevated temperatures. J Am Ceram Soc. 1992;75(12):3440–3444. doi: 10.1111/j.1151-2916.1992.tb04446.x
  • Goldstein A, Raethel J, Katz M, et al. Transparent MgAl2O4/LiF ceramics by hot-pressing: Host–additive interaction mechanisms issue revisited. J Eur Ceram Soc. 2016;36(7):1731–1742. doi: 10.1016/j.jeurceramsoc.2016.02.001
  • Villalobos GR, Sanghera JS, Aggarwal ID. Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J Am Ceram Soc. 2005;88(5):1321–1322. doi: 10.1111/j.1551-2916.2005.00209.x
  • Rozenburg K, Reimanis IE, Kleebe JH, et al. Sintering kinetics of a MgAl2O4 spinel doped with LiF. J Am Ceram Soc. 2008;91(2):444–450. doi: 10.1111/j.1551-2916.2007.02185.x
  • Rubat du Merac M, Reimanis IE, Smith C, et al. Effect of impurities and LiF additive in hot-pressed transparent magnesium aluminate spinel. Int J Appl Ceram Technol. 2013;10:E33–E48. doi: 10.1111/j.1744-7402.2012.02828.x
  • Tsukuma K. Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering. J Ceram Soc Jpn. 2006;114:802–806.
  • Goldstein A, Krell A, Kleebe A. Transparent ceramics at 50: Progress made and further prospects. J Am Ceram Soc. 2016;99(10):3173–3197. doi: 10.1111/jace.14553
  • Ikesue A, Aung YL. Advanced spinel ceramics with highest VUV-vis transparency. J Eur Ceram Soc. 2020;40(6):2432–2438. doi: 10.1016/j.jeurceramsoc.2020.01.062
  • Krell A, Klimke J, Hutzler T. Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc. 2009;29(2):275–281. doi: 10.1016/j.jeurceramsoc.2008.03.024
  • Frage N, Cohen S, Meir S, et al. Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J Mater Sci. 2007;42(9):3273–3275. doi: 10.1007/s10853-007-1672-0
  • Morita K, Kim BN, Yoshida H, et al. Spark-plasma-sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal. J Am Ceram Soc. 2008;92(6):1208–1216. doi: 10.1111/j.1551-2916.2009.03074.x
  • Morita K, Kim BN, Hiraga K, et al. Fabrication of high-strength transparent MgAl2O4 spinel polycrystals by optimizing spark-plasma-sintering conditions. J Mater Res. 2009;24(9):2863–2872. doi: 10.1557/jmr.2009.0335
  • Bratton RJ. Translucent sintered MgAl2O4. J Am Ceram Soc. 1974;57(7):283–286. doi: 10.1111/j.1151-2916.1974.tb10901.x
  • Mroz T, Goldman LM, Gledhill AD, et al. Nanostructured, infrared-transparent magnesium-aluminate spinel with superior mechanical properties. Int J Appl Ceram Technol. 2012;9(1):83–90. doi: 10.1111/j.1744-7402.2011.02629.x
  • Ghosh A, White KW, Jenkins MG, et al. Fracture resistance of a transparent magnesium aluminate spinel. J Am Ceram Soc. 1991;74(7):1624–1630. doi: 10.1111/j.1151-2916.1991.tb07149.x
  • Salem JA, Sglavo V. Transparent armor ceramics as spacecraft windows. J Am Ceram Soc. 2013;96(1):281–289. doi: 10.1111/jace.12089
  • Rubat du Merac M, Kleebe HJ, Müller MM, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J Am Ceram Soc. 2013;96(11):3341–3365. doi: 10.1111/jace.12637
  • Askarpour V, Manghnani MH, Fassbender S, et al. Elasticity of single-crystal MgAl2O4 spinel up to 1273 K by Brillouin spectroscopy. Phys Chem Miner. 1993;19(8):511–519. doi: 10.1007/BF00203051
  • Rice RW, Wu CC, Boichelt F. Hardness-grain-size relations in ceramics. J Am Ceram Soc. 1994;61(10):2539–2553. doi: 10.1111/j.1151-2916.1994.tb04641.x
  • Rice RW, Wu CC, McKinney KR. Fracture and fracture toughness of stoichiometric MgAl2O4 crystals at room temperature. J Mater Sci. 1996;31(5):1353–1360. doi: 10.1007/BF00353117
  • Sakai M, Bradt RC, Kobayashi AS. The toughness of polycrystalline MgAl2O4. J Ceram Soc Jpn. 1988;96:525–531.
  • Stewart RL, Bradt RC. Fracture of single crystal MgAl2O4. J Mater Sci. 1980;15(1):67–72. doi: 10.1007/BF00552428
  • Mendelson ML. Average grain size in polycrystalline ceramics. J Am Ceram Soc. 1969;52(8):443–446. doi: 10.1111/j.1151-2916.1969.tb11975.x
  • Awaji H, Sakaida Y. V-notch technique for single-edge notched beam and chevron notch methods. J Am Ceram Soc. 1990;73(11):3522–3523. doi: 10.1111/j.1151-2916.1990.tb06490.x
  • Ehre D, Chaim R. Abnormal Hall–Petch behavior in nanocrystalline MgO ceramic. J Mater Sci. 2008;43(18):6139–6143. doi: 10.1007/s10853-008-2936-z
  • Takahashi I, Usami S, Nakakado K, et al. Effect of defect size and notch root radius on fracture. J Ceram Soc Jpn. 1985;93:186–194.
  • Chantikul P, Bennison SJ, Lawn BR. Role of grain size in the strength and R-curve properties of alumina. J Am Ceram Soc. 1990;73(8):2419–2427. doi: 10.1111/j.1151-2916.1990.tb07607.x
  • Baudín C, Martínez R, Pena P. High-temperature mechanical behavior of stoichiometric magnesium spinel. J Am Ceram Soc. 1995;78(7):1857–1862. doi: 10.1111/j.1151-2916.1995.tb08900.x
  • Baratta FI. Stress intensity factor estimates for a peripherally cracked spherical void and a hemispherical surface pit. J Am Ceram Soc. 1978;61(11–12):490–493. doi: 10.1111/j.1151-2916.1978.tb16124.x