466
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of BaTiO3/Ag nanocomposites using a sonochemical process and low-temperature sintering

, , &
Pages 464-471 | Received 27 Apr 2023, Accepted 17 Aug 2023, Published online: 29 Aug 2023

References

  • Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999;82(4):797–818. doi: 10.1111/j.1151-2916.1999.tb01840.x
  • Buscaglia V, Randall CA. Size and scaling effects in barium titanate. An overview. J Eur Ceram Soc. 2020;40(11):3744–3758. doi: 10.1016/j.jeurceramsoc.2020.01.021
  • Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys. 2003;42(1):1–5. doi: 10.1143/JJAP.42.1
  • Pan MJ, Randall CA. A brief introduction to ceramic capacitors. IEEE Electr Insul Mag. 2010;26(3):44–50. doi: 10.1109/MEI.2010.5482787
  • Kwan SH, Shin FG, Tsui WL. Dielectric constant of silver-thermosetting polyester composites. J Mater Sci. 1984;19(12):4093–4098. doi: 10.1007/BF00980776
  • Hyuga H, Hayashi Y, Sekino T, et al. Fabrication process and electrical properties of BaTiO3/Ni nanocomposites. Nanostruct Mater. 1997;9(1–8):547–550. doi: 10.1016/S0965-9773(97)00121-9
  • Niihara K. New design concept of structural ceramics –ceramic nanocomposites–. J Ceram Soc Jpn. 1991;99(10):974–982. doi: 10.2109/jcersj.99.974
  • Lamouroux F, Bertrand S, Pailler R, et al. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Compos Sci Technol. 1999;59(7):1073–1085. doi: 10.1016/S0266-3538(98)00146-8
  • Fukahori S, Ichiura H, Kitaoka T, et al. Photocatalytic decomposition of bisphenol a in water using composite TiO2-Zeolite sheets prepared by a papermaking technique. Environ Sci Technol. 2003;37(5):1048–1051. doi: 10.1021/es0260115
  • Bai Y, Cheng Z-Y, Bharti V, et al. High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett. 2000;76(25):3804–3806. doi: 10.1063/1.126787
  • Hwang HJ, Niihara K. Perovskite-type BaTiO3 ceramics containing particulate SiC: part II microstructure and mechanical properties. J Mater Sci. 1998;33(2):549–558. doi: 10.1023/A:1004365006839
  • Emoto H, Hojo J. Sintering and dielectric properties of BaTiO3-Ni composite ceramics. J Ceram Soc Jpn. 1992;100(4):555–559. doi: 10.2109/jcersj.100.555
  • Pecharromán C, Esteban-Betegón F, Bartolomé JF, et al. New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (εr ≈ 80000. Adv Mater. 2001;13(20):1541–1544. doi: 10.1002/1521-4095(200110)13:20<1541:AID-ADMA1541>3.0.CO;2-X
  • Vasilaki E, Georgaki I, Vernardou D, et al. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl Surf Sci. 2015;353(30):865–872. doi: 10.1016/j.apsusc.2015.07.056
  • Jianjun L, Xinping L, Shengli Z, et al. Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites. Appl Clay Sci. 2007;37(3–4):275–280. doi: 10.1016/j.clay.2007.01.008
  • Zhang D, Sun Y, Jiang C, et al. Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. Sens Actuators B Chem. 2017;253:1120–1128. doi: 10.1016/j.snb.2017.07.173
  • Zhao Y, Tao C, Xiao G, et al. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites. Nanoscale. 2016;8(9):5313–5326. doi: 10.1039/C5NR08624H
  • Suslick KS. Sonochemistry. Science. 1990;247(4949):1439–1445. doi: 10.1126/science.247.4949.1439
  • Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured Materials. Adv Mater. 2010;22(10):1039–1059. doi: 10.1002/adma.200904093
  • Hangxun X, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev. 2013;42(7):2555–2567. doi: 10.1039/C2CS35282F
  • He C, Liu L, Fang Z, et al. Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation. Ultrason Sonochem. 2014;21(2):542–548. doi: 10.1016/j.ultsonch.2013.09.003
  • Abbas M, Takahashi M, Kim C. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J Nanopart Res. 2013;15(1):1354–1365. doi: 10.1007/s11051-012-1354-y
  • Alammar T, Hamm I, Wark M, et al. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications. Appl Catal, B. 2015;178:20–28. doi: 10.1016/j.apcatb.2014.11.010
  • Zhang Y-P, Lee S-H, Reddy KR, et al. Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci. 2007;104(4):2743–2750. doi: 10.1002/app.25938
  • Gao T, Li Q, Wang T. Sonochemical synthesis, optical properties, and electrical properties of core/Shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater. 2005;17(4):887–892. doi: 10.1021/cm0485456
  • Karkeh-Abadi F, Ghiyasiyan-Arani M, Salavati-Niasari M. Sonochemical synthesized BaMoO4/ZnO nanocomposites as electrode materials: A comparative study on GO and GQD employed in hydrogen storage. Ultrason Sonochem. 2022;90:106107. doi: 10.1016/j.ultsonch.2022.106167
  • Hayashi Y, Takizawa H, Inoue M, et al. Ecodesigns and applications for noble metal nanoparticles by ultrasound process. IEEE Trans Packaging Manuf. 2005;28(4):338–343. doi: 10.1109/TEPM.2005.858452
  • Wang C, Fang QF, Zhu ZG. Enhanced dielectric properties of low-temperature sintered SrBi2Nb2O9/Ag composites. Appl Phys Lett. 2002;80(19):3578–3580. doi: 10.1063/1.1477616
  • Yamada T, Hayashi Y, Takizawa H. Synthesis of carbon nanotube/silver nanocomposites by ultrasonication. Mater Trans. 2010;51(10):1769–1772. doi: 10.2320/matertrans.MJ201012
  • Nakano M, Fujiwara T, Koga N. Thermal decomposition of silver acetate: Physico-geometrical kinetic features and formation of silver nanoparticles. J Phys Chem C. 2016;120(16):8841–8854. doi: 10.1021/acs.jpcc.6b02377
  • Yang YF, Luo SD, Qian M. The effect of lanthanum boride on the sintering, sintered microstructure and mechanical properties of titanium and titanium alloys. Mater Sci Eng A. 2014;618(17):447–455. doi: 10.1016/j.msea.2014.08.080
  • Wang C-J, Huang C-Y, Wu Y-C. Two-step sintering of fine alumina–zirconia ceramics. Ceram Int. 2009;35(4):1467–1472. doi: 10.1016/j.ceramint.2008.08.001
  • Zheng H, Zhao L, Ma Z, et al. Synergic and competitive effect of A-site substitution on structure and electric property in BaTiO3-based ceramics. J Alloys Compd. 2023;937(15):168352. doi: 10.1016/j.jallcom.2022.168352
  • Hoshina T, Takizawa K, Li J, et al. Domain size effect on dielectric properties of barium titanate ceramics. Jpn J Appl Phys. 2008;47(9):7607–7611. doi: 10.1143/JJAP.47.7607
  • Yasui K, Hamamoto K. Simple physical model with empirical formulas for solid-state sintering of CaCO3 for estimation of porosity. AIP Adv. 2023;13(4):045222. doi: 10.1063/5.0141905
  • German RM, Suri P, Park SJ. Review: liquid phase sintering. J Mater Sci. 2009;44(1):1–39. doi: 10.1007/s10853-008-3008-0
  • Yasui K, Hamamoto K. Comparison between cold sintering and dry pressing of CaCO3 at room temperature by numerical simulations. AIP Adv. 2022;12(4):045304. doi: 10.1063/5.0087226
  • Samara GA. Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3. Phys Rev. 1966;151(2):378–386. doi: 10.1103/PhysRev.151.378
  • Zhu W, Wang CC, Akbar SA, et al. Fast-sintering of hydrothermally synthesized BaTiO3 powders and their dielectric properties. J Mater Sci. 1997;32(16):4303–4307. doi: 10.1023/A:1018663621241