731
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Achieving high energy storage performance and efficiency in lead-free SrTiO3 ceramics via neodymium and lithium co-doping technique

, , , , & ORCID Icon
Pages 491-503 | Received 06 Jul 2023, Accepted 11 Sep 2023, Published online: 18 Sep 2023

References

  • Liu C, Li F, Ma LP, et al. Advanced materials for energy storage. Adv Mater. 2010;22(8):E28–E62. doi: 10.1002/adma.200903328
  • Qi H, Xie AW, Zuo RZ. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy Storage Mater. 2022;45:541–567. doi: 10.1016/j.ensm.2021.11.043
  • Yuan QB, Chen M, Zhan SL. et al. Ceramic-based dielectrics for electrostatic energy storage applications: fundamental aspects, recent progress, and remaining challenges. Chem Eng J. 2022;446:136315. doi: 10.1016/j.cej.2022.136315
  • Zhao PY, Wang HX, Wu LW, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater. 2019;9(17):1803048. doi: 10.1002/aenm.201803048
  • Liu L, Liu Y, Hao J, et al. Multi-scale collaborative optimization of SrTiO3-based energy storage ceramics with high performance and excellent stability. J Nano Energy. 2023;109:108275. doi: 10.1016/j.nanoen.2023.108275
  • Alkathy MS, Rahaman A, Mastelaro VR. et al. Enhanced energy-storage density of BaTi0.95Zr0.05O3 via generation of defect dipoles upon lithium-doping. Mater Chem Phys. 2023;294:127032. doi: 10.1016/j.matchemphys.2022.127032
  • Alkathy M, Rahaman A, Mastelaro VR. et al. Achieving high energy storage density simultaneously with large efficiency and excellent thermal stability by defect dipole, and microstructural engineering in modified-BaTiO3 ceramics. J Alloy Compd. 2023;934:167887. doi: 10.1016/j.jallcom.2022.167887
  • Li TY, Chen PF, Li F, et al. Energy storage performance of Na0.5Bi0.5TiO3- SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem Eng J. 2021;406:127151. doi: 10.1016/j.cej.2020.127151
  • Luo NN, Han K, Zhuo FP, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. Mater Chem C. 2019;7(17):4999–5008. doi: 10.1039/C8TC06549G
  • Wang G, Lu ZL, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev. 2021;121(10):6124–6172. doi: 10.1021/acs.chemrev.0c01264
  • Li D, Lin Y, Zhang M. Achieved ultrahigh energy storage properties and outstanding charge–discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive. Chem Eng J. 2020;392:123729. doi: 10.1016/j.cej.2019.123729
  • Wang G, Lu Z, Li Y, et al. Electroceramics for high-energy-density capacitors: current status and future perspectives. Chem Rev. 2021;121(10):6124–6172. doi: 10.1021/acs.chemrev.0c01264
  • Wang X, Zhang Y, Song X, et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J Eur Ceram. 2012;32(3):559–567. doi: 10.1016/j.jeurceramsoc.2011.09.024
  • Jan A, Liu H, Hao H, et al. Enhanced dielectric breakdown strength and ultra-fast discharge performance of novel SrTiO3 based ceramics system. J Alloy Compd. 2020;830:154611. doi: 10.1016/j.jallcom.2020.154611
  • Huang J, Zhang Y, Ma T, et al. Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics Appl. Phys Lett. 2010;96(4):042902. doi: 10.1063/1.3293456
  • Zhu X, Shi P, Kang R, et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning Chem. Eng J. 2021;420:129808. doi: 10.1016/j.cej.2021.129808
  • Pu Y, Wang W, Guo X, et al. Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. J Mater Chem C. 2019;7(45):14384–14393. doi: 10.1039/C9TC04738G
  • Pan W, Cao M, Jan A, et al. High breakdown strength and energy storage performance in (nb, zn) modified SrTiO 3 ceramics via synergy manipulation. J Mater Chem C. 2020;8(6):2019–2027. doi: 10.1039/C9TC06256D
  • Guo X, Pu Y, Wang W, et al. Ultrahigh energy storage performance and fast charge-discharge capability in Dy-modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering Ceram. Int. 2020;46(13):21719–21727. doi: 10.1016/j.ceramint.2020.05.280
  • Zhong B, Zuo C, Yang C, et al. Bifunctional europium-doped SrTiO3 ceramics with energy storage and photoluminescence. J Alloys Compd. 2022;901:163556. doi: 10.1016/j.jallcom.2021.163556
  • Zhou S, Yongping P, Zhang X, et al. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. J Chem Eng. 2022;427:131684. doi: 10.1016/j.cej.2021.131684
  • Chen L, Deng S, Liu H, et al. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun. 2022 2;13(1):3089. doi: 10.1038/s41467-022-30821-7
  • Huang YH, Wu YJ, Qiu WJ, et al. Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. J Eur Ceram Soc. 2015;35(5):1469–1476. doi: 10.1016/j.jeurceramsoc.2014.11.022
  • Huang YH, Wu YJ, Liu B, et al. From core–shell Ba 0.4 Sr 0.6 TiO 3 @SiO 2 particles to dense ceramics with high energy storage performance by spark plasma sintering. J Mater Chem A. 2018;6(10):4477–4484. doi: 10.1039/C7TA10821D
  • Yang HB, Yan F, L Y, et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J Eur Ceram Soc. 2018;38(4):1367–1373. doi: 10.1016/j.jeurceramsoc.2017.11.058
  • Pan WG, Cao MH, Jan A, et al. High breakdown strength and energy storage performance in (nb, zn) modified SrTiO3 ceramics via synergy manipulation. J Mater Chem C. 2020;8(6):2019–2027. doi: 10.1039/C9TC06256D
  • Kong X, Yang LT, Cheng ZX, et al. Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications. J Am Ceram Soc. 2020;103(3):1722–1731. doi: 10.1111/jace.16844
  • Liu LL, Chu BK, Li P, et al. Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry. Chem Eng J. 2022;429:1322548. doi: 10.1016/j.cej.2021.132548
  • Wu YJ, Huang YH, Wang N, et al. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J Eur Ceram Soc. 2017;37(5):2099–2104. doi: 10.1016/j.jeurceramsoc.2016.12.052
  • Liu BB, Wang XH, Zhang RX, et al. Energy storage properties of ultrafine-grained Ba0.4Sr0.6TiO3-based ceramics sintered at low temperature. J Alloy Compd. 2017;691:619–623. doi: 10.1016/j.jallcom.2016.08.317
  • Liu L, Chu B, Li P. et al. Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry. Chem Eng J. 2022;429:132548. doi: 10.1016/j.cej.2021.132548
  • Xie J, Hao H, Liu H, et al. Dielectric relaxation behavior and energy storage properties of sn modified SrTiO 3 based ceramics. Int. 2016;42(11):12796–12801. doi: 10.1016/j.ceramint.2016.05.042
  • Guo X, Yongping P, Wang W, et al. Ultrahigh energy storage performance and fast charge-discharge capability in Dy-modified SrTiO3 linear ceramics with high optical transmissivity by defect and interface engineering. Ceram Int. 2020;46(13):21719–21727. doi: 10.1016/j.ceramint.2020.05.280
  • Yao Z, Luo Q, Zhang G, et al. Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications. J Mater Sci Mater Electron. 2017;28(15):11491–11499. doi: 10.1007/s10854-017-6945-z
  • Yang H, Yan F, Lin Y, et al. Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics. Appl Phys Lett. 2017;111(25):253903. doi: 10.1063/1.5000980
  • Shi WJ, Zhang LY, Yang YL, et al. Improved energy storage performance of bismuth sodium titanate-based lead-free relaxor ferroelectric ceramics via Bi-containing complex ions doping. Rare Met. 2023;42(5):1472–1482. doi: 10.1007/s12598-022-02176-x
  • Tang L, Pan Z, Zhao J, et al. Significantly enhanced energy storage capability of BNT-based ceramics via optimized sintering aids. J Alloy Compd. 2023;935:168124. doi: 10.1016/j.jallcom.2022.168124
  • Cui C, Pu Y, Shi R. High-energy storage performance in lead-free (0.8-x)SrTiO3-0.2Na0.5Bi0.5TiO3-xBaTiO3 relaxor ferroelectric ceramics. J Alloy Compd. 2018;740:1180–1187. doi: 10.1016/j.jallcom.2018.01.106
  • Alkathy MS, Zabotto FL, Milton FP, et al. Achieving high energy storage performance and breakdown strength in modified strontium titanate ceramics. J Mater Sci Mater Electron. 2022;33(19):15483–15494. doi: 10.1007/s10854-022-08455-8
  • Zhang T, Zhao Y, Li W. et al. High energy storage density at low electric field of ABO3 antiferroelectric films with ionic pair doping. Energy Storage Mater. 2019;18:238–245. doi: 10.1016/j.ensm.2018.09.011
  • Le MV, Vo NQ, Le QC, et al. Manipulating the structure and characterization of Sr1−xLaxTiO3nanotubes toward the photodegradation of 2-naphthol under artificial solar light. Catalysts. 2021;11(5):564. doi: 10.3390/catal11050564
  • Da Silva LF, Avansi W, Moreira ML, et al. Relationship between crystal shape, photoluminescence, and local structure in SrTiO3 synthesized by microwave-assisted hydrothermal method. J Nanomater. 2012;2012:1–6. doi: 10.1155/2012/890397
  • Holzwarth U, Gibson N. The Scherrer equation versus the ’Debye-Scherrer equation Nat. Nanotechnol. 2011;6(9):534. doi: 10.1038/nnano.2011.145
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1967;32(5):751–767. doi: 10.1107/S0567739476001551
  • Pradhan J, Mallick HK, Sahoo MPK, et al. Enhanced optical and dielectric properties of rare-earth co-doped SrTiO3 ceramics. J Mater Sci Mater Electron. 2021;32(10):13837–13849. doi: 10.1007/s10854-021-05959-7
  • Zhou E, Raulot J-M, Hong X, et al. “Structural, electronic, and optical properties of rare-earth-doped SrTiO3 perovskite: a first-principles study. Phys B Condens Matter. 2022;643:414160. doi: 10.1016/j.physb.2022.414160
  • Wang X-H, Chen R-Z, Gui Z-L, et al. The grain size effect on dielectric properties of BaTiO3 based ceramics. Mater Sci Eng B. 2003;99(1–3):199–202. doi: 10.1016/S0921-5107(02)00520-2
  • Reaney M, Colla EL, Setter N. Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor. Jpn J Appl Phys. 1994;33:3984. doi: 10.1143/JJAP.33.3984
  • Gargar Z, Tachafine A, Fasquelle D, et al. Grain size effects on dielectric properties of yttrium doped BaTiO3 ceramics. Phase Transitions. 2023;1–2. doi: 10.1080/01411594.2023.2253957
  • Ghosh SK, Ganguly M, Rout SK, et al. Order-disorder correlation on local structure and photo-electrical properties of La3+ ion modified BZT ceramics. Eur Phys J Plus. 2015;130(4):68. doi: 10.1140/epjp/i2015-15068-6
  • Yin Q, Zhu B, Zeng H. Microstructure, property and processing of functional ceramics. Springer Science & Business Media: 2010. doi:10.1007/978-3-642-01694-3
  • Paulista LO, Albero J, Martins RJ, et al. Turning carbon dioxide and ethane into ethanol by Solar-Driven Heterogeneous Photocatalysis over RuO2-and NiO-co-doped SrTiO3. Catalysts. 2021;11(4):461. doi: 10.3390/catal11040461
  • Quiñonero J, Pastor FJ, Orts JM, et al. Photoelectrochemical behavior and computational insights for pristine and doped NdFeO3 thin-film photocathodes. ACS Appl Mater Interfacesquery. 2021;13(12):14150–14159. doi: 10.1021/acsami.0c21792
  • Norah H, Brecht Put WMMK, Vereecken PM, et al. Plasma-assisted and thermal atomic layer deposition of electrochemically active Li 2 CO 3. RSC Adv. 2017;7(66):41359–41368. doi: 10.1039/C7RA07722J
  • Pan L, Wang S, Zou J-J, et al. Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41. Chem Comm. 2014;50(8):988–990. doi: 10.1039/C3CC47752E
  • Xie W, Rui L, Qingyu X. Enhanced photocatalytic activity of se-doped TiO2 under visible light irradiation. Sci Rep. 2018;8(1):8752. doi: 10.1038/s41598-018-27135-4
  • Xia Y, Jiang Y, Li F. et al. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl Surface Sci. 2014;289:306–315. doi: 10.1016/j.apsusc.2013.10.157
  • Young-Jin K, Ho Han M, Lim C, et al. Unveiling the role of ni in ru-ni oxide for oxygen evolution: lattice oxygen participation enhanced by structural distortion. J Energy Chem. 2023;77:54–61. doi: 10.1016/j.jechem.2022.09.032
  • Song Y, Shen Y, Liu H, et al. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO 3 nanoinclusions, surface modification and polymer matrix. J Mater Chem. 2012;22(32):16491–16498. doi: 10.1039/c2jm32579a
  • Demirezen S, Çetinkaya HG, Altındal Ş. Doping rate, interface states and polarization effects on dielectric properties, electric Modulus, and A.C. Conductivity in PCBM/NiO: ZnO/p-si structures in Wide frequency range. Silicon. 2022;14(14):8517–8527. doi: 10.1007/s12633-021-01640-0
  • Wang Z, Zhou W, Dong L. et al. Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. J Alloy Compd. 2016;682:738–745. doi: 10.1016/j.jallcom.2016.05.025
  • Yun W, Forbess MJ, Seraji S, et al. Oxygen-vacancy-related dielectric relaxation in SrBi2Ta1.8V0.2O9 ferroelectrics. J Appl Phys. 2001;89(10):5647–5652. doi: 10.1063/1.1366657
  • Chen A, Zhi Y, Cross LE. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in B i: SrTiO3. Phys Rev B. 2001;62(1):228. doi: 10.1103/PhysRevB.62.228
  • Li MD, Tang XG, Zeng SM, et al. Oxygen-vacancy-related dielectric relaxation behaviors and impedance spectroscopy of Bi (Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. J Materiomics. 2018;4(3):194–201. doi: 10.1016/j.jmat.2018.03.001
  • Zhi Y, Ang Chen PMV, Mantas PQ, et al. Dielectric relaxation behaviour of Bi: SrTiO3: III. Dielectric properties in the temperature range of 300–600 K. J Eur Ceram Soc. 1998;18(11):1629–1635. doi: 10.1016/S0955-2219(98)00029-6
  • Das BP, Choudhary RNP, Mahapatra PK. Effect of europium (eu) on structural, dielectric and electrical properties of Pb(SnTi)O3 ferroelectric ceramics. Mater Sci Eng B. 2003;104(1–2):96–105. doi: 10.1016/S0921-5107(03)00311-8
  • Gupta V, Bamzai KK, Kotru PN, et al. Dielectric properties, ac conductivity and thermal behaviour of flux grown cadmium titanate crystals. Mater Sci Eng B. 2006;130(1–3):163–172. doi: 10.1016/j.mseb.2006.03.006
  • Jonscher AK. Dielectric relaxation in Solids Chelsea dielectric Press. J. Phys D: Appl Phys. 1999;32(14):R57.
  • Song Z, Liu H, Hao H, et al. The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6M)TiO3 paraelectric ceramics by varying grain sizes. IEEE Trans Ultrason Ferroelectr FrEq Contr. 2015;62:609.
  • Lee HY, Cho KH, Nam HD. Grain size and temperature dependence of electrical breakdown in BaTiO3 ceramic. Ferroelectrics. 2006;334(1):165. doi: 10.1080/00150190600694415
  • Alkathy MS, Eiras JA, James Raju KC. Energy storage enhancement and bandgap narrowing of lanthanum and sodium co-substituted BaTiO3 ceramics. Ferroelectrics. 2021;570(1):153–161. doi: 10.1080/00150193.2020.1839266