524
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of CeO2-Y2O3 sintering aids on the microstructure and properties of corundum-based composite ceramics

, , , , , , , & show all
Pages 517-525 | Received 06 Jul 2023, Accepted 25 Sep 2023, Published online: 06 Oct 2023

References

  • Maletsky AV, Belichko DR, Konstantinova TE, et al. Structure formation and properties of corundum ceramics based on metastable aluminium oxide doped with stabilized zirconium dioxide. Ceram Int. 2021;47(14):19489–19495. doi: 10.1016/j.ceramint.2021.03.286
  • Xu XH, Zhang QK, Wu JF, et al. Preparation and characterization of corundum-based ceramics for thermal storage. Ceram Int. 2021;47(16):23620–23629. doi: 10.1016/j.ceramint.2021.05.081
  • Yin ZB, Huang CZ, Zou B, et al. High temperature mechanical properties of Al2O3/TiC micro–nano-composite ceramic tool materials. Ceram Int. 2013;39(8):8877–8883. doi: 10.1016/j.ceramint.2013.04.081
  • Yin YK, Xu JY, Ji M, et al. A critical review on sintering and mechanical processing of 3Y-TZP ceramics. Ceram Int. 2023;49(2):1549–1571. doi: 10.1016/j.ceramint.2022.10.159
  • Lao XB, Xu XY, Jiang WH, et al. Effect of aluminum on performances of cordierite-SiCw composite ceramics for high-temperature sensible thermal storage. J Alloys Compd. 2019;780:378–387. doi: 10.1016/j.jallcom.2018.11.351
  • Hou Y, Zhang GH, Chou KC. Comparison of hot pressing sintering and conventional powder-sintering in preparation of CaO-Al2O3-SiO2-Fe3O4-R2O glass ceramics. J Non-Cryst Solids. 2021;564:120829. doi: 10.1016/j.jnoncrysol.2021.120829
  • Pristinskiy Y, Pinargote NWS, Smirnov A. The effect of MgO addition on the microstructure and mechanical properties of alumina ceramic obtained by spark plasma sintering, Mater. Today Proc. 2019;19:1990–1993. doi: 10.1016/j.matpr.2019.07.058
  • Yuan Y, Fan JY, Li JS, et al. Oscillatory pressure sintering of Al2O3 ceramics. Ceram Int. 2020;46(10):15670–15673. doi: 10.1016/j.ceramint.2020.03.117
  • Huang WW, Qiu HJ, Zhang YQ, et al. Microstructure and phase transformation behavior of Al2O3–ZrO2 under microwave sintering. Ceram Int. 2023;49(3):4855–4862. doi: 10.1016/j.ceramint.2022.09.376
  • Liang YJ, Shi CB, Huang Y, et al. Effect of CaO/SiO2 mass ratio and Li2O on structure and phase precipitation behaviors of CaO-SiO2-MgO-Al2O3 oxide inclusions. J Non-Cryst Solids. 2022;597:121911. doi: 10.1016/j.jnoncrysol.2022.121911
  • Gao CX, Zhao XX, Li B. Influence of Y2O3 on microstructure, crystallization, and properties of MgO-Al2O3-SiO2 glass-ceramics. J Non-Cryst Solid. 2021;560:120728. doi: 10.1016/j.jnoncrysol.2021.120728
  • Wang M, Zheng QS, Chen AY, et al. Crystallization, thermal expansion and hardness of Y2O3–Al2O3–SiO2 glasses. Ceram Int. 2021;47(17):25059–25066. doi: 10.1016/j.ceramint.2021.05.236
  • Wei MJ, He F, Cao XH, et al. Structure and sintering behavior of BaO–SrO–B2O3–SiO2 sealing glass for Al2O3 ceramic substrates. Ceram Int. 2022;48(19):27718–27730. doi: 10.1016/j.ceramint.2022.06.072
  • Xu XX, Zhang QK, Wu JF, et al. Preparation and characterization of corundum ceramics doped with Fe2O3 and TiO2 for high temperature thermal storage. Ceram Int. 2022;48(2):1820–1826. doi: 10.1016/j.ceramint.2021.09.263
  • Yang Y, Ma MS, Zhang FQ, et al. Low-temperature sintering of Al2O3 ceramics doped with 4CuO-TiO2-2Nb2O5 composite oxide sintering aid. J Eur Ceram Soc. 2020;40:5504–5510. doi: 10.1016/j.jeurceramsoc.2020.06.068
  • Ucar V, Ozel A, Mimaroglu A, et al. Influence of SiO2 and MnO2 additives on the dry friction and wear performance of Al2O3 ceramic. Mater Des. 2001;22(3):171–175. doi: 10.1016/S0261-3069(00)00069-8
  • Wang XY, Wang XL, Sun XW, et al. Microstructure and properties evolution of plasma sprayed Al2O3-Y2O3 composite coatings during high temperature and thermal shock treatment. J Rare Earths. 2021;39:718–727. doi: 10.1016/j.jre.2020.09.008
  • He W, Ai YL, Liang BL, et al. Effects of La2O3 and Nb2O5 dopants on the microstructural development and fracture toughness of Al2O3 ceramic, Mater. Sci Eng A. 2018;723:134–140. doi: 10.1016/j.msea.2018.03.057
  • Chen PC, Cheng CW, Kao IC, et al. Effect of co-doping NiO and Nb2O5 on phase stability and mechanical properties of Y2O3-stabilized ZrO2/Al2O3 composites. Adv Powder Technol. 2016;27:877–881. doi: 10.1016/j.apt.2016.01.017
  • Yu WJ, Zheng YT, Pan JY, et al. Phase evolution and microstructure analysis of Al2O3–ZrO2(Y2O3) eutectic powders with ultra-fine nanostructure. Ceram Int. 2019;45(17):23423–23430. doi: 10.1016/j.ceramint.2019.08.046
  • Fang YH, Chen N, Du GP, et al. Effect of Y2O3-stabilized ZrO2 whiskers on the microstructure, mechanical and wear resistance properties of Al2O3 based ceramic composites. Ceram Int. 2019;45:16504–16511. doi: 10.1016/j.ceramint.2019.05.184
  • Wang ZJ, Liu LL, Du QF, et al. Enhanced microwave dielectric properties of CeO2–TiO2 ceramics by adding Al2O3 for microstrip antenna application. Ceram Int. 2022;48(10):14378–14385. doi: 10.1016/j.ceramint.2022.01.329
  • Lyu XX, Zhao ZY, Sun HL, et al. Influence of Y2O3 contents on sintering and mechanical properties of B4C-Al2O3 multiphase ceramic composites. J Mater Res Technol. 2020;9(5):11687–11701. doi: 10.1016/j.jmrt.2020.08.072
  • Zhai SY, Liu JC, Lan DH, et al. High temperature tensile strength of large size Al2O3/ZrO2(Y2O3) directionally solidified eutectic ceramics. Mater Lett. 2022;307:130950. doi: 10.1016/j.matlet.2021.130950
  • Yu YD, Pan JY, Yuan YC, et al. Effect of Y2O3 contents on microstructural, mechanical, and antioxidative characteristics of Al2O3-ZrO2-Y2O3 coatings, Appl. Surf Sci. 2022;590:153096. doi: 10.1016/j.apsusc.2022.153096
  • Zhang Y, Ma XG, Li XY, et al. Crystallization kinetics of Al2O3-26mol%Y2O3 glass and full crystallized transparent Y3Al5O12-based nanoceramic. J Eur Ceram Soc. 2021;41:1557–1563. doi: 10.1016/j.jeurceramsoc.2020.09.036
  • Wei D, Xu XQ, Wang YL, et al. Quasi-elastic deformation with rebound resilience in bulk amorphous Al2O3–ZrO2–Y2O3 at moderate temperature. Ceram Int. 2020;46(18):29352–29355. doi: 10.1016/j.ceramint.2020.08.103
  • Ma YH, Ouyang JH, Wang ZG, et al. Insights into intragranular precipitation and strengthening effect in Al2O3/SmAlO3 ceramic with eutectic composition, Mater. Sci Eng A. 2019;754:382–389. doi: 10.1016/j.msea.2019.03.091
  • Song XW, Xie M, Zhou F, et al. High-temperature thermal properties of yttria fully stabilized zirconia ceramics. J Rare Earths. 2011;29(2):155–159. doi: 10.1016/S1002-0721(10)60422-X
  • Wang X, Xue ZL, Zhou ZM, et al. Influences of ZrSiO4 doping on microstructure and mechanical properties of Y2SiO5–ZrSiO4 ceramics. Ceram Int. 2022;48(1):1277–1284. doi: 10.1016/j.ceramint.2021.09.212
  • Ivanov DA, Sitnikov AI, Val′yano GE, et al. Alumina ceramics sintered from hollow corundum microspheres with Al2O3 and ZrO2–Y2O3 as sintering activators. Ceram Int. 2023;49(1):1496–1501. doi: 10.1016/j.ceramint.2022.09.320
  • Yu WJ, Zhang EL, Yu YD, et al. Effects of CeO2 on the phase, microstructure and mechanical properties of Al2O3-ZrO2(CeO2) nanocomposite ceramics (AZC-NCs) by solid solution precipitation. Ceram Int. 2022;48:34454–34464. doi: 10.1016/j.ceramint.2022.08.025
  • Kumatani N, Suda A, Morikawa A, et al. Synthesis of a nanosized homogeneous Al2O3–CeO2–ZrO2 composite as an oxygen-storage material for highly improved thermal durability. Ceram Int. 2023;49(11):19265–19272. doi: 10.1016/j.ceramint.2023.03.053
  • Santos C, Coutinho IF, Amarante JEV, et al. Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3-CeO2 reinforced with Al2O3 platelets for dental implants. J Mech Behav Biomed Mater. 2021;116:104372. doi: 10.1016/j.jmbbm.2021.104372
  • Yao YJ, Li CC, Wang L, et al. Mechanical behaviors of alumina ceramics doped with rare-earth oxides. Rare Met. 2010;29:456–459. doi: 10.1007/s12598-010-0149-5